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A B S T R A C T

Despite recent advances in numerical methods and computer architectures that make it ever more practical to
obtain computationally the surface response to idealized or realistic seismic events, while fully accounting for
three-dimensional effects due to topography or to heterogeneities, reliance on one-dimensional models persists.
As discrepancies between computed and recorded responses still remain, in this study we aim at highlighting the
effect the model dimensionality choice has on the discrepancies, in the presence of topographic features and/or
heterogeneity.

First, we briefly discuss the components of an integrated seismic-motion simulator that deploys best-practice
tools for the study of wave amplification in arbitrarily heterogeneous sedimentary basins, while also accounting
for topography. Then, we report numerical experiments in two and three dimensions for various prototype
topography-endowed and layered domains, and compare the motion amplification/de-amplification patterns
against one-dimensional simulations, in order to quantify the effects model dimensionality has on surface mo-
tion. We conclude that one-dimensional models greatly underestimate the effects of topography and hetero-
geneity on the amplification of seismic waves; two-dimensional models fair better, but, in general, they too
underestimate the response. It appears that, in the presence of topography and complex stratification, there is no
suitable alternative other than three-dimensional models to account for reasonable estimates of motion ampli-
fication to guide the design of earthquake-resistant structures.

1. Introduction

The modeling of seismic wave motion within a heterogeneous vo-
lume of the earth's upper crust, terminated at an irregular surface
(Fig. 1(a)), is often oversimplified by adopting a flat-surface model
consisting of horizontal semi-infinite layers and a seismic source that
transmits vertically propagating plane waves, as shown in Fig. 1(b).
Such simplifications may allow for the use of reduced dimensionality
models (1D or 2D), which, however, tend to underestimate motion
amplification and fail to adequately capture the motion complexity
associated with the physical setting (Fig. 1(a)). While many of the
discrepancies reported between observations and computed responses
can be attributed to the uncertainties associated with the velocity
model (material properties) of a given site, model choices also play a
role in the discrepancies. In this article, we highlight the effects model
dimensionality has on the motion amplification, in the presence of to-
pographic features or soil heterogeneity.

Numerous documented observations following large earthquakes
point to the fact that local site conditions may induce amplification and
result in significant motion variability in space. Examples include: Pratt

et al. [1] observed an amplification of up to 16 for the ground motions
from the Chi-Chi earthquake in the Seattle basin; Çelebi [2] reported a
frequency-dependent amplification of seismic waves due to the surface
topography in the 1985 Chile earthquake; Çelebi [3] addressed topo-
graphic amplification for a particular range of frequencies; Hartzell
et al. [4] and Bouchon and Barker [5] documented several topographic
amplifications in California; Assimaki et al. [6,7] observed seismic
amplifications in the vicinity of a cliff crest during the 1999 Athens
earthquake in Greece and claimed that this amplification can only be
predicted by simultaneously accounting for the topographic geometry,
stratigraphy, and nonlinearity; Graizer [8] showed that the observed
amplification at the Tarzana Hill station from the 1987 Whittier Nar-
rows and the 1994 Northridge earthquakes were due to the combined
effects of topography and layering that resulted in trapped energy
within a low-velocity layer near the surface; Imperatori and Mai [9]
showed via numerical simulation of the Swiss alpine region that topo-
graphy and heterogeneity excites surface motion, particularly around 1
Hz. Further reviews on observations on seismic amplification can be
found in Massa et al. [10], and Buech et al. [11].

Several studies have shown that numerical solutions underestimate
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seismic wave amplification. Geli et al. [12] compared experimental
observations with theoretical results and concluded that the numerical
simulations underestimate the topographic amplifications in most
cases, mainly because of the oversimplified assumptions considered in
the computational models. Bard [13], based on field evidence and
theoretical results, claimed that while there is qualitative agreement
between theory and observations, larger amplifications are seen in the
field. Semblat et al. [14] focused on the influence of the soil layering
complexity on site effects. The authors argued that the geometry of the
basin has a strong impact on the amplification of seismic waves and on
the lengthening of the shaking duration. Field [15] attributed the
spectral amplification variability in a sedimentary valley to the basin-
edge-induced waves.

The effects of topography, basin geometry, and stratigraphy have
also been studied, more often in isolation of each other, than in com-
bination. For example, one of the earliest attempts at tackling wave
scattering due to 3D topographic irregularities is the semi-analytical
approach discussed in Sánchez-Sesma [16] for axisymmetric surface
features. Dravinski et al. [17] used a boundary element method to study
a single-layer sedimentary basin subjected to P, SV, and SH plane
waves; Sánchez-Sesma and Luzón [18] analyzed the response of Ray-
leigh, P- and S- waves in three-dimensional alluvial valleys, while Vai
et al. [19] simulated wave propagation in irregularly layered, elastic,
two-dimensional media with internal line sources. More recently, As-
simaki et al. [6] affirmed the significance of topography by performing
a time-domain parametric study on a single slope geometry. They
concluded that the frequency content of the excitation, the stratigraphy,
and the geometry of the cliff are all important in the amplification of
incoming seismic waves. Bouckovalas and Papadimitriou [20] dis-
cussed the effects of a step-slope topography on the amplification of
vertically propagating SV-waves in the frequency domain; Semblat
et al. [14] and Makra et al. [21] studied seismic wave amplification in
the Volvi (Greece) site to conclude that the basin's geometry strongly
affects motion amplification and motion duration, while Meza-Fajardo
et al. [22] obtained amplification factors for 3D alluvial basins com-
pared to 1D models, also in the frequency domain.

Poursartip et al. [23] explored the effects two-dimensional hills and
valleys have on the amplification of plane SV- and P-waves via para-
metric studies in the frequency domain. They classified the influence of
a variety of parameters, such as wave frequency, angle of incidence,
geometry, and wave types, on the amplification/de-amplification of
seismic waves. More recently, Wood and Cox [24] exploited ground
shaking generated by the controlled collapse of a coal mine in Utah and
reported topography-related effects.

Though several studies targeted the effects of heterogeneity or to-
pography on the amplification of the seismic waves, to date there is
limited research studying the differences in the response between the
still widely used one-dimensional models and fully three-dimensional
models. Notable exceptions include: Makra and Chávez-García [25],
who investigated the site effects in the Mygdonian basin in northern
Greece using a 3D simulation and compared the results with 1D and 2D
models to conclude that, while 2D and 3D models are largely similar,

the 2D model may overestimate the amplification locally. They also
claimed that the 1D model underestimates the amplification and mo-
tion duration rather remarkably. Riepl et al. [26] compared various 1D
and 2D techniques to simulate site effects in basins. Hisada and Ya-
mamoto [27] and Bielak et al. [28] investigated dimensionality effects
in a single, elastic layer underlain by an elastic halfspace using har-
monic SH waves. Their results indicate that the 1D model exhibits lower
amplification and shorter duration than the corresponding 2D and 3D
responses. Moreover, they claimed that the destructive interference of
waves in 2D and 3D models in certain locations may result in lower
amplification compared to the 1D model. Smerzini et al. [29] and
Madiai et al. [30] surveyed dimensionality effects in locations in Italy.

