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a b s t r a c t

We are concerned with the design of metamaterials capable of exhibiting a user-defined
frequency band gap in periodic media supporting scalar waves. We cast the metamaterial
design problem as an inverse medium problem, and seek to reveal the properties of
the metamaterial unit cell that would enforce the gap. To drive the inversion, we use
a scalar objective functional – the negativity of a discriminant of the coefficients of a
quadratic wavenumber eigenvalue problem – that defines uniquely the evanescent state
associatedwith the gap.Weuse themedium’s dispersion characteristics to side-impose the
underlyingwave physics in the objective functional, and demonstrate the proposed inverse
metamaterial design with numerical examples in both the frequency and time domains
for the scalar wave case in one and two dimensions. The approach is systematic and can
be generalized to the vector wave case, since the associated eigenvalue problem remains
Hermitian.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Theneed to designmaterials capable of exhibiting band gaps is driven,with increasing intensity, by applications in various
engineering fields: whereas electronic band gaps have long been central to developments in the semiconductor industry [1],
applications involving photonic and phononic crystals are currently driving novel applications in sensing and imaging [2,3].
A photonic crystal and a phononic crystal are spatially periodic composite structures capable of exhibiting electromagnetic
or acoustic band gaps, respectively. In this context, a band gap is a frequency range where the propagation of waves is
arrested. The crystal’s spatially periodic structure is realized by assemblies of unit cells; typically, each unit cell is itself
heterogeneous, with spatially varying optical or acoustic properties. Whereas the unit cell’s constituent materials are real,
the crystal’s homogenized properties may assume non-physical values, thus granting metamaterial status to the crystal.
Depending on the type of crystal, the wave type to be arrested in a band gap is different: de Broglie waves in the ‘‘electronic’’
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crystal case, electromagnetic and sound waves, in the photonic and phononic crystal cases, respectively. Band-gap behavior
similar to that exhibited in photonic or phononic crystals is also possible for elastic waves in elastic metamaterials. Whereas
the one-dimensional elastic band-cap case is very similar to the photonic and phononic crystal cases, designing materials to
exhibit band gaps in higher dimensions remains a challenge due to the presence of multiple directions and of different wave
types that travel at different velocities (e.g., shear and compressional waves).

Most of the early studies on band-gap materials were the purview of solid-state physics (the electronic band gap) [1,4].
The photonic crystal case, and more recently the phononic case, have seen considerable development, especially since
technological challenges in the fabrication of the crystals were overcome [5,6]. More generally, the interest in understanding
how waves interact with periodic structures possibly predates all the aforementioned developments and it seems to have
originated in studies of the behavior of elastic or stress waves in periodic structures [7]. Irrespective of the underlying
physics, the inverse design problem, or equivalently, the question of what should the unit cell be made of in order to deliver
a prescribed or desired band gap has not been systematically addressed, relying mostly on ad hoc approaches, with very few
exceptions [8–12].

In this paper, we are concerned with devising one such systematic approach for the material design of a metamaterial
unit cell, when given a target design band gap. Herein, we focus exclusively on the scalar wave problem, which is common to
acoustics, particular polarization cases in electromagnetics (e.g., TE or TM cases), and elastodynamics (e.g., SH case). Since the
goal is to construct the spatial distribution of material properties driven by given data (or a sought performance outcome),
the problem belongs to the class of inverse medium problems encountered in various other fields (e.g., geophysics):
we thus borrow from our own past developments in the treatment of inverse medium problems using PDE-constrained
optimization [13,14], with suitable modifications to accommodate the band-gap objective. Specifically, we show that the
negativity of the discriminant of the coefficients of the problem’s eigenvalue problem (cast in terms of the wavenumber)
is sufficiently unique in delineating the band gap, and thus is a good choice to base the objective functional on. To form
the Lagrangian, instead of side-imposing the governing PDE, we augment the objective functional with the side imposition
of the problem’s dispersion characteristics, or equivalently, the eigenvalue problem. Following the satisfaction of the first-
order optimality conditions, the properties of the unit cell are obtained, leading to ametamaterial exhibiting the target band
gap. We demonstrate the methodology with numerical results, leading to unit cell designs with either piecewise constant
properties, or made of functionally-graded materials, in one and two spatial dimensions.

2. Preliminaries

To justify the particular choice of the objective functional that would drive the inversion for the metamaterial unit cell,
we discuss first the dynamics of a periodic structure that lead to an eigenvalue problem for the unit cell. The eigenvalue
problem characterizes fully the dispersion behavior and the frequency band structure of the metamaterial.

2.1. Bloch theorem and Bloch boundary condition

Consider the one-dimensional elastic metamaterial shown in Fig. 1, consisting of one-dimensional unit cells. In the
frequency domain, the wave propagation within the metamaterial is governed by the one-dimensional scalar Helmholtz
equation:

∂

∂x

[
µ(x)

∂

∂x
U(x)

]
+ ω2ρ(x)U(x) = 0, ∀x ∈ R, (1)

whereω is a temporal frequency and the twomaterial propertiesµ (elastic modulus) and ρ (mass density) are periodic with
periodicity p, i.e., µ(x + p) = µ(x), and ρ(x + p) = ρ(x); consequently, the Helmholtz operator in (1) is periodic. Then, by
virtue of the Bloch theorem [4], the wavefunctions U(x) that are solutions to (1) are Bloch waves, i.e.:

U(x) = eikxu(x), (2)

where u(x+ p) = u(x) ∀x, and k is the (Bloch) wavenumber. Expression (2) leads also to the Bloch boundary condition:

U(x+ p) = eikpU(x), (3)

which permits consideration of the unit cell only.
We note that (1) is equally applicable to the acoustic, electromagnetic (polarized cases), and elastic cases, with different

ascription of physical meaning to the material properties ρ and µ [15].

2.2. Eigenvalue problems and band structures

Next, we are interested in deriving the unit cell’s eigenvalue problem. Since we intend to use finite elements for the
numerical treatment of the inverse material design problem, the eigenvalue problem is derived in a weak or weighted-
residual sense: we multiply (1) by a test function V (x), where V (x) = eikxv(x), with v(0) = v(p), and a bar (·) over a variable
denotes complex-conjugation of the subtended quantity. Then:

0 =
∫ p

0
V
[

∂

∂x

(
µ

∂U
∂x

)
+ ω2ρ U

]
dx
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Fig. 1. Typical one-dimensional metamaterial.

