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Site characterization using full waveform inversion
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a b s t r a c t

We discuss recent progress in the full-waveform-based imaging of probed soils, with geotechnical site

characterization applications in mind. The primary goal is the reconstruction of the material profile of

near-surface, arbitrarily heterogeneous formations, in terms of the formation’s spatially distributed

elastic properties, using elastic waves as the probing agent.

We describe first the formulation and numerical resolution of the underlying time-dependent

inverse medium problem; we report briefly on numerical experiments using synthetic data and

artificial target soil profiles. These demonstrate robust reconstruction. We then report extensively on

the details of a field experiment, whose records we subsequently used to drive the inversion algorithms

in order to characterize the site where the field experiment took place. Lastly, we compare the inverted

site profile with profiles obtained using the Spectral-Analysis-of-Surface-Waves (SASW) method, in an

attempt to compare our methodology against a widely used concurrent inversion approach. We also

compare the inverted profile at select locations with the results of independently performed CPT tests.

Overall, whether exercised by synthetic or by physical data, the full waveform inversion method we

discuss herein appears quite promising for the robust subsurface imaging of near-surface deposits in

support of geotechnical site characterization investigations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Geotechnical site characterization refers to our ability to image
the properties of the soil within the near-surface deposits, ideally
in a non-invasive manner. Imaging the soil shares common
elements with imaging in other disciplines, most notably medical
imaging, albeit without the benefit that a tightly controlled
medical setting affords to imaging. The problem belongs to the
broader class of inverse medium problems: waves, whether of
acoustic, electromagnetic, or elastic nature, are used to interrogate
a medium, and the medium’s response to the probing is subse-
quently used to image the spatial distribution of properties
(densities or moduli). Mathematically, algorithmically, and com-
putationally, inverse medium problems are fairly challenging,
especially when no a priori constraining assumption is made on
the spatial distribution of the medium’s properties. The challenges

are further compounded when the underlying physical problem is
time-dependent, as is in the site characterization case.

Because of the inherent complexity of the inversion problem,
most of the methods developed to date rely on simplifying
assumptions that aim at rendering a solution to the problem
more tractable. Most commonly, these simplifications limit the
properties’ spatial variability: horizontal layering assumptions
pervade most site characterization approaches, including the
celebrated Spectral-Analysis-of-Surface-Waves (SASW) [19], or
its close relative, the Multichannel-Analysis-of-Surface-Waves
(MASW) [14]. However, continued advances in both algorithms
and computer architectures have allowed the gradual removal of
the limitations of existing methodologies.

In this paper, we discuss recent advances in site characteriza-
tion, based on a full waveform inversion methodology. The
seeding concepts of full waveform inversion are not new: the
goal is to reconstruct the material profile of a probed soil domain
using the complete waveforms of its response to interrogating
waves (elastic waves). Convergence to the reconstructed property
profile is then accomplished by enforcing the minimization
of a misfit between observed records of the soil’s response
and computed records based on trial guesses of the medium’s
properties. Full waveform inversion methods are the purview of
geophysical exploration, where they are still under continuing
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development: a robust methodology, especially for the time-
dependent elastic case remains, by and large, elusive. In this vein,
the methodology we report here in the context of geotechnical
site characterization seems quite promising. Using a full wave-
form inversion method for site characterization entails additional
difficulties, not usually encountered in geophysical exploration,
due to the need to limit the extent of the probed domain. To be
able to tackle all the difficulties of inverting for the near-surface
deposits, we integrate recent advances in several areas; specifi-
cally, we use (a) a new forward wave simulation method for
domains terminated by perfectly-matched-layers (PMLs), which
is suitable for dealing with the limited extent of sites particular
to geotechnical investigations [9]; (b) a partial-differential-
equation-constrained optimization approach for tackling the
inverse medium problem endowed with specialized convergence
accelerators [7]; (c) regularization schemes to address solution
multiplicity inherent in the inverse problem [4]; (d) a discretize-

then-optimize implementation scheme to assist the gradient-
based optimizer to arrive at the target profile [2,15]; and
(e) continuation schemes that improve algorithmic convergence
[7,11].

Fragments of the methodology have already been reported
elsewhere. Our primary focus here is on the field experiments and
on the inversion results that were based on the field data.
Nonetheless, we discuss, albeit briefly, all necessary ingredients
for inversion. The methodology we present is fairly general: here,
we discuss it only in the context of two-dimensional inverse
problems. Three-dimensional extensions will be reported in the
future.

The remainder of this paper is organized as follows: first, we
discuss mathematical and numerical aspects of the underlying
inverse medium problem. We report numerical results using
synthetic data, which serve to provide early justification for the
methodology. Next, we discuss details of the design of a field
experiment aimed at collecting physical data in a manner suitable
for exercising the methodology. We then report on the field
experiment, and the resulting site characterization using real
data and the full waveform approach. We compare the rendered
site profile against profiles obtained using the SASW, and report
on localized CPT tests that reinforce the validity of the profile.
Lastly, we conclude with summary remarks.

2. Problem definition

To fix ideas, we refer to the depiction of the driving application
shown in Fig. 1: we are interested in reconstructing the forma-
tion’s profile shown in Fig. 1(a), using records of the formation’s
response collected by sensors (geophones) dispersed over the
formation’s surface, when the formation is excited by active
sources (Vibroseis equipment), also located on the surface. Given
the arbitrary heterogeneity of the domain of interest, the problem
is inherently three-dimensional. Herein, we describe the metho-
dology by focusing on the two-dimensional counterpart of the
original problem, as depicted in Fig. 1(b): we accept arbitrary
heterogeneity within a two-dimensional slice, but presume that
the properties remain unchanged along the third dimension, i.e., a
plane strain problem. While, the problem, as defined, departs
from the true physical three-dimensional case,1 it still contains all
the complexities associated with the three-dimensional problem.
Fig. 1(c) represents the mathematical idealization of the two-
dimensional slice shown in Fig. 1(b): the semi-infinite physical

domain has been truncated to a finite one through the introduc-
tion of buffer layers (PMLs) meant to absorb the outgoing waves
generated by the action of the active surface sources.

Thus, the site characterization problem reduces to the follow-
ing inverse medium problem: find the Lamé parameters lðxÞ and
mðxÞ in ORD using the recorded response at the sensor/receiver
locations due to the (known) excitation applied at the source
locations.