Among the various numerical methods that can be used to simulate
seismic wave motion, such as finite differences, boundary elements,
etc., the spectral element method is possibly better suited, owing to its
flexibility in handling heterogeneous domains with complex geometry
and its efficiency in parallel implementations (for a review of numerical
approaches to seismic simulation see also Semblat [31]). Examples in-
clude: Komatitsch and Tromp [32], Komatitsch and Vilotte [33], Peter
et al. [34], Poursartip and Kallivokas [35] and Fathi et al. [36]. In order
to negotiate the extent of the semi-infinite domain –a key challenge in
seismic motion simulations – one can use non-reflecting boundaries as
in Kallivokas et al. [37], Bielak et al. [38], Givoli and Neta [39],
Hagstrom and Warburton [40], or Perfectly-Matched-Layers –our pre-
ferred choice– as in Kucukcoban and Kallivokas [41], and Fathi et al.
[36].

The purpose of this study is to investigate the effects model di-
mensionality may impose on the amplification of seismic waves, by
comparing various one-, two-, and three-dimensional prototype models.
Towards this end, we developed a spectral element parallel code which
is using best-practice tools for wave motion simulation in the time-
domain: we deploy Perfectly-Matched-Layers (PML) for truncating the
semi-infinite extent of the domain; we introduce the seismic waves
within the computational domain via the Domain-Reduction-Method
(DRM) [42–45]; we couple the DRM with the PML; and, additionally,
we introduce an adaptive time integration scheme that improves the
efficiency of the time-domain simulations, particularly for irregular
domains where determination of the optimal time-step that leads to a
numerically stable solution requires a trial and error approach. Once
the numerical tool is verified against known analytical solutions, we use
synthetic models endowed with heterogeneity and surface irregula-
rities, to compare the seismic wave amplifications in one-, two-, and
three-dimensional domains in order to assess the importance of model
dimensionality choice on the surface response.

2. Numerical modeling

To tackle seismic wave simulation within domains exhibiting het-
erogeneities and/or topographical features, we discuss next the key
points of an integrated software toolchain that includes Perfectly-
Matched-Layers (PMLs) for limiting the computational domain; un-
structured spectral elements for spatial discretization; seismic source

Fig. 1. Seismic domain of interest: (a) physically-faithful idealization; (b) simplified idealization.
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modeling using the Domain-Reduction-Method [42–45] that permits
placement of seismic sources within the computational domain; and an
adaptive time integrator, all cast within a parallel framework that al-
lows for scalable and cost-effective numerical simulations.

2.1. Wave propagation modeling in unbounded domains

Wave motion simulation in unbounded, heterogeneous domains
requires negotiation of the semi-infinite extent of the physical domain,
which entails the introduction of artificial (non-physical) boundaries
surrounding the finite computational domain on the truncation surface,
as illustrated in Fig. 2. These boundaries need special treatment in order
for the finite domain of interest to mimic the physical behavior of the
non-truncated domain, while minimizing spurious reflections that
could pollute the solution within the computational domain.

Here, we adopt Perfectly-Matched-Layers (PMLs), among the var-
ious methods proposed to treat the truncation boundaries, owing,
especially, to their ability to handle heterogeneity. The theoretical as-
pects of the PML used here are discussed in Kucukcoban and Kallivokas
[41] for two-dimensional domains, and in Fathi et al. [36] for the three-
dimensional case. According to the mixed-field approach described
therein, the governing discrete equation for the wave propagation in a
three-dimensional, heterogeneous domain, including the PML, reads
[36]:

+ + + =Md Cd Kd Gd f¨ ˙ , (1a)

=d d˙ ,PML (1b)

where spatial and temporal dependencies are suppressed for brevity,
and system matrices, M, C, K, G, and vectors d and f , are defined as:
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In these equations, subscript RD refers to the regular (truncated) do-
main, and MRD, KRD, and fRD, correspond to the standard mass matrix,
stiffness matrix, and vector of nodal forces in the interior domain, re-
spectively. U is the vector of nodal displacements, which is partitioned
such that its first entries belong solely to the interior domain, followed
by those on the interface boundary between the interior domain and the
PML buffer, and, finally, followed by those that are located only within
the PML. d is the vector of displacement history, within the PML only,
as indicated by (1b), while Σ is the vector of stress components within
the PML only. In other words, the solution of (1a) allows the determi-
nation of the displacements within the regular domain, and of the
displacements and stresses within the PML (thence, the mixed-field
designation of the PML treatment). The rest of the submatrices in (2),
described in Appendix C for a 3D domain, correspond to the PML buffer
zone (see also [36] for submatrix definitions). We note that the PML is
not a physical medium (it is not a proper viscoelastic solid), but a
mathematical construct, and as such, ascription of mass, stiffness, or
damping properties to the PML-designated submatrices is in-
appropriate. The PML-submatrices collectively account for the motion
attenuation within the PML buffer.

2.2. Seismic input modeling

We are interested in accommodating incoming plane seismic waves
at various angles of incidence and frequencies, thus, simulating an
earthquake originating from the depths of the earth. To this end, rather
than simulating the seismic fault directly, we turn to the Domain
Reduction Method (DRM), developed by Bielak et al. [42–45], which
allows the replacement of the seismic input with equivalent forces de-
ployed over a suitably defined surface in the interior of the computa-
tional model. The Domain Reduction Method is a two-step technique.
We highlight the steps in the case of topography, but heterogeneities
and non-linearities can be similarly treated. During the first step, the
free-field solution u0 due to the seismic source is obtained by sub-
tracting the local geometric irregularities of the region of interest and
replacing them with a flat surface domain Ω0, as depicted in Fig. 3(b).
The free-field solution u0 is obtained within Ω0 (ui

0), on the interface

Fig. 2. Physical domain truncation: (a) Semi-infinite domain; (b) Computational domain truncated via PMLs.

Fig. 3. Steps of the Domain-Reduction-Method: (a) The original model; (b) step I: substituting the domain of interest with a simpler background and obtaining the
free-field solution u0; (c) step II: re-introducing the original domain of interest, the DRM boundary, while eliminating the original seismic source.
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between Ω0 and the exterior domain +Ω (ub
0), and in the exterior do-

main +Ω (ue
0). In a second step, as shown in Fig. 3(c), the topographic

features are re-introduced and the equations of motion are appro-
priately modified to account for the incoming motion. The latter is
accomplished by the introduction of the DRM boundary –a one-ele-
ment-thick layer– which divides the domain into an interior region of
interest Ω, where the unknown is the total motion, and, an exterior
region +Ω between the DRM and the PML, where the scattered motion
becomes the unknown. It is on the DRM boundary that the incoming
seismic motion is prescribed (see [43] for details).

We remark that when the free-field solution u0 of the first step is
readily available (e.g., analytically), the method reduces to the second
step only. Additionally, since it is not necessary to include the source in
the second step, the exterior domain +Ω as shown in Fig. 3(c), can be
further reduced. In the schematic sequence depicted in Fig. 3, it is ta-
citly assumed that the physical domain is homogeneous, however,
heterogeneities within the domain of interest can be treated similarly,
while the exterior domain +Ω is also heterogeneous. In the latter case,
the free-field solution must be obtained numerically.