= Vµ
∂U
∂x

⏐⏐⏐⏐x=p
x=0
−

∫ p

0

[
∂V
∂x

µ
∂U
∂x
− Vω2ρ U

]
dx

= Vµ

(
eikxiku+ eikx

∂u
∂x

)⏐⏐⏐⏐x=p
x=0

−

∫ p

0

[
∂V
∂x

µ

(
eikxiku+ eikx

∂u
∂x

)
− Vω2ρ eikxu

]
dx. (4)

Eq. (4) is a Hermitian form, which yields the Bloch eigenvalue problem [16,17] in a weak sense:

0 =
∫ p

0

[(
−ikv +

∂v

∂x

)
µ

(
iku+

∂u
∂x

)
− vω2ρu

]
dx. (5)

In the above u, v ∈ V , where V is defined as:

V =
{
u ∈ H1(0, p) |, u(0) = u(p)

}
. (6)

There are two paths one can follow to obtain the band structure from the eigenvalue problem: for a given wavenumber k,
one can solve for ω2, which gives rise to a linear eigenvalue problem, or, alternatively, one can solve for the wavenumber k
for a given ω, which gives rise to a quadratic eigenvalue problem.

A classical band structure, as that shown in Fig. 2(a), results from the solution of the linear eigenvalue problem: in
the figure, ω̂ = ωp/ca and k̂ = kp/π is normalized frequency and wavenumber, respectively, and ca denotes an average
wave velocity. The bands are symmetric about the origin of the Brillouin zone1 Γ , and they are periodic. Thus, the bands
between Γ and the center of the face X contain all the information of the band structure. We note that to solve the linear
eigenvalue problem, we use real-valued wavenumbers k, and since the associated forms are Hermitian, ω2 is always real-
valued. Therefore, the resulting classical band structure can express propagating states only, with the evanescent states
corresponding to band gaps that are only indirectly recoverable: the shadowed region in Fig. 2(a) corresponds to a no-
solution condition forω. Due to the above indirect definition of the band gap, the linear eigenvalue problem does not appear
to be the best driver for the inverse problem. By contrast, the quadratic eigenvalue problem offers a direct definition of the
evanescent state/band gap, as is discussed next. We note that, in the quadratic eigenvalue problem, for a given (real) ω, we
solve for k, which is, in general, complex. To illustrate, we rearrange the weak form (5) to yield the quadratic eigenvalue
problem:

Given ω ∈ R, find k ∈ C and u ∈ V \ {0} such that:

0 = a0 (v, u)+ ka1 (v, u)+ k2a2 (v, u) ≡ P (k) (v, u) , ∀v ∈ V (7)

where

a0 (v, u) =
∫ p

0

(
∂v

∂x
µ

∂u
∂x
− ω2vρu

)
dx, (8a)

a1 (v, u) =
∫ p

0
i
(

∂v

∂x
µu− vµ

∂u
∂x

)
dx, and (8b)

a2 (v, u) =
∫ p

0
vµudx. (8c)

1 The Brillouin zone is a unit cell in the spatial Fourier transform of the periodic domain. The first Brillouin zone contains the origin k̂ = 0, which is
denoted by Γ . The boundary of the first Brillouin zone k̂ = 1, or the center of the face, is denoted by X .
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Fig. 2. Band structures: (a) The classical band structure plotted using the periodic zone scheme. (b) The complex band structure plotted using the reduced
zone scheme; ℜe{k̂} is in the middle panel, the non-zero ℑm{k̂} for ℜe{k̂} = 0 is in the left panel, and the non-zero ℑm{k̂} for ℜe{k̂} = 1 is in the right
panel. Band gaps correspond to the shadow zones.

Fig. 2(b) depicts the band structure resulting from the quadratic eigenvalue problem, where, because of the symmetry and
the periodicity, the band structure is plotted only between Γ and X . We note that the band gaps correspond to the regions
where ℑm{k̂} is non-zero; in particular, the left panel corresponds to ℜe{k̂} = 0, whereas the right panel corresponds to
ℜe{k̂} = 1. Clearly, whether recovered by the linear or the quadratic eigenvalue problems, the band gaps coincide, as shown
in Figs. 2(a) and 2(b), respectively. However, the quadratic eigenvalue problem offers a sharper criterion for establishing the
band gap than its linear counterpart, as it can be readily seen in Fig. 2(b): the criterion is a non-zero imaginary wavenumber
part, which will be further exploited in defining the objective functional.

2.3. Eigenvalue problem discriminant

We revisit the eigenvalue problem (7) and replace the test function v with the eigenfunction u: there results a simple
quadratic equation in the wavenumber k, i.e.,

0 =P (k) (u, u)

=a0 (u, u)+ ka1 (u, u)+ k2a2 (u, u)

=c + bk+ ak2, (9)

where the coefficients a = a2 (u, u), b = a1 (u, u), and c = a0 (u, u) are always real-valued because they are the products of
Hermitian forms operating on the same function. Then, the solutions of (9) are obtained by the quadratic formula:

k =
−b±

√
b2 − 4ac
2a

, (10)

where the discriminant D is defined as:

D = b2 − 4ac. (11)

The negativity of the discriminant (11) ensures a non-zero imaginary part for the wavenumber: the latter was associated
in the previous sectionwith the presence of a band gap. Fig. 3 depicts the discriminant as a function of the temporal frequency
ω, side-by-sidewith the band structure. Clearly, positive discriminants are associatedwith propagating states,while negative
discriminants appear at evanescent states.

Thus, in summary, band gaps are equivalently characterized by either wavenumbers with non-zero imaginary parts or by
negative discriminants, for a given temporal frequency. Either of the two band-gap indicators (ℑm{k} ̸= 0 or D < 0) could
be used to drive the inverse metamaterial design: however, only the discriminant-based indicator allows for differentiable
objective functionals.
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Fig. 3. A typical band structure (left) and the discriminant of the associated quadratic eigenvalue problem (right): the discriminants are real-valued and
are smoothly varying over the frequency range. Negative discriminants correspond to band gaps (shaded zones).