3. The inverse medium problem—theoretical aspects

Our objective is to find the spatially distributed elastic mate-
rial properties of the probed site. We discuss a method that
systematically finds the distribution of the material properties by
minimizing the difference (misfit), in the least-squares sense,
between the measured response recorded during a field experi-
ment, and a computed response which results from numerically
simulating the site’s response under the same loads as those used
during the field experiment. The computed response uses trial
distributions of the material properties lðxÞ,mðxÞ, which are
continuously updated, until convergence (i.e., until the misfit is
minimized). Since the numerically simulated response satisfies
the governing partial differential equations (PDEs) that describe
the physics of the problem, the process of finding the distributed
material properties of the soil medium is forced to be constrained
by the PDEs: the approach is often referred to as PDE-constrained
optimization [15].

Inverse medium problems are notoriously ill-posed: at a
minimum, they suffer from solution multiplicity, that is, different
material distributions (potentially non-physical) could lead to
a good agreement with the recorded data, i.e., be solutions to
the misfit minimization problem. Thus, before undertaking the
numerical solution of the inverse problem, the problem must be
regularized, that is, it must be suitably transformed into a well-
posed problem [17]. In the following sections, we discuss a robust
algorithm for the numerical treatment of the inverse medium
problem at hand. Most methods dealing with the solution of an
inverse problem, including the present one, require the repeated
solution of the forward problem, that is, the finding of the
displacement field, under a known (or assumed) material dis-
tribution, known sources, and prescribed boundary and initial
conditions. We, therefore, discuss first the forward problem and
its numerical solution, which we use subsequently in tackling the
inverse problem.

3.1. The forward problem

In the forward problem, we are concerned with the propaga-
tion of elastic waves in a semi-infinite, arbitrarily heterogeneous,
elastic medium. The numerical simulation of such wave propaga-
tion problems, in which the physical domain extends to infinity,
requires the truncation of the semi-infinite extent of the domain
to yield a finite computational domain. This can be accomplished
by placing perfectly-matched-layers (PMLs) at the truncation
boundaries such that, ideally, when waves pass through the
(theoretically) reflectionless interface, they get attenuated within
the PML zone. The concept is schematically captured in Fig. 2.

To model the forward problem, we use a hybrid approach that
has been recently developed (see, e.g. [8,9]), where the interior
elastodynamic problem defined over the interior domain, hence-
forth labeled as regular domain and denoted by ORD, is coupled
with the physics governing the artificial wave attenuation within
the PML domain, henceforth denoted by OPML. We refer to [8,9]
and references therein for the complete development of the
method; here we repeat only the resulting coupled system of

1 The problem is still valid in the case of horizontal layers, or even in the case

of inclined layers, or even in the case of arbitrary plane heterogeneity.
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equations, by noting that the formulation is such that the interior
domain is treated identically to a standard displacement-only
elastodynamic problem, whereas the PML buffer is treated with a
mixed formulation, where both displacements and stresses are
unknown.

Accordingly, find uðx,tÞ in ORD
[OPML, and Sðx,tÞ in OPML (see

Fig. 3 for domain and boundary designations), where u and S
reside in appropriate functional spaces and:

divfm½ruþðruÞT �þlðdiv uÞIgþb¼ r €u in ORD
� J, ð1Þ

divf _S
T ~LeþST ~Lpg ¼ rða €uþb _uþcuÞ in OPML

� J, ð2Þ

D½a €Sþb _SþcS� ¼
1

2
½ðr _uÞ ~Leþ

~Leðr _uÞ
T
þðruÞ ~Lpþ

~LpðruÞT � in OPML
� J:

ð3Þ

The system is initially at rest and subject to the following
boundary and interface conditions:

fm½ruþðruÞT �þlðdiv uÞIgn¼ gn on GRD
N � J, ð4Þ

f _S
T ~LeþST ~Lpgn¼ 0 on GPML

N � J, ð5Þ

u¼ 0 on GPML
D � J, ð6Þ

uþ ¼ u� on GI � J, ð7Þ

fm½ruþðruÞT �þlðdiv uÞIgnþ þf _ST ~LeþST ~Lpgn
� ¼ 0 on GI � J:

ð8Þ

In the above, u is the displacement vector, b is the vector of body
forces, r denotes the mass density, _S represents the stress tensor,
and a dot denotes differentiation with respect to time of the
subtended variable. Moreover, ~Le and ~Lp are the so-called stretch
tensors corresponding to evanescent and propagating waves,
respectively, which enforce dissipation of waves in OPML, D½�� is
the fourth-order elasticity compliance tensor, and a, b, c are
products of certain elements of the stretch tensors [8,9]. More-
over, gn denotes prescribed surface tractions and J¼ ð0,T� denotes
the time interval of interest. Eq. (1) is the governing PDE for the
interior elastodynamic problem, whereas Eqs. (2) and (3) are the
equilibrium, and combined kinematic and constitutive equations,
respectively, for the PML zone. The last two equations allow one
to maintain the temporal order of the interior problem (second),
at the expense of introducing a mixed scheme for the PML zone.

We use a standard Galerkin finite element method for the
spatial discretization of the interior elastodynamic domain, where
the unknowns are the nodal displacements, and a non-classical
mixed finite element technique for the unknowns in the PML
domain (i.e., u,S). It can be shown [8,9] that the following system
of ordinary differential equations results:

M €dþC _dþKd¼ f , ð9Þ

where M, C, K are system matrices, d is the vector of nodal
unknowns comprising displacements in ORD

[OPML, and stress
components only in OPML, and f is the vector of applied forces.
Several methods can be used to integrate (9) in time; for example,
application of the well-known family of Newmark methods

Fig. 1. Problem definition: (a) interrogation of a heterogeneous semi-infinite domain by an active source; (b) a 2D cross-section of the domain showing one source and

multiple receivers; and (c) computational model truncated from the semi-infinite medium via the introduction of PMLs.

Fig. 2. Perfectly-matched-layer (PML) absorption concept.