To couple the PML with the DRM formulation, (1) must be modified
to read:

+ + + =∼ ∼∼∼Md Cd Kd Gd f¨ ˙ ,͠͠ ͠ ͠ ͠ (3a)

=d d˙ .͠ ͠ PML (3b)

The new system matrices, ∼M, ∼C, ∼K, and ∼G, and vectors d͠ and f͠ , are
defined as:
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Effectively, MRD and KRD of (2) have been partitioned to reflect the
introduction of the DRM interface; here, = ∪ +Ω Ω ΩRD . The subscripts
i, b, and e refer to the nodes within the domain of interest, on the DRM
boundary, and in the exterior domain, respectively. The unknown
vector d͠ comprises four different variables: ui and ub are the total
displacements in the interior domain Ω and on the DRM boundary; we,
however, are the displacements of the scattered motion in the exterior
domain +Ω and within the PML buffer zone, and Σ are the scattered
motion stresses within the PML only, as also indicated in Fig. 3(c).
Notice that in the DRM, we decompose the total displacement in the
exterior domain of the original model ue into the sum of the free-field
displacement from the auxiliary model ue

0 and the scattered field we:

= +u u w .e e e
0 (5)

Per [43], it is this decomposition that allows us to replace the
seismic input with equivalent nodal forces in the load vector, as in-
dicated in (4), obtained from the free-field solution recovered during
the first step. Accordingly, to introduce the effect of the seismic load,
we only need to store the free-field solution in a single layer of elements
on the DRM boundary between Γ and Γe (Fig. 3(b)).

2.3. Numerical solvers

Implicit transient analysis, whenever possible, is superior to explicit
solvers because there is no inherent limit on the size of the time-step,
whereas, by contrast, the time-step in an explicit analysis must be less
than the CFL limit, in order to have a numerically stable solution. As
such, implicit time-steps are often larger than the explicit time-steps.
On the other hand, explicit solvers are preferred in parallel im-
plementations due to computational cost considerations. Here, we are
interested in reducing the per time-step cost. To this end: we use
spectral elements for spatial discretization, we convert the semi-discrete
form (3) to first-order in time, and adopt an adaptive time integrator to
march in time. The integrator alternates between a fourth-order Runge-
Kutta scheme (RK-4) with a fixed time-step, and an adaptive time-step
Runge-Kutta-Fehlberg (RKF) scheme. Specifically, the semi-discrete
system (3) becomes:
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where the new variables d1, d2, and d3 are defined as =d d͠1 , =d d͠2 , and
=d ḋ͠3 . The use of spectral elements results in a diagonal mass matrix

M, which can be inverted trivially.
Adjusting the appropriate time-step to arrive at a stable solution in a

fixed time-step algorithm such as RK4 is challenging in explicit solvers.
A necessary condition for stability is that the maximum allowable time-
step should be less than the required time for the wave with the shortest
wavelength to pass through the smallest grid point spacing (CFL limit).
This idea, however, does not ensure a stable solution, and finding the
maximum possible time-step still needs a trial and error process, be-
cause, according to [46], there is no theoretical guidance on how to
choose the right time-step. Komatitsch et al. [46] and Casarotti et al.
[47] offer a heuristic rule of 50% of the CFL limit for uniform grids, and
only 30% to 40% of the CFL limit for highly non-uniform grids. Fathi
et al. [36] also suggested, based on numerical experiments in uniform
meshes, to limit the time-step to less than 80% of the CFL limit. Their
suggestion is quite reasonable for uniform grids, but, for non-uniform
grids, the optimal time-step may be considerably lower than the
aforementioned suggestion.

Another possibility is to adaptively modify the time-step size during
the temporal integration. This is only possible for one-step methods,
where a prior step approximation is required to approximate the solu-
tion in the next step. The main difficulty with the adaptivity is to find an
efficient a posteriori estimator of the local truncation error. Two op-
tions are available [48]: (i) a Runge-Kutta time integration scheme with
two different step sizes; and (ii) two Runge-Kutta methods of different
order, but with the same time-step sizes and stages. The first option
requires that the method solves the system twice, which increases the
computational effort. But, the second option estimates the local error
with no additional functional evaluations.

In this work, we use the adaptive Runge-Kutta-Fehlberg (RKF) to
obviate the need for the trial and error process required to find an
optimal time-step [48]. We remark that the total computational cost of
the RK-4 (fixed time-step) is less than the RKF (adaptive time-step) in
each time-step because the number of function evaluations is higher in
the latter scheme. The details are provided in Appendix B.

3. Numerical experiments

We study model dimensionality effects on the amplification of
waves via synthetic cases in order to quantify the differences between
1D, 2D, and 3D models, and to highlight the importance of considering
the three-dimensional simulations in seismic studies. We claim that
while the one- and two-dimensional models may offer preliminary es-
timates, a complete quantitative understanding of strong motion
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requires simultaneous consideration of topography and stratigraphy in
a three-dimensional model that includes ideally, the seismic source.
Toward this end, we report on model dimensionality effects: (i) in the
presence of topography; and (ii) in the presence of heterogeneity.

3.1. Effects of model dimensionality on topographic amplification

We report the effects model dimensionality has on the surface mo-
tion in the presence of a hill. The corresponding one-, two-, and three-
dimensional models are plotted in Fig. 4. Notice that the two-dimen-
sional model of the hill represents a hill range rather than an isolated
hill, and that the one-dimensional model is unable to account for the
geometry of the topographic feature.

The geometry of the hill is = − −( ) ( )( ) ( )y x h( ) 1 exp 3x
b

x
b

| | 2 | | 2
. The

medium is homogeneous with mass density =ρ 2000 kg/m3, Poisson's
ratio =ν 0.25, shear wave velocity =c 200 m/ss , and compressional
wave velocity =c 350 m/sp . The semi-infinite domain is truncated to an
area ×800 300 m2 for the two-dimensional domain and to a volume

× ×800 800 300 m3 for the three-dimensional computational domain,
surrounded on its sides and bottom by a 50 m-thick PML, as shown in
Fig. 4.

The incident excitations are plane P- and SV-waves in the form of a
Ricker pulse with a central frequency of 2.0Hz (Fig. A.27), resulting in a
shear wavelength of 100 m, which is equal to the height of the hill. In
this case, we discretize the domain using quadratic spectral hexahedral
elements with an element (edge) size of 5 m, effectively resulting in
approximately 40 points per shear wavelength. The simulations are
performed in the time-domain with no material damping. We compare
the displacement time histories and their spectra for various models at
various observation points (op i, = …i 1, 2, ,6) on the surface (Fig. 4).
Notice that for the one-dimensional model, there is only one observa-
tion point.

Fig. 5 shows the displacement time history at observation point op 1
(hilltop), normalized with respect to the amplitude of the incident wave
ui, due to a vertically propagating P-wave. The horizontal component of
the displacement vanishes, owing to the symmetry of the model and of
the seismic load. The largest amplification, 4.78, results from the three-
dimensional model, and is 2.4 times larger than the amplification pre-
dicted by the one-dimensional model. The amplification of the two-
dimensional model is 3.11, roughly 1.56 times greater than that of the
one-dimensional model, and 1.53 times smaller than that of the three-
dimensional model. The larger amplification in the three-dimensional
model is mostly due to wave focusing at the hilltop. We note that, in
reality, a large amplification at the hilltop or at other sharp feature
termination points, such as the edge of a cliff, is likely but will be highly
localized and, as we will see later, such large amplifications are not
expected at other points on the surface.