3. Inverse metamaterial design in 1D

3.1. Discriminant-based objective functional

Suppose we want to design a material that exhibits a band gap at frequencies between ωs and ωf . Then, the design goal
in terms of the discriminant becomes:
Find ρ and µ such that

D < 0, ω ∈ (ωs, ωf ), (12)

or, by restating the above inequality problem as a minimization problem:
Given ωi ∈ (ωs, ωf ), find ρ and µ such that:

minD [ρ, µ, u] . (13)

The target band-gap interval is discretized into N frequencies ω(i), with i = 1, 2, . . . ,N . Then, given ω(i)
∈ (ωs, ωf ), the

objective functional can be written as:

D [ρ, µ, u] =
N∑
i

D(i)
0

[
ρ, µ, u(i)

0

]
, where (14a)

D(i)
0

[
ρ, µ, u(i)

0

]
= a1

(
u(i)
0 , u(i)

0

)
a1
(
u(i)
0 , u(i)

0

)
− 4a2

(
u(i)
0 , u(i)

0

)
a0
(
u(i)
0 , u(i)

0

)
. (14b)

In the above, we use u(i)
0 to denote the fundamental eigenfunction at each frequency ω(i), and u to represent the set of all

u(i)
0 across the target band gap. Similarly, D(i)

0 denotes the ith discriminant of the fundamental mode eigenvalue problem.
In one spatial dimension, the objective functional consists of the sum of the fundamental-mode discriminants D(i)

0 at the
target frequencies ω(i), and was proven sufficient for driving the inverse design. However, the fundamental mode may not
be sufficient forwaves in higher spatial dimensions, as is discussed in Section 4,where suitable augmentations are presented.

3.2. The Lagrangian and the dispersion constraint

Resolution of the minimization problem (13) requires the direct sensitivity analysis of the objective functional D.
Alternatively, an adjointmethod could be enlisted to compute the gradient that drives thematerial parameter updates during
the inversion process. To this end, the objective functional D could be augmented by the side imposition of a constraint —
typically, a mathematical description of the underlying wave physics. Such an often-used constraint is the problem’s partial
differential equation (e.g., [13,14]); hereweopt to instead use the associated eigenvalue problem, effectively constraining the
minimization by the dispersive properties of the target medium (e.g., [18,19]). The resulting Lagrangian functional becomes:

L [ρ, µ, u, k, v, ξ ] = D [ρ, µ, u]+ E [ρ, µ, u, k, v, ξ ] , (15)
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where the constraint E [ρ, µ, u, k, v, ξ ] is defined as:

E [ρ, µ, u, k, v, ξ ] =
N∑
i

ℜe
{
P
(
k(i)0
)(

v
(i)
0 , u(i)

0

)}
+

N∑
i

ξ
(i)
0

2

[
a2
(
u(i)
0 , u(i)

0

)
− 1

]
. (16)

In (16), u(i)
0 is the fundamental mode eigenfunction (or the eigenfunction that is associated with the smallest eigenvalue), k(i)0

is the corresponding fundamental eigenvalue, v(i)
0 is an adjoint eigenfunction, and ξ

(i)
0 is an adjoint variable at each frequency

ω(i) (the sets of all k(i)0 , ξ (i)
0 , and v

(i)
0 are denoted by k, ξ , and v, respectively). Thus, the first term in (16) is the eigenvalue

problem (7); without loss of generality, we impose the real part of the eigenvalue problem to ensure its derivative is real-
valued. The second term in (16) is the orthonormality condition that would guarantee a unique solution for the eigenvectors.
With the above definition for the Lagrangian, the inverse design problem (13) is replaced by:

min L [ρ, µ, u, k, v, ξ ] . (17)

The minimization of the Lagrangian Lwould ensure the simultaneous minimization of the objective functional D (band-gap
goal), and the satisfaction of the eigenvalue problem.

3.3. Optimality conditions

Next, we seek a stationary point of the Lagrangian (15) by requiring the satisfaction of the first-order optimality
conditions. Accordingly, the first (Gâteaux) derivatives of L with respect to the state variables, to the adjoint variables, and
to the (unknown) design material variables, are forced to vanish. The derivatives with respect to the adjoint variables lead
to the state eigenvalue problem, whereas the derivatives with respect to the state variables lead to the adjoint eigenvalue
problem. The derivatives with respect to the design variables lead to a control problem, from which we obtain the gradient
of L for given trial designs of ρ and µ. The definitions of the derivatives are given in Appendix; here, we provide the final
form of the optimality conditions:

1. State eigenvalue problem
Given trials ρ and µ, find k(i)0 ∈ C and u(i)

0 ∈ V \ {0} such that

0 =P
(
k(i)0
)(

ṽ
(i)
0 , u(i)

0

)
∀ṽ

(i)
0 ∈ V (18a)

0 =
ξ̃
(i)
0

2

[
a2
(
u(i)
0 , u(i)

0

)
− 1

]
∀ξ̃

(i)
0 ∈ R. (18b)

2. Adjoint eigenvalue problem
Given trials ρ, µ, and state variables k(i)0 and u(i)

0 , find ξ
(i)
0 ∈ R and v

(i)
0 ∈ V such that

0 =P
(
k(i)0
)(

v
(i)
0 , ũ(i)

0

)
+ ξ

(i)
0 a2

(
u(i)
0 , ũ(i)

0

)
+ 4a1

(
u(i)
0 , u(i)

0

)
a1
(
u(i)
0 , ũ(i)

0

)
− 8a2

(
u(i)
0 , u(i)

0

)
a0
(
u(i)
0 , ũ(i)

0

)
− 8a0

(
u(i)
0 , u(i)

0

)
a2
(
u(i)
0 , ũ(i)

0

)
∀ũ(i)

0 ∈ V (19a)

0 =k̃(i)0 a1
(
v
(i)
0 , u(i)

0

)
+ 2k̃(i)0 k(i)0 a2

(
v
(i)
0 , u(i)

0

)
∀k̃(i)0 ∈ C. (19b)

3. Gradient of L
Given trials ρ, µ, state variables k(i)0 and u(i)

0 , adjoint variables ξ
(i)
0 and v

(i)
0 , find gρ ∈ S and gµ ∈ S such that∫ p

0
ρ̃ gρdx =

N∑
i

ℜe
{
4a2

(
u(i)
0 , u(i)

0

) ∫ p

0
u(i)
0 ω2ρ̃ u(i)

0 dx
}
−

N∑
i

ℜe
{∫ p

0
v
(i)
0 ω2ρ̃ u(i)

0 dx
}
∀ρ̃ ∈ S (20a)

∫ p

0
µ̃ gµdx =

N∑
i

ℜe

{
2a1

(
u(i)
0 , u(i)

0

) ∫ p

0
i

(
∂u(i)

0

∂x
µ̃ u(i)

0 − u(i)
0 µ̃

∂u(i)
0

∂x

)
dx

}

−

N∑
i

ℜe

{
4a2

(
u(i)
0 , u(i)

0

) ∫ p

0

∂u(i)
0

∂x
µ̃

∂u(i)
0

∂x
dx

}

−

N∑
i

ℜe
{
4a0

(
u(i)
0 , u(i)