Fig. 3. A PML-truncated semi-infinite domain in two dimensions.
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would require for the nþ1-th time step to solve:

K̂ dnþ1
¼ f nþ1

þMða0dn
þa2

_d
n
þa3

€d
n
ÞþCða1dn

þa4
_d

n
þa5

€d
n
Þ,

ð10Þ

where the effective stiffness is

K̂ ¼ a0Mþa1CþK , ð11Þ

and the velocity-like and acceleration-like updates are given by

_d
nþ1
¼ a1ðd

nþ1
�dn
Þ�a4

_d
n
�a5

€d
n
,

€d
nþ1
¼ a0ðd

nþ1
�dn
Þ�a2

_d
n
�a3

€d
n
, ð12Þ

in which a0–a5 are constants whose values depend on the choice
of the particular Newmark method.2 Given initial conditions
d0
¼ u0, _d

0
¼ v0, use of (10)–(12) allows the integration of the

system of ordinary differential equations (ODEs). Alternatively,
(10)–(12), supplemented by the initial conditions, can be cast in
the following compact form:

Qd̂ ¼ f̂ , ð13Þ

where d̂ ¼ ½d0 _d
0 €d

0
d1 _d

1 €d
1
. . .dN _d

N €d
N
�T corresponds to the

space–time discretization of the unknown variables and their
temporal derivatives (N is the number of time steps, and di are
the spatial degrees of freedom at the i-th time step), and
f̂ ¼ ½u0 v0 f 0 f 1 0 0 . . . f N 0 0�T . The discrete forward operator Q
is defined as:

Q ¼

I 0 0 0 0 0 � � � 0 0 0 0 0 0

0 I 0 0 0 0 � � � 0 0 0 0 0 0

K C M 0 0 0 � � � 0 0 0 0 0 0

L1 L2 L3 K̂ 0 0 � � � 0 0 0 0 0 0

a1I a4I a5I �a1I I 0 � � � 0 0 0 0 0 0

a0I a2I a3I �a0I 0 I � � � 0 0 0 0 0 0

^ ^ ^ ^ ^ ^ & ^ ^ ^ ^ ^ ^

0 0 0 0 0 0 � � � L1 L2 L3 K̂ 0 0

0 0 0 0 0 0 � � � a1I a4I a5I �a1I I 0

0 0 0 0 0 0 � � � a0I a2I a3I �a0I 0 I

2
66666666666666666664

3
77777777777777777775

,

ð14Þ

where

L1 ¼�a0M�a1C,

L2 ¼�a2M�a4C,

L3 ¼�a3M�a5C:

We emphasize that (13) is precisely the Newmark algorithm
written in a different form, which is better suited for the solution
of the inverse medium problem at hand, as it will become
apparent later. Notice that the first two rows of (14) recover the

initial conditions, whereas the third row solves for €d
0
. The fourth

row solves for d1, and the fifth and sixth rows yield _d
1

and €d
1
,

respectively. Finally, the last three rows, solve for dN , and update

_d
N

, €d
N

, respectively.

3.2. The inverse problem

Our goal is to find the distribution of the material properties
lðxÞ, mðxÞ of the elastic soil medium, such that the misfit between
the measured response at the receivers’ locations and a computed
response corresponding to a trial material profile is minimized.

Mathematically, this is cast as a PDE-constrained optimization
problem, in which we consider solving the following problem:

min
l,m
J ðl,mÞ :¼ 1

2

Z T

0

Z
Gm

ðu�umÞ
2bðxÞ dsðxÞ dtþRðl,mÞ, ð15Þ

subject to the (continuous) forward problem governed by the
initial- and boundary-value problem (1)–(8).

In the above, T is the total observation time, Gm denotes the
part of the ground surface where the sensor response is recorded,
u is the vertical component of the computed displacement, um

corresponds to the measured vertical displacement component
(obtained via sensor data processing), and b(x) represents the
point measurement operator defined by

bðxÞ ¼
XNr

j ¼ 1

dðx�xjÞ: ð16Þ

Nr denotes the total number of receivers and dðx�xjÞ is the Dirac
delta function. Moreover, Rðl,mÞ is the regularization term
that penalizes highly oscillatory material gradients and, thus,
precludes spatially rapid material variations from becoming
solutions to the inverse medium problem. We use the Tikhonov
regularization scheme defined as

Rðl,mÞ ¼ Rl

2

Z
ORD
rl � rl dORD

þ
Rm

2

Z
ORD
rm � rm dORD, ð17Þ

where Rl and Rm are regularization parameters that control the
amount of penalty imposed on the gradients of l and m.

One may use the (formal) Lagrangian approach [20], whereby
the forward problem (1)–(8) is imposed via Lagrange multipliers
(adjoint variables) to the functional (15). One then seeks a
stationary point to the resulting Lagrangian functional, by forcing
the first-order optimality conditions to vanish. The approach
yields two initial-and-boundary value problems (the forward
and the adjoint), and two time-independent boundary-value
control problems, which, subsequently, all need to be discretized
(in space and time), and solved at each inversion iteration [4,7].
Specifically, the forward problem is solved first, followed by the
adjoint. Using next the state and adjoint solutions together with
the control problems, the material gradients can be computed.
The material gradients and the material distribution of the
previous inversion iteration can then be used to update the
material profile. The procedure is referred to as an optimize-then-

discretize approach, since the optimality conditions are sought
first in their continuous form, followed by a spatial discretization
step, which, in turn, leads to the numerical solution. Such a proce-
dure is discussed comprehensively in [4,7], where a gradient-
based scheme is also used to iteratively update the material
properties.

Alternatively, one may discretize the continuous constrained
optimization problem (15) first, and then compute the corre-
sponding discrete optimality conditions [2,15]. The procedure is
referred to as a discretize-then-optimize approach [2]. In a way
similar to the optimize-then-discretize approach, a gradient-based
scheme may be used here as well, to iteratively update the
material properties.

Herein, we opt for the discretize-then-optimize approach for the
following reasons: the optimize-then-discretize approach yields an
approximation of the gradient of the discrete functional (15), while
the discretize-then-optimize approach yields the exact gradient of
the discrete functional. Although both approaches involve approx-
imation due to the discretization step, the optimize-then-discretize

approach does not yield the exact gradient of either the continuous
functional, or the discretized functional [2]. Therefore, the
optimize-then-discretize approach may result in inconsistent gradi-
ents, which, in turn, may cause serious numerical difficulties; for

2 For example, for a constant average acceleration scheme, a0 ¼ 1=ðaDt2Þ,
a1 ¼ d=ðaDtÞ, a2 ¼ 1=ðaDtÞ, a3 ¼ 1=ð2aÞ�1, a4 ¼ d=a�1, a5 ¼ ðd=2a�1ÞDt,

where d¼ 1=2, a¼ 1=4.
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instance, a downhill direction as determined by the inconsistent
gradient, may actually be an uphill direction of the functional. This
may force the Armijo condition to be violated [13] and, eventually,
force the optimizer to stop. The discretize-then-optimize approach,
however, is more robust and does not suffer from such problems
(see, e.g. [2, Chapter 4] for a comprehensive discussion and [15] for
a systematic treatment and a detailed example).