We also remark that the total motion duration (until near silence)
has almost doubled for the two- and three-dimensional models

compared to the one-dimensional simulation (1 s versus 2 s), due to the
trapping of the waves within the topographic feature.

The displacement time histories in all three models have similar
frequency content, as depicted in Fig. 5; however, the three-dimen-
sional model shows the largest amplitude: while for the central fre-
quency of the wave (2 Hz), the one- and two-dimensional models barely
reach 0.37 and 0.65, respectively, the amplitude of the three-dimen-
sional model is 1.0. Notice also that, at the hilltop, all frequencies have
been uniformly amplified.

If we repeat the same experiment with a vertically-incident SV wave
(Fig. 6), the amplification for the three-dimensional model increases
dramatically to 8.78. The maximum amplification of the one-dimen-
sional model is again capped at 2, while the two-dimensional model
results in an amplification of 2.96; clearly, the one- and two-dimensional
models greatly underestimate the amplification. The frequency spec-
trum for the three-dimensional model shows greater amplification for
all frequencies when compared to the P-wave incidence (Fig. 6(b)).

The displacement time history for observation point 2, located at
the middle of the hillside, 50 m away from the hilltop, is shown in
Fig. 7. By contrast to the displacement waveform at the hilltop, the
waveform at mid-slope shows multiple peaks for both the two- and
three-dimensional models, owing to the complex wave interference that
is more pronounced at mid-slope than at the hilltop. Even though the
maximum displacement in each component is not remarkably greater
than that of the one-dimensional model, the combination of the two
components shows a relatively stronger motion than the one-dimen-
sional case. The total ground motion duration has increased to more
than three seconds, which is more than three times the duration of
motion in the one-dimensional model and 50% longer than the motion
duration at the hilltop.

The Fourier spectrum of the time history (Fig. 7) reveals more in-
formation about the effects of topography: by contrast to the one-di-
mensional model, certain frequencies exhibit greater amplification than
what we observed at the hilltop, while at other frequencies the motion
is de-amplified.

Fig. 8 shows the displacement time history at observation point 3,
located at the foot of the hill. We can distinguish two separate motions
in the time history of the two- and three-dimensional models: the first
one, whose waveform resembles the incident wave, is the reflection of
the incident wave from the flat surface, and the second part captures
waves scattered by the topography. In that second wave-packet of the
time history, the two-dimensional model shows a larger amplitude than
the three-dimensional model because the two-dimensional model re-
presents a hill range, thus, trapping more energy within the range, than
that trapped within the isolated hill. The frequency spectra of the re-
sponses show peaks at frequencies that are characteristic of the topo-
graphic feature, however, overall, the content is still dominated by the
input motion spectrum.

The displacement time history for observation point 4, located at

Fig. 4. Schematic figure of the hills with observation points.
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the farthest point from the feature, is shown in Fig. 9. We can clearly
observe the incident wave during the first part of the waveform, fol-
lowed by the reflections from the topography, that reach point 4 after
some delay. Notice that not only the displacements for the two- and
three-dimensional models are identical in the first part, but they are
also identical to the one-dimensional simulation. That implies that if the
main shock is not polluted by the reflected waves from the topography,
the displacement time histories on the flat surface for all models are
identical, as also predicted from closed-form solutions. The rest of the
motion on the flat surface followed by the main shock is the result of

wave reflections, mode conversions in the hill, and, mostly, due to
Rayleigh waves, which are not accounted for in a one-dimensional si-
mulation. Even though the amplitude of the reflected waves is not
significant in comparison to the main shock, the total shaking duration
is increased. Moreover, due to the symmetry of the load and the model,
the vertical displacement of the main shock is zero, but the vertical
component of the reflected waveform does not vanish and the motion
amplitude is greater for the two-dimensional model compared to the
three-dimensional model, because, the two-dimensional model re-
sembles a hill range which produces wave reflections from the entire

Fig. 5. Comparison of (a) displacement time histories and (b) their frequency spectra at observation point 1 (hilltop) due to a vertically propagating P-wave for the
one-, two-, and three-dimensional hill models.

Fig. 6. Comparison of (a) displacement time histories and (b) their frequency spectra at observation point 1 due to a vertically propagating SV-wave for the one-, two-,
and three-dimensional hill models.

Fig. 7. Comparison of (a) displacement time histories and (b) their frequency spectra at observation point 2 due to a vertically propagating P-wave for the one-, two-,
and three-dimensional hill models.
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range, while in the three-dimensional simulation, there is reflection
only from the isolated hill. We also remark that the total duration of the
incident wave is only 1.2 seconds, which does not allow sufficient time
for any interactions –constructive or destructive– between the incident
and the scattered waves generated by the topography. In a real earth-
quake event, with a long duration, the interference of the incident and
reflected waves would result in amplification/de-amplification within
the hill as well as on the flat surface away from the hill. To study this
particular case, we subject the two-dimensional model to five con-
secutive and amplitude-alternating Ricker pulses. The displacement
time history at observation point 6 is plotted in Fig. 10(a), which shows
that the displacement on the flat surface amplifies to 2.38 – a 19% in-
crease over the maximum displacement of the single Ricker pulse case.
Similarly, amplification occurs at multiple locations away from the hill
(Fig. 10(b)).

In conclusion, the presence of topography not only affects the total
duration of the motion on the flat surface, but also results in significant
amplification. As a result, the region around the topographic feature is
also prone to experiencing significant motion amplification, especially
if the motion duration is long enough.

Figs. 11 and 12 display the contours of total displacement in the
two- and three-dimensional simulations for a vertically propagating SV-
wave, respectively. The first snapshot shows the propagation of the
incident wave just before it impinges on the surface. The second
snapshot shows the displacement right after the incident wave has hit
the surface. Then, the incident wave enters the hill and reflects multiple
times off of the hillsides. Notice that Rayleigh waves are generated in
the domain at the foot of the hill. The third snapshot shows the moment

the maximum displacement is realized, when the generated Rayleigh
waves from the two sides of the hill converge to the hilltop. The last
snapshot displays the displacement contour right before the main re-
flected wave-packet leaves the domain. Notice the wave that has been
trapped within the hill due to multiple reflections from the hillsides.
The Rayleigh waves are also responsible for motion on the flat surface
even after the incident wave has left the domain. We remark that the
PML buffer zone is clearly visible on the sides and bottom of the models,
and, as it can be seen, there are no discernible reflections from the
truncation boundaries.