0

) ∫ p

0
u(i)
0 µ̃ u(i)

0 dx
}

+

N∑
i

ℜe

{
k(i)0

∫ p

0
i

(
∂v

(i)
0

∂x
µ̃ u(i)

0 − v
(i)
0 µ̃

∂u(i)
0

∂x

)
dx

}
+

N∑
i

ℜe

{∫ p

0

∂v
(i)
0

∂x
µ̃

∂u(i)
0

∂x
dx

}
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+

N∑
i

ℜe
{(

k(i)0
)2 ∫ p

0
v
(i)
0 µ̃ u(i)

0 dx
}
+

N∑
i

ℜe

{
ξ
(i)
0

2

∫ p

0
u(i)
0 µ̃ u(i)

0 dx

}
∀µ̃ ∈ S, (20b)

where

S =
{
u ∈ H0(0, p)|u(0) = u(p)

}
, (21)

and gρ and gµ are the Fréchet derivatives, or gradients, of Lwith respect to ρ and µ, respectively.

The search directions dρ and dµ are constructed from the gradients gρ and gµ, and the properties are then updated using
any gradient-based scheme [20], e.g., steepest descent, conjugate gradient, etc. Given appropriate step sizes αρ and αµ, the
material profiles are updated by

ρ ← ρ + αρdρ, (22a)

µ← µ+ αµdµ. (22b)

The overall inversion algorithm, including the computational details for the search directions and the step sizes, is discussed
in Section 3.5.

3.4. Band gap width control

An algorithm based on the described minimization of the Lagrangian would, in general, drive the discriminants for the
band gap frequencies to negative territory, but would not necessarily stop from enlarging the band gap beyond the target
regime, since no stopping criterion has been prescribed thus far. In this section, we discuss two approaches for limiting the
band-gap width to the target size.

The simplest method is to implement a termination criterion by monitoring the negativity of the discriminants D(i)
0 at

discrete frequencies ω(i) within the target band gap. Let ND denote the number of frequencies at which the discriminant
becomes negative. Then, the inversion is terminated when

ND ≥ N, (23)

i.e., when the number of frequencies atwhich the discriminant becomes negative exceeds the number of discrete frequencies
within the target band gap.

Alternatively, one could replace the summations in (14) and (16) with conditional summations, per:

D [ρ, µ, u] =
N∑

i|D(i)
0 >0

D(i)
0 and (24)

E [ρ, µ, u, k, v, ξ ] =
N∑

i|D(i)
0 >0

ℜe
{
P
(
k(i)0
)(

v
(i)
0 , u(i)

0

)}
+

N∑
i|D(i)

0 >0

ξ
(i)
0

2

[
a2
(
u(i)
0 , u(i)

0

)
− 1

]
. (25)

That is, the summations are carried only over the number of frequencies within the target band gap for which the associated
(fundamental mode) discriminant is positive. By definition, the objective functional (24) has a lower bound (zero): the
inversion process stops automatically when the discriminant becomes negative for every frequency ω(i) in the target band
gap. This second method is particularly useful for higher-dimensional problems, as it will be shown, where multiple modes
and multiple directions are present.

In reporting numerical results, we used the first stopping criterion (23) for one-dimensional problems, and the second
criterion (24)–(25) for two-dimensional problems.

3.5. Inversion process

We discuss next the inversion process that iteratively updates the unit cell properties to yield a metamaterial assembly
capable of exhibiting a prescribed band gap. Other inverse design problems can be similarly accommodated depending on
particular manufacturing constraints that may limit the range of considered material properties.

First, we choose initial guesses ρ0 and µ0 for the material properties ρ and µ. Then, using the trial material properties,
the state eigenvalue problem (18) is solved to obtain the state variables k(i)0 and u(i)

0 . Then, using the state variables and the
trial properties, the adjoint eigenvalue problem (19) is solved to obtain the adjoint variables ξ

(i)
0 and v

(i)
0 . Next, armed with

both the state and adjoint variables, the reduced gradient of the Lagrangian L is computed, per (20). The search directions for
the material properties are obtained from the gradient of L using any gradient-based scheme; here, we opt for a nonlinear
conjugate gradient method [20,21]. The step size is obtained using a backtracking algorithm [20], and, finally, the properties
are updated using (22). The process is repeated until the inverted material satisfies the termination criterion (23). We also
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stop the iterations when the backtracking algorithm fails to satisfy the sufficient-decrease condition; in such a case, we
restart the inversion with different initial search length or initial guess for the material properties.

The most computationally-intensive parts of the inversion process are the state and the adjoint solutions, which contain
N number of eigenvalue solutions, and N number of linear system solutions. However, the computation of the eigenvalue
solution and the linear system solution for each frequency ω(i) in the target band gap is independent from each other, and
thus, the inversion process can be efficiently parallelized.

The details of the inversion process are listed in Algorithm 1.

Algorithm 1 Inversion process
1: Define the frequency range and the number of frequency points N in the target band gap
2: Define the geometry of the unit cell (e.g. period, number of distinct material elements, etc.)
3: Set the initial search length
4: Set initial guess for the material properties ρ0 and µ0
5: Set ND = 0
6: Initialize the iteration counter l← 0
7: for ND < N do
8: Solve the state eigenvalue problem ▷ Eq. (18)
9: Compute ND ▷ Eq. (23)

10: Solve the adjoint eigenvalue problem ▷ Eq. (19)
11: Compute the gradient of L ▷ Eq. (20)
12: Obtain the search direction (e.g., conjugate gradient method)
13: Update the material properties ρl+1 and µl+1 using backtracking algorithm; stop if sufficient-decrease condition is

violated
14: Set l← l+ 1.
15: end for

3.6. Extensions for topology design

Thus far, in the outlined inversion methodology, it is only the material parameters ρ and µ that have been considered as
unknown design variables, whereas the topology of the unit cell has been considered fixed (the material thicknesses are set
a priori). However, the same framework can be used to accommodate unknown thicknesses (or, more generally, unknown
topology), with the addition of an equality constraint to the Lagrangian (the sum of the thicknesses must equal the size of
the unit cell), and suitable modifications to the control problem. Specifically, of the three optimality conditions discussed in
Section 3.3, the state and adjoint eigenvalue problems would remain the same, but the gradients of L (the control problem)
would have to be complemented by the derivatives of Lwith respect to the unknown thicknesses. Thus, it would be possible
to simultaneously invert for both the topology and the properties, using the same discriminant-based objective functional.