3.2.1. Discrete optimality conditions

Discretization of the objective functional (15) in space and
time yields

min
k,l

Jðk,lÞ :¼
1

2
ðd̂�d̂mÞ

T Bðd̂�d̂mÞþ
Rl

2
kT Rkþ

Rm

2
lT R l, ð18Þ

where d̂ satisfies the discrete forward problem (13). Here, k and l
are discrete material properties, d̂m are the discrete space–time
measurement data, B is the discretized (space–time) measure-
ment operator,3 and R is the matrix corresponding to the
discretization scheme used for the regularization terms. The
discrete Lagrangian corresponding to (18) becomes

Lðd̂,p̂,k,lÞ :¼ Jðk,lÞ�p̂
T
ðQd̂�f̂ Þ, ð19Þ

where p̂ ¼ ½r0 q0 p0 r1 q1 p1 � � � rN qN pN�T is the discrete (space–
time) Lagrange multiplier that enforces the discrete forward
problem ðQd̂ ¼ f̂ Þ as a constraint.4 The discrete optimality condi-
tions for (19) are obtained by requiring that the derivatives of the
Lagrangian with respect to each of the variables vanish. Taking
the derivative with respect to the Lagrange multiplier p̂ recovers
the discrete forward problem (13), which in this context, we refer
to as the discrete state equation:

Lp̂ ðd̂,p̂,k,lÞ ¼�Qd̂þ f̂ ¼ 0: ð20Þ

We remark that Eq. (20) has the structure discussed earlier in
Section 3.1. The discrete adjoint equation is obtained by requiring
that the derivative of the discrete Lagrangian with respect to d̂
vanish, that is

L
d̂
ðd̂,p̂,k,lÞ ¼�Q T p̂þBðd̂�d̂mÞ ¼ 0: ð21Þ

We remark that (21) involves the transpose of Q , and hence, (21)
is solved by marching backwards in time. For example, from the
last two rows of (21), we obtain the final conditions

pN ¼ 0, ð22Þ

qN ¼ 0, ð23Þ

respectively; and the third row from the bottom yields

K̂
T
rN ¼DtBðdN

�dN
mÞþa1qNþa0pN , ð24Þ

which can be solved for rN . For time steps n¼N, N�1, . . . ,2, we
deduce the following algorithm:

update : pn�1 ¼ ða3MT
þa5CT

Þrn�a5qn�a3pn,

qn�1 ¼ ða2MT
þa4CT

Þrn�a4qn�a2pn, ð25Þ

solve : K̂
T
rn�1 ¼DtBðdn�1

�dn�1
m Þþa1qn�1þa0pn�1

þða0MT
þa1CT

Þrn�a1qn�a0pn: ð26Þ

Notice that contrary to the conventional application of New-
mark’s method, here we first update, and then solve. Finally, the

first three rows of (21) result in the following equations:

solve : MT p0 ¼ ða3MT
þa5CT

Þr1�a5q1�a3p1 ð27Þ

update : q0 ¼�CT p0þða2MT
þa4CT

Þr1�a4q1�a2p1,

r0 ¼�KT p0þða0MT
þa1CT

Þr1�a1q1�a0p1þDtBðd0
�d0

mÞ:

ð28Þ

The third discrete optimality condition is obtained by setting the
derivative of (19) with respect to k and l to zero. That is

Lkðd̂,p̂,k,lÞ ¼ RlR k�p̂
T @Q

@k
d̂ ¼ 0, ð29Þ

Llðd̂,p̂,k,lÞ ¼ RmR l�p̂
T @Q

@l
d̂ ¼ 0, ð30Þ

where the terms @Q=@k and @Q=@l can be computed in a
straightforward manner (the details are given in the Appendix).

Satisfaction of (18) requires simultaneous solution of equa-
tions (20), (21), (29) and (30), which is possible in principle, but
rather expensive in practice. Alternatively, an iterative procedure
may be used such that the discrete material properties are
updated according to a gradient-based scheme. The scheme is
outlined in [7], and we briefly discuss it here for completeness.

3.2.2. Gradient-based optimization algorithm

In gradient-based algorithms, the material properties are
updated iteratively using the gradient of the discrete functional
(18) with respect to k and l, until the objective functional is
minimized. After initializing the material properties, at every
iteration (say k), we solve the discrete state equation (20) to
obtain d̂k. With the misfit known at iteration k, we use next the
discrete adjoint equation (21) to solve for p̂k. With d̂k and p̂k

known, the gradients can be computed from

~Mgk
k :¼ rkJðkk,lkÞ ¼Lkðd̂k,p̂k,kk,lkÞ, ð31Þ

~Mgl
k :¼ rlJðkk,lkÞ ¼Llðd̂k,p̂k,kk,lkÞ, ð32Þ

where the second equality in each of (31) and (32) is due to the
satisfaction of the discrete state problem [20]. Furthermore, at a
stationary point of (18), the gradients are zero, as suggested by
the third discrete optimality condition (29) and (30). In (31) and
(32), ~M is given as

~M ¼
Z
ORD

vvT dORD, ð33Þ

where v are material interpolants (see Appendix). A search
algorithm may now be used to update the nodal material proper-
ties

kkþ1 ¼ kkþalkslk , ð34Þ

lkþ1 ¼ lkþa
m
k smk , ð35Þ

where alk , amk are step lengths, and slk , smk are the search directions
for k and l, respectively. Search directions may be determined
simply by choosing the direction of steepest descent (i.e.,
sð�Þk ¼�gð�Þk ) or, more suitably, by using a conjugate gradient
method as was done for the results discussed herein. Moreover,
a line search algorithm for determining the step length að�Þk is also
required [7].

4. Inversion results using synthetic data

We discuss next numerical experiments involving the char-
acterization of target sites for which we use synthetic data. Since
the primary focus in this paper is on field data rather than on

3 B is a block diagonal matrix with DtB on the diagonal; Dt denotes the time

step, and B is a square matrix that is zero everywhere except on the diagonals that

correspond to a degree of freedom for which measured data are available.
4 Though not necessary, qi can be thought of as _p i, and ri as €p i

at the i-th

time step.
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synthetic data cases, we discuss only a subset of numerical results
with synthetic data. The first example involves a domain with a
smoothly varying (in depth) profile (Fig. 4(b)), i.e., a domain
comprising an infinite number of horizontal layers. The originally
semi-infinite domain has been reduced through truncation to a
45 m�45 m computational domain, surrounded on its sides and
bottom by a 5 m-thick PML, as shown in Fig. 4(a). Sources and
receivers occupy the entire ground surface (at grid points). The
inversion process was started with a homogeneous initial guess
that had both l and m set to 80 MPa. We used a Gaussian pulse
with a maximum frequency of 40 Hz to probe the domain. The
results of the inversion are shown in Fig. 5 where, as it can be
seen, both Lamé parameters are quite satisfactorily recovered.