In another experiment, we transmit an oblique SV-wave at an in-
cidence angle = °θ 15s . Fig. 13 shows the displacement time history at
observation point 1. The horizontal displacement in the three-dimen-
sional model is greater than that of the two-dimensional model, 7.24 vs.
1.93, respectively, while the vertical displacements are almost the same,
1.92 vs 1.96. Even though the maximum displacements for the obliquely
incident wave are smaller in comparison to the vertically propagating
wave, they are still greater than those corresponding to the one-di-
mensional model. The frequency spectra of the signals indicate that the
largest amplification occurs at frequencies that are less than the ex-
citation's central frequency. Fig. 14 shows the displacement time his-
tory at observation points 4 and 5, on the two sides of the hill for the
obliquely incident wave. The first part of the time histories, i.e., the
reflection of the incident from the flat surface, is identical. However,
the amplitude of the reflected waves at observation point 4, on the left
side of the hill where the plane wave hits first, is less than at point 5, 0.2
versus 0.4, respectively.

Fig. 8. Comparison of (a) displacement time histories and (b) their frequency spectra at observation point 3 due to a vertically propagating P-wave for the one-, two-,
and three-dimensional hill models.

Fig. 9. Comparison of (a) the time histories of displacement and (b) the frequency spectra at the observation point 4 due to a vertically propagating P-wave for two-
and three-dimensional hills.
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3.2. Effects of model dimensionality on the response of heterogeneous
domains

A one-dimensional seismic model is seldom a good approximation
for a soil domain: it is only under very restrictive assumptions (e.g.,
horizontal layering) that such a model would lead to reasonable motion
estimates. Observations from past earthquakes show that such simpli-
fied models might lead to poor predictions, especially in the case of
sedimentary valleys. For example, King and Tucker [49] showed via
experiments that a seismic amplification of 10 is possible within the
sedimentary valleys, while the surface amplification depends highly on
the distance from the edge of the valley, to the extent that, for example,
the ground motion at the valley edges may differ from the motion at
mid-valley, by as much as a factor of 5, even though the two sites may
be separated from each other by as little as 100 m. This behavior cannot
be predicted using one-dimensional models.

The goal of this section is to use one-, two-, and three-dimensional
models of two synthetic, sedimentary valleys to highlight the di-
mensionality effects on seismic motion amplification.

3.2.1. Example 1: Homogeneous valley: 1D vs. 2D
Let us consider a two-dimensional, homogeneous, semi-circular,

sediment-filled valley, with a radius of 100 m, as shown in Fig. 15. The
valley is embedded within a stiffer host. The semi-infinite domain is
truncated to an area ×800 300 m2, surrounded on its sides and bottom
by a 25 m-thick PML. The mass density of the host is =ρ 2000 kg/m3,
the shear wave velocity is =c 300 m/s,s and the compressional wave
velocity is =c 489.9 m/sp . We define the soft material within the valley
such that the shear and compressional wave velocities are =c 150 m/ss
and =c 280.6 m/sp , respectively, with mass density =ρ 1500 kg/m3.
The medium is linear elastic with no material damping. The equivalent
one-dimensional models for the two soil column beneath observation
points 1 and 2 (Fig. 15(a)) are plotted in Figs. 15(b) and 15(c).

The PML absorbing layer and the soil surrounding the valley are
discretized by quadratic elements with an element size of 2.5 m, re-
sulting in a ten-element-thick PML. The soft sedimentary valley is dis-
cretized with elements of size 1.25 m. The excitation is an incident P-
wave in the form of a Ricker pulse with a central frequency of

=f 3.0 Hzr . Thus, the resulting mesh has about 40 points per shear

Fig. 10. (a) Displacement time history at observation point 6 for a longer duration incident wave, and (b) maximum surface displacement due to a vertically
propagating SV-wave.

Fig. 11. Contours of displacement due to a vertically propagating SV wave in the two-dimensional model.
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Fig. 12. Displacement contours due to a vertically propagating SV wave in the three-dimensional model.

Fig. 13. Comparison of (a) displacement time histories of displacement and (b) their frequency spectra at observation point 1 due to the SV incidence at = °θ 15s for
the two- and three-dimensional hill models.

Fig. 14. Comparison of displacement time histories of displacements at (a) observation point 4, and (b) observation point 5 due to SV incidence at = °θ 15s for the two-
and three-dimensional hill models.
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wavelength, where the latter corresponds to the central frequency of
the Ricker pulse. For the highest frequency content of the Ricker pulse,
the points reduce to about 13 per shear wavelength.

The vertical displacement time histories, normalized with respect to
the amplitude of the incident wave, and their Fourier spectra at ob-
servation point 1 are shown in Fig. 16 along with the equivalent one-
dimensional model results. Notice that, owing to the symmetry of the
domain and of the load, the horizontal displacement in the two-di-
mensional simulation vanishes at this point. The maximum displace-
ments are 2.54 versus 3.54, for the one- and two-dimensional simula-
tions, respectively. In other words, the two-dimensional simulation
results in 40% larger displacement at that particular point. Additionally,
while the motion in the one-dimensional simulation consists of a few
isolated pulses, the two-dimensional model exhibits a longer lasting
motion with large amplitudes. In other words, the one-dimensional si-
mulation substantially underestimates the surface motion.

Let us turn our attention to the frequency spectra of the displace-
ments at this observation point, depicted in Fig. 16(b). The first 3
theoretical amplification frequencies1 for the 1D model are 0.702 Hz,
2.105 Hz, and 3.508 Hz; they are clearly recovered in the 1D spectrum of
Fig. 16(b). However, notice that the two-dimensional amplification
frequencies are different from those of the one-dimensional model. The
largest amplification in the one-dimensional model is only 0.46 (at
3.508 Hz), while for the two-dimensional model, the maximum ampli-
fication is 1.015 at 2.7 Hz. The two spectra are fundamentally different,
both in terms of the amplification frequencies and in terms of the as-
sociated amplitudes.

Fig. 15. The computational domain for example 1: (a) the two-dimensional, sediment-filled valley, (b) the equivalent one-dimensional model at observation point 1,
and (c) the equivalent one-dimensional model at observation point 2.

Fig. 16. Comparison between (a) displacement time histories, and (b) their frequency spectra of the one- and two-dimensional models at observation point 1.

Fig. 17. Comparison between (a) displacement time histories, and (b) their frequency spectra of the one- and two-dimensional models at observation point 2.

1 It can be shown that the amplification frequencies of the one-dimensional
soft layer over half-space are the same as the natural frequencies of the layer on
a fixed base, given as − cn

H p
2 1

4 for = …n 1, 2, and H the height of the layer.
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The time histories of the horizontal and vertical displacements for
observation point 2, located 50 m away from the midpoint of the valley,
are shown in Fig. 17(a). At this point (op2), the maximum displacement
of the two-dimensional model is smaller in comparison to the first ob-
servation point (op1), while the maximum displacement of the one-
dimensional simulation has remained the same. The maxima are com-
parable, 2.30 versus 2.54 for the one- and two-dimensional models, re-
spectively. The main difference here is the presence of horizontal mo-
tion in the two-dimensional model, which cannot be predicted by the
one-dimensional model. The horizontal displacement is as large as 1.85,
and if it is combined with the vertical displacement, the total dis-
placement would be greater than the one predicted by the one-di-
mensional model. The frequency spectra of the displacements from the
two simulations, shown in Fig. 17(c), differ both in amplitude and in

the dominant frequencies.
We note that the maximum displacement in the one-dimensional

simulation is constant, regardless of the depth of the soft layer and the
frequency of the signal, yet, the amplification frequencies are different
for each depth. By contrast, the maximum surface displacement for the
two-dimensional model, depicted in Fig. 18(a), varies by surface loca-
tion, owing to the wave interactions within the soft sediment (the valley
extends between − 100 m and 100 m). The maximum horizontal dis-
placement is 3.54, occurs at the midpoint of the sedimentary valley,
while the maximum vertical displacement is 1.73 and occurs closer to
the edge of the valley. If we consider the total displacement on the
surface, the one-dimensional model underestimates the amplification at
the middle of the valley in comparison to the two-dimensional model,
while it overestimates the amplification closer to the edge of the valley.