4. Generalization to higher spatial dimensions

We claim that the discriminant-based objective functional (14) can also be used to drive the inverse design problem for
scalar waves in higher dimensions, since the negativity of the discriminant is still a unique indicator of a band gap owing to
the fact that the associated sesquilinear forms, a0(v, u), a1(v, u), and a2(v, u), remain Hermitian. Higher spatial dimensions
introduce additional complexities associated with the presence of multiple directions (in wavenumber space), and multiple
modes. Yet, as it will be discussed, the inversion framework presented in Section 3 is capable of accommodating multiple
modes and multiple user-defined directions, including omni-directional band gap targets.

To fix ideas, consider the n-dimensional (n = 2, 3) scalar Helmholtz equation:

div [µ(x)gradU(x)]+ ω2ρ(x)U(x) = 0, ∀x ∈ Rn, (26)

with the periodicity relations µ

(
x+

n∑
i=1

mipi

)
= µ(x) and ρ

(
x+

n∑
i=1

mipi

)
= ρ(x), ∀mi ∈ Z; pi ∈ R are primitive lattice

vectors, which define the metamaterial topology when given a unit cell. Then, the Bloch theorem suggests

U(x) = u(x)eik·x, (27)

where u

(
x+

n∑
i=1

mipi

)
= u(x), and k denotes wavevector.
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4.1. Eigenvalue problem and band structure

Following lines similar to those described in Section 2.2, and while setting k = kd+ d0, we obtain the weak form of the
quadratic eigenvalue problem corresponding now to the n-dimensional equation (26):
Given ω, d, and d0, find k ∈ C and u ∈ W \ {0} such that

0 = a0 (v, u)+ ka1 (v, u)+ k2a2 (v, u) ≡ P (k) (v, u) ∀v ∈ W, (28)

where

W =

{
u ∈ H1(Ω)

⏐⏐⏐⏐⏐u(x) = u

(
x+

n∑
i=1

mipi

)
∀x ∈ ∂Ω

}
, (29a)

a0 (v, u) =
∫

Ω

[
grad v · grad u− vω2ρ u

]
dΩ

+ i
∫

Ω

[grad v · µd0u− d0v · µ grad u] dΩ +
∫

Ω

d0v · µd0udΩ, (29b)

a1 (v, u) = i
∫

Ω

[grad v · µdu− dv · µ grad u] dΩ +
∫

Ω

[dv · µd0u+ d0v · µdu] dΩ, and (29c)

a2 (v, u) =
∫

Ω

dv · µdudΩ. (29d)

In the above, Ω is the domain of the unit cell and ∂Ω is its boundary. Then, the complex band structure can be obtained
by solving (28) for different choices of direction d and offset d0 (the offset d0 is required for the high-symmetry line that is
not connected to the center of the Brillouin zone Γ , otherwise d0 = 0). For example, for a square unit cell with a typical
triangular irreducible Brillouin zone, we use d = (1, 0) and d0 = 0 for Γ -X; d = (1/

√
2, 1/
√
2) and d0 = 0 for Γ -M; and

d = (0, 1) and d0 = (1, 0) for X-M.
Similarly to the one-dimensional case, we are interested in comparing the complex band structure to the one obtained

by considering the sign of the problem’s discriminant. The discriminant, using (28), is again expressed in terms of the
sesquilinear forms, as:

D = a1(u, u)a1(u, u)− 4a0(u, u)a2(u, u). (30)

To highlight the equivalency between the complex band structure and the discriminant sign, we focus on a prototype
square unit cell, as shown in Fig. 4(b). The unit cell consists of a square inclusion of dimensions (0.5 × 0.5) embedded
concentrically within a square of unit sides. The properties of the inclusion are ρ1 = 1.9, µ1 = 1.7, whereas the background
medium has ρ2 = 0.5 and µ2 = 0.6. The figure’s gray shading is driven by the wave speeds of the twomedia (c1 = 0.95 and
c2 = 1.1). Figs. 4(a) and 4(c) depict the real and imaginary part, respectively, of the complex band structure thatwas obtained
by solving the quadratic eigenvalue problem (28), plotted along the high-symmetry lines of the irreducible Brillouin zone
(see insert in Fig. 4(a)).

The shaded zones in both Figs. 4(a) and 4(c) correspond to band gaps, and are characterized by a nonzero imaginary
part (ℑm{k̂} ̸= 0). We note that there are multiple modes depicted in the figures. More interestingly, Fig. 4(d) depicts the
discriminant for each of themodes shown in the complex band structure and for the same range of frequencies.We note that
the regions where all modal discriminants are negative coincide with the band gaps shown in the complex band structure.

4.2. Lagrangian In higher dimensions

To define the Lagrangian in higher dimensions, we follow the concepts outlined in the one-dimensional formulation of
Section 3.2, while accounting for multiple directions andmultiple modes. We denote the number of directions by nd and the
number of modes by nm. Thus, we replace the one-dimensional definitions (24) and (25) for the objective functional and the
constraint, respectively, using conditional summations, to yield:

D[ρ, µ, u] =
N∑
i

nd∑
j

⎡⎢⎣ nm∑
s|D(i,j)

s >0

D(i,j)
s

⎤⎥⎦ and (31)

E[ρ, µ, u, k, v, ξ ] =

N∑
i

nd∑
j

⎡⎢⎣ nm∑
s|D(i,j)

s >0

ℜe
{
P
(
k(i,j)s

) (
v(i,j)
s , u(i,j)

s

)}⎤⎥⎦
+

N∑
i

nd∑
j

⎡⎢⎣ nm∑
s|D(i,j)

s >0

ξ
(i,j)
s

2

[
a2
(
u(i,j)
s , u(i,j)

s

)
− 1

]⎤⎥⎦ . (32)
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Fig. 4. (a), (c): Real and imaginary parts of a typical band structure of a two-dimensional scalarwave problem; (b) unit cell topology andmaterial properties;
(d) discriminant of the associated quadratic eigenvalue problem. Multiple modes are present in each direction; band gaps are observed where all modal
discriminants are negative (gaps highlighted with gray shading).

In the above, index i is used to denote different temporal frequencies ω(i) (i = 1, . . . ,N), index j is used to denote different
directions d(j) (j = 1, . . . , nd), and s is used to denote the sth modal quantities (ks, us of the state pair, and ξs, vs of the adjoint
pair), with s = 1, . . . , nm. The higher-dimensional Lagrangian is defined again as L = D+ E.