A second example involves a layered medium with
lðx2Þ ¼ mðx2Þ ¼ 320, 500, and 720 MPa from top to bottom (see
Fig. 6 for the detailed layering geometry). An elliptic inclusion of
720 MPa ðl¼ mÞ is also embedded in an effort to introduce
arbitrary heterogeneity.5 Here, we used a source-frequency con-
tinuation scheme with four distinct Gaussian pulses (f max ¼ 10,
40, 80, and 120 Hz), to probe the domain (again sources and
receivers are spread over the entire ground surface). We initiated

the inversion process with a homogeneous initial guess that had l
and m set to 310 MPa. Fig. 7 depicts the spatial distribution of the
compressional and shear wave velocity profiles computed from
the reconstructed l and m. Both velocity profiles seem to have
been recovered satisfactorily.

5. The field experiment—design considerations

In this section, we discuss the design of a field experiment that
will provide us with field-measured data, which can then be used
to exercise the two-dimensional inversion codes we developed
based on the preceding theory. To this end, we attempt to
generate plane strain conditions in the field, so that we then
attempt to invert for the properties of a two-dimensional site slice
(Fig. 8(c)). Since the loads we can impart on the ground surface
are really three-dimensional, plane strain conditions would
require loading along densely populated lines (Fig. 8(a)) to
emulate theoretical line loads. In this section, we discuss how
this can be accomplished in a practical manner. Naturally, to
replicate plane strain conditions in the field, the loading is only
one of the difficulties: a key assumption we make here is that
there is lateral material homogeneity, that is, the site slice may
be, in plane, arbitrarily heterogeneous, but the properties do not
change

Fig. 4. Site characterization for an idealized target—smoothly-varying material profile (l¼m): (a) geometry, (b) typical cross-section, and (c) target Lamé parameters l and m.

5 The target Lamé parameters are set equal to each other without loss of

generality. The inversion is performed simultaneously for both parameters.
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along the direction perpendicular to the slice. While restrictive,
the assumption is realistic for layered sites, is a significant
improvement upon pervasive one-dimensional assumptions of other
methodologies, and, due to prior characterizations, it was a reason-
able assumption to make for the specific field experiment site.

With these assumptions in mind, the question becomes: how
can a line load be approximated by a sequence of loads in the
field, which may resemble point loads, and are suitably spaced
along straight lines whose extent remains finite (line loads are
infinite in extent)? The question is depicted in Fig. 8. Therefore,
we are interested in arriving at an estimate of the spacing
between the loads, and an estimate of the finite extent of the
line of loads. We focus next on these two questions of spatial load
distribution, but, in parallel, we also address the temporal
variability of the load signal. We sketch the process on the basis
of a homogeneous halfspace by drawing on classical solutions;
site-specific conditions will also have an effect on load spacing
and load extent, but when the design is based on the minimum
expected wavelength, then the design is conservative.

Our methodology is based on the time-domain point-load
analytical solutions in two-dimensional and three-dimensional
space, that is, Lamb’s problem and the Pekeris–Mooney’s problem,
respectively [5]. We use these solutions to derive the response of a
two-dimensional or three-dimensional soil domain due to (tempo-
rally) arbitrary loads. In this way, the problem of designing the
experiment reduces to a parametric study. We study first the effect
of truncating the line load from extending to infinity by finding a

suitable truncation length. Then, we replace the truncated load
line with equivalent point sources and determine the appropriate
spacing between them. Fig. 8 displays schematically this objective.
Finally, we comment on designing signals that are appropriate for

Fig. 5. Simultaneous inversion for the Lamé parameters: (a) reconstructed l, (b) l at the x1 ¼ 0 m cross-section, (c) Reconstructed m and (d) m at the x1 ¼ 0 m cross-section.

Fig. 6. A PML-truncated layered semi-infinite domain with an elliptic inclusion.
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probing geotechnical sites and also discuss theoretical and prac-
tical issues that arise in such field experiments.

5.1. Line load truncation and spacing requirements

An impulsive in-plane point load is applied on the surface of a
halfplane and the resulting displacements are sought. This plane

Fig. 7. Velocities computed from the reconstructed Lamé parameters: (a) cp (m/s) and (b) cs (m/s).

Fig. 8. Approximation of a 3D halfspace problem by a 2D halfplane problem. (a) 3D heterogeneous halfspace subjected to a series of line loads extending to infinity;

heterogeneity is in plane only. (b) 3D heterogeneous halfspace subjected to a finite number of point sources spaced apart by s, arranged along lines of L total length.

(c) Equivalent 2D halfplane subjected to concentrated sources.

Fig. 9. Line load with a finite length.

Table 1
Material properties used in load verification examples.

P-wave velocity cp¼346.4 m/s

S-wave velocity cs¼200.0 m/s

R-wave velocity cR¼183.9 m/s

Poisson’s ratio n¼ 0:25
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strain problem is equivalent to an infinite line load applied on the
surface of a halfspace. We denote the vertical displacement of a
point ðx1,0Þ at time t by G2D

ðx1,tÞ, where G2D stands for Green’s
function, and the impulse load acts at the origin. The temporal
dependence of the load can be described via the Dirac-delta
function: exploiting superposition, we obtain the response due
to any arbitrary time signal, denoted by f 2D

ðtÞ, via the following
convolution integral:

u2Dðx1,tÞ ¼

Z t

0
f 2D
ðtÞG2D

ðx1,t�tÞ dt: ð36Þ

The above relation allows us to compute the response of a
halfplane subjected to any temporally arbitrary vertical force that
acts on its surface. Special care must be taken when computing
the integral since it has a singularity due to the arrival of the
Rayleigh wave. Therefore, the integral should be interpreted in
the Cauchy principal value sense. Details of Green’s function
G2D
ðx1,tÞ can be found in [5].
A vertical point source that varies as a step function in time is

applied on the surface of a halfspace. The vertical displacement of
a point ðx1,x2,0Þ at time t is denoted by G3D

ðx1,x2,tÞ, and the load
acts at the origin. Details of the Green’s function G3D are given in
the Appendix. The time signal can be described via a Heaviside
function. However, we are interested in obtaining the response
due to any arbitrary load, not only those with a simple step-like
signature. Hence, our first attempt in making this problem fit into
our needs, is to represent any arbitrary load f 3D