Fig. 18. Maximum surface displacement in the two-dimensional, homogeneous, sedimentary valley due to a vertically propagating (a) P wave, and (b) SV wave.

Fig. 19. Contour of displacements in the x and y directions due to a vertically propagating SV-wave: (a) displacement in the X direction, and (b) displacement in the Y
direction.
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The difference between the maximum displacements on the surface is
indicative of the valley edge effects. These results are in good agree-
ment with the results reported in [25,27,28].

It is worth observing the surface amplification due to a vertically
propagating SV wave in the two-dimensional model, as shown in
Fig. 18(b): the maximum horizontal displacement is 4.31, occurs at the
middle of the valley, while that of the P-wave is only 1.73, and the
corresponding vertical displacements are 2.57 versus 3.54.

We plot the displacement contours due to a vertically propagating
SV-wave at various instances in the two-dimensional model in Fig. 19.
Notice that the particle motion for the SV incidence is normal to the
direction of motion, thus, in the first snapshot, taken right after the
plane wave enters the soft layer, the vertical displacement outside the
soft soil vanishes. The wave velocity, and consequently the wavelength,
is smaller in the soft layer. Therefore, to preserve the wave energy, the
wave amplitude increases. Vertical displacements are generated within
the domain, the moment the wave hits the soft soil. The maximum
surface displacement occurs when the incident wave within the soft soil
reflects back from the surface. The wave gets trapped within the soft
soil and bounces back from the interface of the two materials and also
from the surface. Even though the main incident front has left the do-
main in the last snapshot, there is still residual motion in the soft soil.
The DRM boundary is also visible in the last snapshot, where there is a
jump between the total motion in the regular domain and the scattered
motion in the buffer between the DRM and the PML.

3.2.2. Example 2: A layered sedimentary valley: 1D vs. 2D vs. 3D
A number of densely populated areas, including Manhattan, NY, the

San Fernando Valley, CA, or Seattle, WA [50,51], are situated on large,
relatively low-velocity, basins, and are prone to strong earthquakes, due
to their proximity to active seismic faults. There are several reports on
the discrepancies between recorded motion and numerical computa-
tions due to complex site effects in heterogeneous geological config-
urations [15,52,53].

In this section, we attempt to numerically assess model di-
mensionality effects on the seismic response, using a typical multi-
layered, sediment-filled, valley. Toward this end, we compare the dis-
placement time history on the surface using one-, two, and three-di-
mensional models, for a vertically propagating P wave. We also com-
pare the amplification due to SV-wave incidence between the two- and
three-dimensional models.

Let us consider a typical sedimentary valley, similar to the Seattle
basin, as shown in Fig. 20. The material properties and the depth of
each layer have been summarized in Table 1. The semi-infinite domain
is truncated to a 1700 × 1700 × 1200 m3, surrounded on its sides and

bottom by a 120 m-thick PML. The medium is linear elastic with no
material damping. The PML absorbing layer and the stiff half-space
were discretized by quadratic elements with an element size of 20 m,
resulting in six-element-thick PML. In the soft sediments, we use an
element size of 15 m that allows for at least 20 points per dominant
shear wavelength. The excitation is a plane incident wave (P or SV) in
the form of a Ricker pulse with a central frequency of =f 1.0Hzr .

Fig. 21 shows the displacement time histories and their frequency
content at observation point 1, located in the middle of the domain
(Fig. 20). The maximum displacements are 3.50, 4.41, and 13.99, for the
one-, two-, and three-dimensional models, respectively, i.e., the three-
dimensional model yields a response 4 times greater than that of the
one-dimensional model. Notice that if we look at the time history signal
closely, we observe that the first pulse in all models is nearly identical
in shape and magnitude, which in fact, represents the first reflection of
the incident wave from the surface before the response gets polluted by
the reflected waves from the layer interfaces. The maximum displace-
ments for the one- and two-dimensional models both arise during the
first pulse phase, and the rest of the response is characterized by smaller
amplitudes. Interestingly, however, the maximum displacement in the
three-dimensional model arises later in time as a result of the inter-
ference of Rayleigh waves generated from the edges of the sedimentary
valley, with the reflected waves [15]. In summary, the main reason for
having such a large difference between the maximum displacement
obtained from the one-dimensional model and the two- or three-di-
mensional models is the inability of the one-dimensional model to
capture mode conversions and Rayleigh waves. The total motion
duration is over 25 s for the three-dimensional model, while the motion
in the one- and two-dimensional models last only 3.5 and 10 s, re-
spectively. Similar observations were reported in [25,27,28].

The frequency spectra of the three time histories in Fig. 21(b) show
that all models amplify the frequencies between 0.7 to 1.5 Hz, though at
different rates, while the three-dimensional model, exhibits another set
of frequency amplifications between 1.5 to 2.1 Hz with higher

Fig. 20. Sedimentary valley models: (a) three-dimensional model, (b) two-dimensional model, and (c) equivalent one-dimensional model at observation point 1
(op1).

Table 1
Depths and material properties of the layered domain.

Layer mass density Poisson's ratio shear
velocity

compressional
velocity

depth

ρ (kg/m )3 ν c (m/s)s c (m/s)p (H)

I 1800 0.25 200 346.41 30
II 2000 0.25 450 779.42 120
III 2200 0.25 600 1039.23 400
IV 2800 0.25 900 1558.85 550
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amplitudes than those exhibited at the lower frequencies. Recall that
the central frequency of the incident wave is 1Hz, but, owing to the
presence of the soft layers, amplification shifts to other frequencies.

Fig. 22 displays the maximum surface displacement for all three
models. While a one-dimensional simulation predicts a constant am-
plification over the entire layered domain, the two- and three-dimen-
sional models show spatially variable amplifications. Particularly, the
constructive interaction of waves in the middle of the domain in the
three-dimensional modal yields a large amplification, which cannot be
seen even in the two-dimensional model. We remark again that the total
duration of the incoming signal in this example is quite short, only
1.2 s, thus, the constructive interference of incoming and surface
waves, which cannot be predicted by the one-dimensional model, may
(very likely) lead to even larger amplifications if the input duration
were to increase.

In a subsequent numerical experiment, we study the dimensionality

effects on the propagation of SV waves using the two- and three-di-
mensional models only. Fig. 23(a) displays the displacement time his-
tories at observation point 1. The maximum displacements are 5.59 and
11.14, for the two- and three-dimensional models, respectively, i.e., the
three-dimensional model yields a maximum displacement 2 times as
large as that of the two-dimensional model. The total motion duration is
over 30 s for the three-dimensional model, while the two-dimensional
motion lasts no more than 15 s.