The conditional summation in (31) implies, by construction, a lower bound for the objective functionalD, and allows for a
simple termination criterion, as discussed in Section 3.4.We note that if a uni-directional band gap is aimed for, then nd = 1,
whereas for an omni-directional band gap, nd > 1. In general, the minimum number for nd depends on the topology and
the sought type of band gap (uni-, multi-, or omni-directional). In our experience, driving the inversion with directions from
the origin to the high-symmetry points of the Brillouin zone proved sufficient for an omni-directional band gap, without
requiring multiple directions spanning the entire Brillouin zone. For example, in the case of the square unit cell, d(1)

= (1, 0)
(from Γ to X) and d(2)

= (1/
√
2, 1/
√
2) (from Γ to M), are sufficient for an omni-directional band gap.

4.3. Optimality conditions

The first-order optimality conditions are obtained similarly to the one-dimensional case, by enforcing the vanishing of
the Lagrangian’s first derivatives. There results:

1. State eigenvalue problem
Given ρ and µ, find k(i,j)s ∈ C and u(i,j)

s ∈ W \ {0} such that

0 =P
(
k(i,j)s

) (
ṽ(i,j)
s , u(i,j)

s

)
∀ṽ(i,j)

s ∈ W (33a)

0 =
ξ̃
(i,j)
s

2

[
a2
(
u(i,j)
s , u(i,j)

s

)
− 1

]
∀ξ̃ (i,j)

s ∈ R. (33b)

2. Adjoint eigenvalue problem
Given ρ, µ, k(i,j)s , and u(i,j)

s , find ξ
(i,j)
s ∈ R and v

(i,j)
s ∈ W such that

0 =P
(
k(i,j)s

) (
v(i,j)
s , ũ(i,j)

s

)
+ ξ (i,j)

s a2
(
u(i,j)
s , ũ(i,j)

s

)
+ 4a1

(
u(i,j)
s , u(i,j)

s

)
a1
(
u(i,j)
s , ũ(i,j)

s

)
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− 8a2
(
u(i,j)
s , u(i,j)

s

)
a0
(
u(i,j)
s , ũ(i,j)

s

)
− 8a0

(
u(i,j)
s , u(i,j)

s

)
a2
(
u(i,j)
s , ũ(i,j)

s

)
∀ũ(i,j)

s ∈ W (34a)

0 =k̃(i,j)s a1
(
v(i,j)
s , u(i,j)

s

)
+ 2k̃(i,j)s k(i,j)s a2

(
v(i,j)
s , u(i,j)

s

)
∀k̃(i,j)s ∈ C. (34b)

3. Gradient of L
Given ρ, µ, k(i,j)s , u(i,j)

s , ξ (i,j)
s and v

(i,j)
s , find gρ ∈ T and gµ ∈ T such that∫

Ω

ρ̃ gρdΩ =
N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{
4a2

(
u(i,j)
s , u(i,j)

s

) ∫
Ω

u(i,j)
s ω2ρ̃ u(i,j)

s dΩ
}

−

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{∫

Ω

v(i,j)
s ω2ρ̃ u(i,j)

s dΩ
}
∀ρ̃ ∈ T (35a)

∫
Ω

µ̃ gµdΩ =
N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{
2a1

(
u(i,j)
s , u(i,j)

s

) ∫
Ω

i
(
grad u(i,j)

s · µ̃ d(j)u(i,j)
s

− d(j)u(i,j)
s · µ̃ grad u(i,j)

s

)
dΩ
}

−

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{
4a2

(
u(i,j)
s , u(i,j)

s

) ∫
Ω

grad u(i,j)
s · µ̃ grad u(i,j)

s dΩ
}

−

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{
4a0

(
u(i,j)
s , u(i,j)

s

) ∫
Ω

u(i,j)
s µ̃ u(i,j)

s dΩ
}

+

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{
k(i,j)s

∫
Ω

i
(
grad v(i,j)

s · µ̃ d(j)u(i,j)
s

− d(j)v(i,j)
s · µ̃ grad u(i,j)

s

)
dΩ
}

+

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{∫

Ω

grad v(i,j)
s · µ̃ grad u(i,j)

s dΩ
}

+

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe
{(

k(i,j)s

)2 ∫
Ω

v(i,j)
s µ̃ u(i,j)

s dΩ
}

+

N∑
i

nd∑
j

nm∑
s|D(i,j)

s >0

ℜe

{
ξ
(i,j)
s

2

∫
Ω

u(i,j)
s µ̃ u(i,j)

s dΩ

}
∀µ̃ ∈ T , (35b)

where

T =

{
u ∈ H0(Ω)

⏐⏐⏐⏐⏐u(x) = u

(
x+

n∑
i=1

mipi

)
∀x ∈ ∂Ω

}
. (36)

We note that the 1D inversion process described in Section 3.5 remains, largely, the same.

5. Numerical examples

In this section, we demonstrate the performance of the band-gap-driven material inversion with numerical examples in
one and two dimensions. We discuss first the one-dimensional cases.

Weperform inversionswith different target band-gap ranges anddifferent unit-cellmaterial arrangements. All inversions
are performed in the frequency-domain; a time-domain simulation with the (multi-cell) metamaterial that resulted from
the inversion methodology is also included to attest to the effect the metamaterial has in arresting the propagation of the
targeted frequency band.

The objective functional (13) is capable of accommodating various material arrangements. Herein, for most of the
numerical examples, we fix the topology, i.e., we constrain the number of different materials and their respective extent
within the unit cell, using piecewise constant approximations for the density ρ and the modulus µ. We note that a
continuously-varying or functionally-graded material can also be accommodated, as it will be shown, by simply increasing
the number of allowed materials within the unit cell.
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Fig. 5. Inversion for 5 material elements with a target band gap of 5–6 kHz.

Fig. 6. Inversion for 5 material elements with a target band gap of 6–7 kHz.

We choose the same initial guesses for ρ and µ for all one-dimensional examples, thus setting ρ = 3000 kg/m3 and
µ = 2.0× 1011 N/m2. The length of the unit cell is set to 1 m. We use standard quadratic elements to approximate the state
and adjoint eigenfunctions. Small perturbations (of unit magnitude) are added to the material properties of all elements of
themesh except for the two out-most elements, in order not to start the inversionwith a perfectly homogeneous initial guess
(if the initial guess is homogeneous, the inversion will yield a constant gradient due to the periodicity). We use PETSc [22].
and SLEPc [23,24] to implement the inversion.