ðtÞ as a summation
of Heaviside functions and denote this approximation by f 3D

n ðtÞ.
Indeed, given nþ1 pairs fti,f i ¼ f 3D

ðtiÞg, i¼ 0,1, . . . ,n, we have

f 3D
n ðtÞ ¼

1

2
ðf 0þ f 1ÞðH0�H1Þþ

1
2ðf 1þ f 2ÞðH1�H2Þþ � � �

þ
1

2
ðf n�1þ f nÞðHn�1�HnÞ, ð37Þ

where we used Hi �Hðt�tiÞ for notational simplicity; ti indicates
time value at node i. Re-arranging the above relation yields the
following more convenient form:

f 3D
n ðtÞ ¼

Xn

i ¼ 0

hiHðt�tiÞ, ð38Þ

where

hi ¼

1
2 ðf 0þ f 1Þ for i¼ 0,

� 1
2 ðf n�1þ f nÞ for i¼ n,

1
2 ðf iþ1�f i�1Þ otherwise:

8>><
>>: ð39Þ

Next, we consider a uniform distribution of point sources with
a Heaviside time signature along a line of finite length. Without

loss of generality, we assume that the sources are positioned
symmetrically about the origin and occupy a total length of 2L

along the x2-axis (see Fig. 9). The response of the halfspace to this
distribution, at any arbitrary point on the surface along the
x1-axis at time t is denoted by G2L

ðx1,tÞ, and is obtained by the
following relation:

G2L
ðx1,tÞ ¼

Z L

�L
G3D
ðx1,x2,tÞ dx2, ð40Þ

where G2L
ðx1,tÞ may be interpreted as Green’s function of a

truncated line load. We expect that, at the limit as L-1, G2L

reduces to the solution of the corresponding plane strain problem
in the x1�x3 plane. Analytical expressions for the integral exist and
are discussed in detail in the Appendix. Finally, combining (38) and
(40), we obtain the response of the halfspace due to any arbitrary
in time but uniform in space load, with a total length of 2L as

u2Lðx1,tÞ ¼
Xn

i ¼ 0

hiG
2L
ðx1,t�tiÞ: ð41Þ

Relation (41) can be compared against (36) to find the appropriate
truncation length L.

Once L is determined, the next step is to replace the contin-
uous line load, with point sources. This is readily available by
combining G3D

ðx1,x2,tÞ with (38): if we consider 2mþ1 point
sources, symmetrically positioned along the x2-axis, and spaced s

distance apart such that s¼ L=m, the response of the halfspace at a
point along the x1-axis, may be obtained via:

u2L
s ðx1,tÞ ¼

Xn

i ¼ 0

shiG
3D
ðx1,0,t�tiÞþ2

Xm

j ¼ 1

Xn

i ¼ 0

shiG
3D
ðx1,js,t�tiÞ: ð42Þ

Relations (36) and (42) can be compared against each other to
determine the appropriate spacing between point sources.

5.2. Verification

We consider two numerical experiments to verify the deriva-
tion and numerical implementation of (36) and (41). We consider
the material properties summarized in Table 1 for the homo-
geneous, isotropic elastic medium under consideration (notice
not all of these properties are independent).

Lamb and Pekeris–Mooney’s Green’s functions are shown in
Fig. 10 where the observer is located at x1 ¼ 20 m away from the
source.

The P-wave arrives first, followed by the arrival of the S-wave
with a change in slope. The Rayleigh surface wave comes next,
and results in an infinite displacement that corresponds to the
singularity of the associated Green’s function. Moreover, in the

Fig. 10. 2D and 3D Green’s functions: (a) Lamb’s solution and (b) Pekeris–Mooney’s solution.
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case of the Pekeris–Mooney’s problem, the steady-state response
that follows after the Rayleigh singularity corresponds to the
Boussinesq’s solution to a static load, acting on a halfspace.

Example 1. We consider a suddenly applied vertical load, with
f ðtÞ ¼HðtÞ. Then, in (36) we have f 2D

ðtÞ ¼ 1 and only one term of
the series in (41) is sufficient, namely h0 ¼ 1, while t0 ¼ 0.

Considering the value of the P-wave velocity, if we desire to
plot the response up to 0.4 s, the farthest point from the observer
that contributes to the response is located 140 m away. This
means that taking L¼140 m should yield identical results when
comparing (36) and (41). Indeed, this is the case as shown in
Fig. 11. We also include the case of L¼50 m, which clearly
deviates from the exact and the L¼140 m case. The deviation
begins at t� 0:14 s, and is more pronounced at around t¼0.27 s.
These times correspond to the arrival of the P- and S-wave from
the farthest loaded point (i.e., x2 ¼ 50 m), respectively. Finally, the
response reached a steady-state value at around 0.29 s, which
corresponds to the arrival of the Rayleigh wave from the farthest
point. Therefore, we conclude that for this example, the discre-
pancy can mostly be attributed to the arrival of Rayleigh waves
from the farthest point followed by the final arrival of the S-wave,
whereas the P-wave has a negligible effect in this regard.

Example 2. We consider a rectangular pulse such that
f ðtÞ ¼HðtÞ�Hðt�0:2Þ. Hence, two terms of the series in (41) are
sufficient, i.e. h0 ¼ 1 and h1 ¼�1, while t0 ¼ 0 and t1 ¼ 0:2. We
compare (36) and (41) for the same L values and observer location
as in the previous example.

Results are displayed in Fig. 12. The agreement is excellent bet-
ween the two relations when L is sufficiently large; the discrepancies
result from choosing small values for L. We emphasize that the two
singularities in the plot correspond to the particular character of the
load which initiates and terminates sharply.

5.3. Signal design

In this section, we comment on the main features that must be
considered in designing signals for site characterization applications

Fig. 13. NEES@UTexas Liquidator Vibroseis.

Fig. 11. Comparison of 2D and 3D systems due to a suddenly applied load.

Fig. 12. Comparison of 2D and 3D systems due to a rectangular pulse load.

Table 2
Chirp signals used in the field experiment.

Chirp name f0 k fmin fmax

C-3-8 3 1 3 8

C-8-20 8 2.4 8 20

C-20-25 20 1 20 25

C-25-35 25 2 25 35
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based on full waveform-based inversion. For the field experiment,
we conducted we used the Vibroseis trucks of the NEES@UTexas site
(National Science Foundation, Network for Earthquake Engineering
Simulation). In particular, we used T-Rex (tri-axial Vibroseis), and
Liquidator (low-frequency Vibroseis) (Fig. 13). T-Rex can apply
vertical loads with a maximum force amplitude of 267 kN within
a frequency range from 12 Hz to about 180 Hz. It can also be used
for applying loads outside this frequency range with a lower force
amplitude. Liquidator is, however, more widely used when low
frequency loading is desired. Liquidator is capable of applying loads
within a frequency range of 1.3–75 Hz, with a peak force amplitude
of 89 kN. Thus, from a practical standpoint, the desired frequency
content and amplitude of loading should be restricted within the
aforementioned ranges. To record the motion on the ground surface,
we used 1 Hz geophones.