We would like to know whether the difference between the max-
imum displacements in the two- and three-dimensional models is lo-
calized (e.g., a small area in the middle of basin) or it can be also ob-
served at other points on the surface as well. Toward this end, we plot
(Fig. 24) the total maximum displacement on the surface of the two
models in Fig. 24. The graph clearly shows that the interference of the
waves along a large area in the middle of the three-dimensional domain
results in remarkably strong amplification, which cannot be predicted

Fig. 21. (a) Displacement time histories and (b) their frequency spectra at observation point 1, for the one-, two-, and three-dimensional models due to the vertically
propagating P-wave.

Fig. 22. The maximum displacement on the surface for all three models due to
a vertically propagating P-wave.

Fig. 24. The maximum surface displacement of the two- and three-dimensional
models due to a vertically propagating SV-wave.

Fig. 23. Comparison of (a) displacement time histories and (b) their frequency spectra at observation point 1, for two- and three-dimensional domains due to
vertically propagating SV wave.
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via a one- or even a two-dimensional model.
The displacement contours for the three-dimensional model are de-

picted in Fig. 25 at various instances. The first snapshot shows the mo-
ment where the waves enter the soft layer. The second snapshot shows
the first reflection of the incident wave from the surface of the soft layers
and the third one is at the moment when the maximum displacement
occurs. The contours show how the amplification occurs within the
layered domain due to energy being trapped within the soft layers.

4. Conclusions

The interest in understanding and quantifying seismic motion ef-
fects, particularly in regions with surface irregularities, such as hills,
valleys, and alluvial basins, is strong, especially in light of the reported
discrepancies between recorded surface strong motion data and nu-
merical simulations. Even though the uncertainty in the velocity model
remains a primary source of the discrepancies, the pervasive flat-sur-
face assumption and the expediency-driven reduction of model di-
mensionality contribute decidedly to the discrepancies.

In this article, we reported model dimensionality effects on the
seismic motion via time-domain numerical experiments in domains
with irregular surfaces and in layered media. We concluded that one-
dimensional models underestimate significantly the motion amplifica-
tion, compared to two- and three-dimensional models, and reliance on
such models should be avoided, particularly when site response ana-
lyses guide design decisions. Under certain conditions, two-dimensional

models may be adequate surrogates for three-dimensional models, but,
in general, there is no good substitute to full-blown three-dimensional
models, which should be encouraged especially when designing sensi-
tive structures in seismic prone areas.

This study was limited to linear elastic isotropic material lossless
behavior, exhibiting structured (non-arbitrary) heterogeneity. From a
methodological point of view, the computational toolchain can readily
accommodate arbitrarily heterogeneous geomorphology as well as
various linear material attenuation models. Nonlinear behavior limited
to a near-surface subdomain, can also be accommodated within the
DRM framework, provided the domain exterior to the nonlinear sub-
domain remains linear. Consideration of anisotropy requires changes to
the computational framework. From a physical point of view, the pre-
sence of nonlinearity and/or material damping will change, perhaps
drastically, the response, but we expect that the general conclusion
regarding the inadequacy of lower dimensionality models to remain
valid.
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Appendix A. Verification

We evaluate the validity of the formulation and numerical implementation by comparing the results against existing analytical and numerical
solutions. Analytical solutions of wave propagation in a non-flat half-plane are scarce in the literature and are limited to only a few cases, mostly for
SH-waves. Thus, to verify and assess the accuracy of our developed code, we resort to analytical solutions that are readily available for a flat
homogeneous half-space. We first discuss closed-form solutions of wave motion in a flat homogeneous domain, and, then, we compare the three-
dimensional numerical simulations with the exact solution.

Fig. 25. Displacement contours at various instances due to a vertically propagating P-wave.
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A.1. Analytical solutions for a homogeneous half-space

The exact two-dimensional solution in the frequency-domain can be obtained by decomposing the displacement field, using the Helmholtz
decomposition theorem, and substituting the results into Navier's equation [23,54]. Then, using d'Alembert's method, we can obtain the time-domain
solution from the frequency-domain solution. If u is the displacement vector in a two-dimensional flat-surface half-space, then, the displacement
field due to SV-wave incidence can be written as:
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where ux
s and uy

s are the displacements within the domain in the x and y directions, respectively; θs is the angle of SV incidence, which is also equal to
the angle of reflected SV-wave; θp is the angle of reflected P-wave derived according to Snell's law; cs and cp are shear and compressional wave
velocities, respectively. =U A ks
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where =k c c/p s.
In summary, while neglecting a few special cases, a plane SV-wave reflects from the flat surface of a homogeneous half-plane as P- and SV-waves

as depicted in Fig. A.26(a). The first term of (A.1) denotes the equation for SV incident wave traveling at cs velocity and an angle of incidence θs with
an amplitude of A ks

i
s; the second term indicates the reflected SV-wave traveling at the same velocity and angle with an amplitude of A ks

r
s; and the

third term is the reflected P-wave which has an amplitude of A kp
r

p and traveling in the domain at cP velocity and angle of incidence θp.
Similarly, the displacement field due to P-wave incidence in a homogeneous flat half-plane can be expressed as:
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ux
p and uy

p are the displacements within the domain in the x and y directions, respectively. =U A kp
i

p
i

p is the amplitude of the incoming P-wave,
and =U A ks

r
s
r

s and =U A kp
r

p
r

p are the amplitudes of the reflected SV- and P-waves, respectively. Ap
r and As
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Fig. A.26(b) illustrates the typical reflection of a P-wave from a flat homogeneous half-space, excluding special cases. The first term of (A.3)
denotes the equation for P incident wave traveling at the velocity of cp and an angle of incidence θs with an amplitude of A kp

i
p; the second term

indicates the reflected SV-wave traveling at cs and θs with an amplitude of A Ks
r

s; and the third term is the reflected P-wave which has an amplitude of
A kp

r
p and traveling in the domain at the velocity cp and angle of incidence θp.
In the above, the function =f f τ( ) is any single-variable function that determines the shape of the wave. In this study, we use =f τ τ( ) sin ( ) with

a Ricker pulse signature, defined as:

Fig. A.26. Schematic propagation of plane waves in a flat homogeneous half-space: (a) SV-wave, and (b) P-wave.
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where ωr (= πf2 r) denotes the characteristic central circular frequency of the pulse. For example, the displacement time-history, normalized with
respect to the amplitude of the incident wave, and its corresponding Fourier spectrum are shown in Fig. A.27 for a frequency of =f 2Hzr .