5.1. Band-gap targets with different central frequencies

We invert first for a unit cell comprising 5 materials, and for band gaps exhibiting the same gap width (1000 Hz), but
different central frequencies (5500 Hz, 6500 Hz, and 7500 Hz, respectively). Specifically, Figs. 5, 6, and 7 depict the results
for band gaps of 5000–6000 Hz, 6000–7000 Hz, and 7000–8000 Hz, respectively. In all three figures, the left column shows
both the Brillouin zone and the discriminant as a function of frequency, while the band-gap region is shown as shaded. The
right column shows the inverted material profile (density and modulus) responsible for the resulting band gap. It can be
seen that in all cases the targeted band-gap regions have been sharply recovered.

5.2. Band-gap targets with different frequency width

We perform inversions with different target frequency widths using again 5 material elements. Figs. 8 and 9 show the
results for band gaps in the 5000–7000 Hz, and 5000–9000 Hz range, respectively. Both the narrow (2 kHz) and the wider
(4 kHz) band gaps are well delineated, as shown with the shaded regions. Notice that in the first case (Fig. 8), the first gap
that appears in the band structure is the target band gap; however, in the second case (Fig. 9), the inversion led to a unit cell
that exhibits a first gap at lower frequencies (around 3 kHz) than the target gap, in addition to the target band gap (5–9 kHz).
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Fig. 7. Inversion for 5 material elements with a target band gap of 7–8 kHz.

Fig. 8. Inversion for 5 material elements with a target band gap of 5–7 kHz .

Fig. 9. Inversion for 5 material elements with a target band gap of 5–9 kHz.

5.3. Band-gap targets with different number of unit-cell material elements

Next, we relax the 5-material constraint for the unit cell to allow for 40 different piecewise-constant materials of equal
thickness, thus approximating a materially continuously-varying unit cell. The desired band gap is set to 5000–6000 Hz.
Fig. 10 depicts the resulting density and modulus unit-cell distributions, alongside with the band-gap structure. Moreover,
Fig. 11 shows the resulting material distribution when the material constraint for the unit cell has been reinstated and set
to 3. We note that the band-gap structures are identical between the two cases: this is evidence of multiplicity, i.e., different
unit-cell material arrangements are capable of exhibiting the same band-gap. In practice, manufacturing constraints on the
number and/or the type of materials could drive the inversion for a fixed topology.



98 H. Goh and L.F. Kallivokas / Wave Motion 88 (2019) 85–105

Fig. 10. Inversion for 40 material elements with a target band gap of 5–6 kHz.

Fig. 11. Inversion for 3 material elements with a target band gap of 5–6 kHz.

Fig. 12. Metamaterial time-domain simulation schematic.

5.4. Metamaterial time-domain simulations

Next, we use the inverted 5-material unit cell design depicted in Fig. 8(b) to construct a metamaterial by stacking 8 unit
cells (8m-long) together, within a 10m-long domain (Fig. 12).We subject themetamaterial block to a dichromatic sinusoidal
load given by:

f (t) = sin(2π f1t)+ sin(2π f2t), (37)

where f1 = 6000 Hz and f2 = 2000 Hz. Near the origin and to the left of the applied source (source at x = 0.067m)
and at x = 10m we apply absorbing boundary conditions (Fig. 12). The selected unit cell exhibits, by virtue of the inverse
design, a band gap between 5000–7000 Hz. Thus, the propagation of f1 should be arrested, and the resulting signal should
be monochromatic at the f2 frequency. Fig. 13 depicts the time-domain results. The first-row figures (Figs. 13(a) and 13(b))
depict the response of a homogeneous medium. By comparing the signal at the entry point (x = 0m) with the signal at the
domain end (x = 10m) in the waterfall plot, it can be seen that the dichromatic signal’s frequency content remains intact
during the propagation. By contrast, the waterfall plot in Fig. 13(c), which corresponds to the metamaterial, shows that the
entering dichromatic signal was reduced to amonochromatic signal at exit, with only the f2 frequency component surviving,
as intended. To illustrate the effect with broader-band driving signals, we next subject the same metamaterial structure to
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Fig. 13. Time-domain simulation of a metamaterial block subjected to a dichromatic load: (a) dichromatic signal with f1 = 2000 Hz and f2 = 6000 Hz
propagates within the homogeneous medium without frequency component loss; (c) dichromatic signal is reduced to a monochromatic signal when
propagating through the metamaterial block (f2 = 6000 Hz is arrested).

Fig. 14. DFT response of a homogeneousmaterial andmetamaterial subjected to a Ricker pulse: waves are attenuated at the band-gap regions (highlighted
with shades).

a Ricker pulse with a central frequency at 10 kHz. The Ricker pulse is defined as:

f (t) =
(0.25u2

− 0.5)e−0.25u
2
− 13e−13.5

0.5+ 13e−13.5
, 0 ≤ t ≤

6
√
6

ωr
, (38)

where u = ωr t−3
√
6 and ωr = 2π ·10000 is the central circular frequency. The response is again recorded at x = 10m and

its discrete Fourier Transform is shown in Fig. 14 together with the band structure. The dashed line represents the DFT of
the homogeneous material response, whereas the solid line represents the DFT of the metamaterial response. We note that
the band gap between 5–7 kHz worked well by forcing the response to near silence. Notice that the metamaterial exhibits a
second band gap between 11.8–12.4 kHz, which also had an amplitude-reducing effect on the response.
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Fig. 15. Inversion for 5 material elements with a target frequency range of 5–6 kHz: asymmetric material properties are obtained by asymmetric initial
guesses.

Fig. 16. Complex band structure and discriminant of the initial guess.

Asymmetric material profiles. The preceding examples have all resulted in symmetric material profiles. This is due to the
fact that the initial guesses were symmetric. Using asymmetric distributions as initial guesses, one can obtain asymmetric
material profiles through inversion. To illustrate, we start with an initial guess with the same amount of perturbation on
the properties as the one we used for all the preceding examples. However, in this case we perturb only the properties of
the second element to force an asymmetric initial guess. The results are depicted in Fig. 15). The target band-gap region is
identical to the one we obtained previously (Fig. 5), yet the recovered unit-cell is asymmetric.

5.5. Omni-directional band gap design in 2D

We discuss the application of the inversionmethodology to two dimensions. Our reference unit cell is a square with sides
p, with a concentrically embedded square inclusion with sides equal to 0.5p. Under this fixed topology, we seek to invert
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Fig. 17. Inversion for 2 materials elements for an omni-directional band gap at 3–4 rad/s; band gap shown shaded.

for the material properties of both the inclusion (ρ1 and µ1) and of the background square host (ρ2 and µ2). The primitive
lattice vectors are p1 = (1, 0) and p2 = (0, 1), where ∥p1∥ = ∥p2∥ = 1 ≡ p. We are interested in an omni-directional band
gap, and to this end, we use two directions (nd = 2), d(1)

= (1, 0) (Γ to X), and d(2)
= (1/

√
2, 1/
√
2) (Γ to M). We set the

number of modes to nm = 4, and the number of frequencies in the target band gap to N = 30. We discuss three examples
with different target band gaps: 3–4, 4–5, and 4–6 rad/s.