Our forward and inverse simulators are based on finite element
discretization of the geotechnical site of interest. High frequency
probing waves require a fine mesh resolution, and, thus, result in
an increased computational cost. Therefore, they should be avoided
whenever possible, unless fine features of the formation are of
interest. Signals with long time duration require a longer observa-
tion period, thus also resulting in increased computation time, and
increased storage requirements (the solution history must be
stored at every time step for inverse problems [2]). Therefore, the
time duration of a signal should be only long enough to effectively
probe the depth of interest.

We favor signals that probe the geotechnical site of interest
more effectively. Typically, these are signals that encompass a
range of frequencies rather than containing only few isolated
frequencies. The most commonly used class of these signals

Fig. 15. Line load truncation effect for different chirps: (a) L¼50, L¼1 for Chirp C-3-8; (b) L¼100, L¼1 for Chirp C-3-8; (c) L¼150, L¼1 for Chirp C-3-8; (d) L¼50,

L¼1 for Chirp C-8-20; (e) L¼100, L¼1 for Chirp C-8-20; and (f) L¼150, L¼1 for Chirp C-8-20.

Fig. 14. Chirp with dominant frequencies between 3 Hz and 8 Hz: (a) signal time-history and (b) Fourier spectrum.
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are chirps, and have shown their effectiveness in radar and
geophysical applications. In this experiment, we use linear chirps
of the form

f ðtÞ ¼ sin 2p f 0þ
kt

2

� �
t

� �
,

where f0 is the starting frequency, and k is the chirp rate. With
these two parameters, we can design a signal that has a desired
frequency range. The starting frequency may be limited according
to the geophone’s resonant frequency, and k is determined
according to the upper bound of the desired frequency range
and total time duration of the signal. We consider four different
chirp-type signals with an active and total time duration of 5 s
and 8 s, respectively, which in total, span a frequency range of
3–35 Hz. These are summarized in Table 2. The dominant fre-
quencies of the chirp lie between fmin and fmax. For example,
Fig. 14 shows chirp’s C-3-8 time dependence and frequency
spectrum, where the strong components are clearly concentrated
in the range of 3–8 Hz. Finally, we remark that the signals in
Table 2 cannot be applied on the ground surface by either T-Rex
or Liquidator in their exact form. Indeed, the equipment is only
able to exert a load that is ‘‘close’’ to the design load. Therefore,
it becomes necessary to measure the exact applied load due to its
significance in the inversion process. This is done by installing
accelerometers on the baseplate and reaction mass of the Vibro-
seis equipment. The actual applied load can be obtained by
adding the products of the baseplate mass and the reaction mass
by their corresponding measured accelerations.

5.4. Parametric studies

In the preceding sections, we developed all the tools we need
for the parametric studies that we carry out in this section. We use
(38) to represent signals considered in Table 2 with their corre-
sponding Heaviside expansion. We then use (41) with a sufficiently
large value for L to obtain the response of a 2D system and use it as
a benchmark to find smaller values for L that yield comparable
results. Once an appropriate value for L is determined, (42) can be

used to find out a suitable spacing between equivalent point
sources.

In order to determine the appropriate length for the line load,
we consider three representative values for L: 50 m, 100 m, and
150 m. We compare the response of these cases against the
benchmark solution (large L value) due to the four loads con-
sidered in Table 2. This leads to 12 numerical experiments which
provide insight on how the frequency content of the load may
play a role in selecting L.

Results for the first two chirps of Table 2 are shown in Fig. 15.
Each plot depicts two curves, one obtained using the infinite line
load length, and the other obtained using a finite value for L. The
agreement between the two curves is remarkable for all cases,
considering that the observation period is 6 s and the line load has
a relatively short length. We note that for an exact match up to
6 s, a line load of length L¼2100 m is required. We also observe
that larger values of L yield better results, which is indeed
intuitive. Results of the last two chirps of Table 2 also follow
a similar trend. We choose the case of L¼100 m for further
investigations in subsequent sections.

Fig. 16. Comparison of infinite line load ðL¼1Þ, a continuous line load of finite length (L¼100 m), and a series of point loads spaced s meters apart over a distance of

100 m: (a) s¼5, chirp C-3-8; (b) s¼10, chirp C-3-8; (c) s¼5, chirp C-8-20; and (d) s¼10, chirp C-8-20.

Fig. 17. The field experiment layout.
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5.4.1. Representation of the line load by a few point loads

We replace next the continuous line load with equivalent,
equidistant point sources, spaced s apart. In particular, we
consider two values for s, 5 m, and 10 m, respectively, and run
numerical experiments with the chirp signals of Table 2. The
results for the first two chirps of Table 2 are shown in Fig. 16 and
demonstrate good agreement between the case of a line load
of infinite length and that of point sources, positioned 5 m
apart from each other. The agreement is better for lower

frequencies and deteriorates for higher frequencies. Hence, we
choose L¼100 m with s¼5 m for the first two chirp signals of
Table 2 in our field experiment (the 10 m spacing would lead to
inaccuracies).

5.5. The experiment layout

We discuss next the actual field experiment aimed at a local
characterization of the Hornsby Bend site located in Austin, TX,

Fig. 18. Force (chirp C-3-8) applied by Liquidator at ðx1 ,x2Þ ¼ ð0,0Þ: (a) time-history (recorded), (b) Fourier spectrum (recorded), (c) time-history (filtered) and (d) Fourier

spectrum (filtered).

Fig. 19. Velocity (due to force C-3-8 at (0,0,0)) measured at (�5,0,0): (a) time-history (recorded), (b) Fourier spectrum (recorded), (c) time-history (filtered) and (d) Fourier

spectrum (filtered).
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using the field data, and the inversion methodology code dis-
cussed. As discussed already, a key assumption is that the site
enjoys symmetry along the sensor plane, as displayed in Fig. 8.
Our objective is to explore a site of length 200 m along this plane.
We place sensors every 5 m. These are shown in Fig. 17 with
bullets. We consider sources, also spaced 5 m apart from each
other, indicated by squares, which are placed along five lines of
length 100 m. Due to the symmetry assumptions, we consider
sources only on one side of the sensor plane, and assume that if
we had sources on the mirror side, they would have yielded the

same response as their existing counterparts. The experiment was
performed in Austin, TX, Hornsby Bend in October 2010.