A.2. Verification of three-dimensional wave motion in a half-space

We compare the numerical simulation of wave motion in a three-dimensional, homogeneous, flat half-space with the analytical solutions ob-
tained in A.1. The homogeneous half-space is truncated to a × ×800 m 800 m 300 m computational domain, surrounded on its sides and bottom by a
50 m-thick PML as shown in Fig. A.28. Quadratic hexahedral spectral elements (27-noded) of edge size 5 m are used to discretize the domain. The
discretization results in a ten-element-thick PML with quadratic attenuation profile. The PML parameters α0 and β0 were set to 5.0 and 500m/s,
respectively. The shear and compressional wave velocities are =c 200m/ss and =c 350m/sp , respectively, and no material damping mechanism is
considered in the simulation. The frequency of the incident wave is 2Hz, and thus the shear wavelength is 100 m and the compressional wavelength is
175 m. The observation point to compare the analytical solution with the numerical results is located at (0 m, 150 m) (see Fig. A.28). Wave motion is
implemented in the model using (A.1) and (A.3) with =f τ sin ωτ( ) ( ) defined from 0 to π (half a cycle of a sinusoidal wave). τ is the wave phase and
ω is the cyclic frequency of the wave.

A.2.1. Reflection of P-wave
The first verification example tests the reflection of a plane P incident wave of unit amplitude and the angle of incidence °15 from the flat surface

Fig. A.27. Ricker pulse (a) time history (b) its Fourier spectrum.

Fig. A.28. Geometry of the half-space.
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of a half-space according to (A.3). Fig. A.29 depicts the snapshot of displacement field in the x and y directions (the displacement in the z direction in
zero). As the wave hits the surface, it reflects back into the domain as P- and SV-waves. The reflected P-wave, which has the same angle as the
incident wave, appears first due to the larger compressional velocity, with a reduction in the amplitude in comparison to the incident wave, owing to
the redistribution of energy. Since the direction of motion has changed, both x and y displacements are negative. The SV-wave is following the P-
wave with a shorter wavelength.

The time history of displacements in the x and y directions for the analytical and numerical solutions are displayed in Fig. A.30 for the ob-
servation point. A total agreement between the two time histories implies the accuracy of the developed formulation and the numerical simulation.
Notice that three bumps are visible in the time history; the first bump is for the P incident wave, the second bump is for the reflected P-wave, and the
third bump is due to the reflected SV-wave which is slower than the P-wave.

A.2.2. Reflection of SV-wave
The second three-dimensional verification example is the reflection of a plane SV incident wave of amplitude one and an angle of incidence of °15 ,

from the flat surface of a homogeneous domain. Fig. A.31 displays the displacement field in the x and y directions within the domain after the
incident wave hits the flat surface. Three wave fronts can be seen in the displacement contour; the first one is the SV incidence, where the particle
motion is normal to the direction of motion, thus, the x and y displacements are positive, the second one is the reflected P wave with positive
displacements and greater angle of incidence and wavelength in comparison to the incidence, and the third one is the reflected SV wave with the
same angle and wavelength as the incident wave.

The time history of displacement in the x and y directions for the propagation of SV-wave in the half-plane has been depicted in Fig. A.32 and is
compared to the analytical solution. There is a good agreement between the two results.

Fig. A.29. Propagation of P-wave in a flat half-
space with an angle of incidence °15 .

Fig. A.30. Comparison of the time history of displacements at the observation point for the P incident wave.

Fig. A.31. Propagation of SV-wave in a flat half-
plane with an angle of incidence °15 .
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Appendix B. Remarks on adaptivity

Explicit solvers are highly scalable in parallel computing, but, in contrast to the implicit solvers, are conditionally stable, which means the
solution diverges if the time-step exceeds an upper bound. Thus, the main challenge here is to determine the optimal time step which leads to a stable
solution. Toward this end, most researchers use the Courant-Friedrichs-Lewy stability condition (CFL) to limit the time-step, which states that the
distance traveled by the solution in one time-step, c tΔ , must be less than the distance between two grid points. The following equations can be
obtained for a structured domain [55]:

=C c t
x
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where ci is the largest wave velocity, xΔ , yΔ , and zΔ are the minimum grid spacing in the x, y, and z directions, respectively. C is the Courant number,
which should remain less than the maximum Courant number, Cmax. The maximum Courant number is based on empirical experiments and is subject
to change depending on the problem. The convention for a structured discretization is to assume =C 1max , but this number reduces for an un-
structured discretization. Therefore, in the absence of any firm relation for the time-step, a trial and error procedure is necessary to find the optimal
time-step.

We demonstrate the efficiency of the explicit solvers in the following two-dimensional numerical experiments.

B.1. Example 1: Wave propagation in a homogeneous half-plane

Let us study the efficiency of the adaptive algorithm using the two-dimensional homogeneous model that we considered in Section A.2 for
verification purposes. The maximum allowable time-step for this model with element of size =xΔ 2.5m and the compressional wave velocity

=c 350m/sp is =tΔ 0.0025smax , as stated in (B.1) for =C 1max . For a total time duration of =T 4.5s, the fourth-order Runge-Kutta with fixed time-step
requires 1800 steps, which runs in 410 s on one CPU (average of ten simulations). However, running the same model, using the adaptive algorithm,
requires only 1265 steps with a total runtime of 320s, i.e., 28% faster than the fixed time-step algorithm. Indeed, the computational cost of each step

Fig. A.32. Comparison of the time history of displacements at the observation point for the P incident wave.

Fig. B.33. Comparison of the time histories of displacement computed from the fourth-order Runge-Kutta method and Runge-Kutta-Fehlberg with error tolerance
=ε 500.
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of the adaptive algorithm is more than the fixed time-step algorithm, thus, the comparison of the total number of steps is not a firm measure of the
efficiency of the adaptive algorithm, but the runtime. Fig. B.33 shows the time history of displacement at the observation point one for the fixed time-
step algorithm and adaptive algorithm.

B.2. Example 2: Heterogeneous, sediment-filled valley

We use the heterogeneous, sediment-filled valley, described in Section 3.2.1, to verify the adaptive algorithm for an unstructured discretization.
The valley shape and discretization is depicted in Fig. 15. Note that, in the absence of any criterion for choosing the time-step in an unstructured
domain (the CFL condition is given only for structured discretization), we have no estimate of the time-step; thus, a trial and error process was
inevitable. To have a rough estimate, one idea is that we find the minimum grid spacing and use the one-dimensional CFL limit. Using this approach
the time-step should reduce to 59% of the one-dimensional CFL condition, i.e., from 0.00102s to 0.0006s. However, by using the adaptive algorithm,
there is no need for any trial and error process. The displacement time histories at observation point 1 are depicted in Fig. B.34 for the fixed and
adaptive time-step algorithms and show good agreement between the two methods.

In summary, we incorporated an adaptive algorithm that enhances the efficiency of the time integration scheme by computing the optimal time-
step using the local truncation error at each time-step. This algorithm, in addition to being more efficient over the fixed time-step algorithm,
eliminates concerns on how to choose the right time-step size (see [56] for details).

Appendix C. Submatrices in (2)

We use standard finite-dimensional subspaces ⊂ ΩΞ H ( )h
1 and ⊂ Ωϒ ( )h

2L , with basis functions Φ and Ψ, respectively. We then approximate
tu x( , ) with ∈ ×tu x Ξ( , )h h J, and tS x( , ) with ∈ ×tS x ϒ( , )h h J, as detailed below:
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λ and μ are the Lamé parameters and ρ is the density. Subscripts in the shape functions indicate derivatives.
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Fig. B.34. Comparison of the time histories of displacement computed from the fourth-order Runge-Kutta method and Runge-Kutta-Fehlberg.
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