We start with the initial material profile of ρ1 = 1.1, µ1 = 1.1, ρ2 = 1.0, and µ2 = 1.0 for all three examples. The band
structure of the initial guess is shown in Fig. 16: it is very similar to that of a homogeneous medium, exhibiting, however,
narrow directional band gaps and degeneracy breakings.

Figs. 17, 18, and 19 show the results of the inverse designs for the different target band gaps, 3–4, 4–5, and 4–6 rad/s,
respectively. In each figure, subplots (a) show the trajectory of the objective functional as the number of iterations increases
(semi-log plot): there is, roughly, a four-order reduction from the initial guess. Subplots (b) show the converged material
profile, i.e., the inverted-for material parameters ρ1, µ1, ρ2, and µ2 (the shading is driven by the wave speeds). Subplots (c)
show the real part, while subplots (d) show the imaginary part of the band structure of the designed unit cell. Subplots (e)
show the associated discriminant. As it can be seen, in all cases, the targeted omni-directional band gaps (shown in subplots
(c), (d), and (e) with shaded strips) have been realized.
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Fig. 18. Inversion for 2 materials elements for an omni-directional band gap at 4–5 rad/s; band gap shown shaded.

We note that, in all cases, an, unduly, small search length was used (10−7), resulting in a moderate number of iterations.
For the examples reported herein, the search length can be reduced significantly (2 orders of magnitude) without affecting
the quality of the converged profiles. The number of iterations can be further reduced by increasing the sampling frequency
points in the target band gap.

6. Conclusions

We discussed an approach for the inverse design of metamaterials, driven by a user-defined band gap. To this end, we
showed that the sign of the discriminant of the associated quadratic eigenvalue problem serves as a sharp indicator of
propagating and evanescent states. Then, we formulated an inverse medium problem using the discriminant as the driving
objective functional, and the associated eigenvalue problem as a side constraint. We demonstrated the performance of the
inversion method with various numerical examples in one and two dimensions using scalar waves.

In summary, we conclude:
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Fig. 19. Inversion for 2 materials elements for an omni-directional band gap at 4–6 rad/s; band gap shown shaded.

• The discriminant uniquely identifies propagating and evanescent states, and, thus, forms an ideal basis for band-gap
design;
• The proposed discriminant-based objective functional does not require prior knowledge of the exact band structure;
• The proposed discriminant-based objective functional is differentiable, which is necessary for gradient-based opti-

mization algorithms;
• The inversion process is capable of designing band-gap materials with various target band gaps; and
• The inverted band-gap materials can be used in metamaterials to attenuate incoming waves at the band-gap frequen-

cies.
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Appendix. Gâteaux derivatives of L

The 1st-order Gâteaux derivative with respect to u of F , or δuF [u](ũ), is defined as

δuF [u](ũ) =
d
dε

⏐⏐⏐⏐
ε=0

F [u+ εũ], (A.1)

where ũ is the direction of the Gâteaux derivative. The Fréchet derivative gu is defined as [25]∫
Ω

ũgudΩ = δuF [u](ũ). (A.2)

The (Gâteaux) derivatives of the Lagrangian L are given below; to reduce the notational congestion, we replace
[ρ, µ, u, k, v, ξ ] with [. . .].

The derivatives with respect to the adjoint variables are:

δ
v
(i)
0
L [. . .]

(
ṽ
(i)
0

)
=ℜe

{
P
(
k(i)0
)(

ṽ
(i)
0 , u(i)

0

)}
and (A.3)

δ
ξ
(i)
0
L [. . .]

(
ξ̃
(i)
0

)
=

ξ̃
(i)
0

2

[
a2
(
u(i)
0 , u(i)

0

)
− 1

]
= ℜe

{
ξ̃
(i)
0

2

[
a2
(
u(i)
0 , u(i)

0

)
− 1

]}
. (A.4)

The derivatives with respect to the state variables are:

δu(i)0
L [. . .]

(
ũ(i)
0

)
= δu(i)0

D [. . .]
(
ũ(i)
0

)
+ δu(i)0

E [. . .]
(
ũ(i)
0

)
and (A.5)

δk(i)0
L [. . .]

(
k̃(i)0
)
= δk(i)0

D [. . .]
(
k̃(i)0
)
+ δk(i)0

E [. . .]
(
k̃(i)0
)

, (A.6)

where

δu(i)0
D [. . .]

(
ũ(i)
0

)
= 4a1

(
u(i)
0 , u(i)

0

)
ℜe
{
a1
(
u(i)
0 , ũ(i)

0

)}
− 8a2

(
u(i)
0 , u(i)

0

)
ℜe
{
a0
(
u(i)
0 , ũ(i)

0

)}
− 8a0
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0 , u(i)

0
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a2
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0 , ũ(i)

0

)}
=ℜe

{
4a1
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8a0

(
u(i)
0 , u(i)

0

)
a2
(
u(i)
0 , ũ(i)

0
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, (A.7)

δu(i)0
E [. . .]

(
ũ(i)
0

)
=ℜe

{
P
(
k(i)0
)(

v
(i)
0 , ũ(i)

0

)}
+ℜe

{
ξ
(i)
0 a2

(
u(i)
0 , ũ(i)

0

)}
, (A.8)

δk(i)0
D [. . .]

(
k̃(i)0
)
= 0, and (A.9)

δk(i)0
E [. . .]

(
k̃(i)0
)
=ℜe

{
k̃(i)0 a1

(
v
(i)
0 , u(i)

0

)
+ 2k(i)0 k̃(i)0 a2

(
v
(i)
0 , u(i)

0

)}
. (A.10)

The derivatives with respect to the design variables (ρ and µ) are:

δρL [. . .] (ρ̃) = δρD [. . .] (ρ̃)+ δρE [. . .] (ρ̃) and (A.11)

δµL [. . .] (µ̃) = δµD [. . .] (µ̃)+ δµE [. . .] (µ̃) , (A.12)

where

δρD[. . .](ρ̃) =−
N∑
i

4a2
(
u(i)
0 , u(i)

0
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δρa0
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, (A.13)

δρE[. . .](ρ̃) =
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i
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, (A.14)

δµD[. . .](µ̃) =
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i
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−
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. (A.16)
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