6. Field experiment records and data processing

In this section, we discuss a subset of the field recorded data,
and outline the data processing procedure. The latter consists of
two main parts. First, identification and reduction of noise effects
associated with the recorded data, and second, integrating the

Fig. 20. Velocity (due to force C-3-8 at (0,�5,0)) measured at (�5,0,0): (a) time-history (recorded), (b) Fourier spectrum (recorded), (c) time-history (filtered) and

(d) Fourier spectrum (filtered).

Fig. 21. Velocity (due to force C-3-8 at (0,�10,0)) measured at (�5,0,0): (a) time-history (recorded), (b) Fourier spectrum (recorded), (c) time-history (filtered) and

(d) Fourier spectrum (filtered).
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data in such a way that they readily fit the requirements of our
two-dimensional inversion codes.

6.1. Signal processing

Our records are inevitably contaminated by noise, which may
distort the signals both at high and low frequencies. Our aim is to
identify the parts of a signal (in the frequency domain), where the
signal-to-noise ratio is low, and filter out these parts from the
records. This is particularly important when dealing with low
frequency noise, since the noise gets amplified when the velocity
record is integrated to yield displacement time-history. The latter
may look unphysical and necessitate baseline adjustment [1],
which will have serious consequences in the inversion process.
On the other hand, high frequency noise may be less of a concern
due to the regularization terms in the inversion algorithm: the
regularization terms make the objective functional less sensitive
to the high frequency noise [21].

A sampling frequency of 820 Hz is used for digital data
collection. Assuming the highly unlikely event that data being
contaminated by noise up to a range of 100 Hz (noise was
observed up to 70 Hz), a sampling rate of 200 Hz could prevent
aliasing effects according to the Nyquist sampling theorem [16].
In this sense, we oversampled the data, which causes no harm.
Moreover, in order to reduce the effects of ambient noise, we
repeated each loading five times, and use the average in our
analysis.

We favor finite impulse response (FIR) filters since they
preserve a signal’s phase information (linear phase), and do not
result in phase distortion, as commonly occurs in more popular
infinite impulse response (IIR) filters [16]. We use Matlab’s
equiripple bandpass filter, with high and low cuts of 2.5 Hz and
12 Hz, respectively, and high and low slopes of 60 dB/octave and
38 db/octave, for the C-3-8 chirp (see Table 2). For the C-8-20
chirp, we use the same type of filter, with high and low cuts of
2.5 Hz and 25 Hz, and high and low slopes of 60 dB/octave and 26
db/octave, respectively.

Next, we present some of the field experiment records both in
their unprocessed and processed form. For example, Fig. 18 shows
the C-3-8 chirp, applied by Liquidator at ðx1,x2Þ ¼ ð0,0Þ. The record
may be compared with the record in Fig. 14, which is the
corresponding theoretical curve. Notice that the applied load lies
mainly within the design frequency range, except for the rela-
tively small-component high-frequency noise, which probably
originates with the Liquidator’s engine and hydraulics. Figs.
19–21 depict a subset of the recorded sensor data: both unpro-
cessed and processed (filtered) velocity records are shown for
various sensor locations due to different loads. In all cases shown,
the load is the chirp C-3-8, as shown earlier in Fig. 18. Shown in
Figs. 19–21 are the velocity time-histories at (�5,0,0), while the

load is applied at (0,0,0), (0,�5,0), and (0,�10,0), respectively.
Geometric decay is noticeable and amplitude reduction in velo-
city time-history is observed as distance between the source and
observer increases.

6.2. Data integration

In this section, we address how we use the, essentially, three-
dimensional field data, in order to obtain records suitable for
exercising our two-dimensional codes. We follow the same lines
as in the experiment design. Similar to what we did in (42), we
obtain the following equivalent two-dimensional velocity time
history v2L from the three-dimensional field-recorded v3D :¼
v3Dðx1,x2,t; x1,x2Þ:

v2Lðx1,t; x1,x2Þ ¼ v3Dðx1,0,t; x1,0Þþ2
Xm

j ¼ 1

v3Dðx1,0,t; x1,jsÞ, ð43Þ

where x1 denotes a geophone’s location along the x1-axis, ðx1,x2Þ

denotes the load location, mð ¼ 20Þ is the number of source
locations for which x240, and s¼5 m is the distance between
the loads. v2L is the equivalent two-dimensional velocity record,
which can then be integrated in time to yield the displacement
time history. Similarly, for the equivalent two-dimensional force
time history, we obtain

f 2L
ðx1,tÞ ¼

1

ð2mþ1Þs
f 3D
ðx1,0,tÞþ2

Xm
j ¼ 1

f 3D
ðx1,js,tÞ

2
4

3
5, ð44Þ

where f 3D
ðx1,x2,tÞ denotes the measured force applied at any

given location ðx1,x2Þ. For example, the equivalent line load
corresponding to chirp C-3-8, applied at x1 ¼ 0, and the resulting
velocity time history at x1 ¼�5 m are depicted in Fig. 22. The
data, both measured force and recorded response, with the aid of
(43) and (44), can now be readily used for inversion.

7. Inversion results using field experiment data

In this section, we use the inversion theory discussed earlier,
along with the measured data from the field experiment, to arrive
at an estimate of the spatial distribution of the P- and S-wave
velocities at the target site (Hornsby Bend).

The target domain is a two-dimensional slice, 200 m wide and
48 m deep. The domain is surrounded on its sides and bottom by
a 10 m-thick PML to absorb outgoing waves. We use bilinear
quadrilateral elements with element size of 1 m when applying
the C-3-8 chirp (see Table 2), whereas 8-noded serendipity
elements of the same size are used for higher frequency chirps.
In all cases, we use 1 m�1 m bilinear quadrilateral elements to
interpolate the material properties.

Fig. 22. Equivalent line load (chirp C-3-8) applied at x1 ¼ 0 m, and corresponding response at x1 ¼�5 m: (a) force time-history and (b) velocity time-history.
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According to the experiment layout in Fig. 17, we apply loads
at every 5 m along five lines. T-Rex was used for loading along the
lines x1 ¼�60 m,þ30 m, and þ60 m, whereas Liquidator was
used to load along x1 ¼�30 m, and 0 m. We used 36 geophones
with a resonant frequency of 1 Hz at every 5 m, along the x1-axis.
After processing the recorded data, per the discussion of the
preceding section, we proceeded with the inversion process.

7.1. Inversion process

The inversion process begins with an initial profile for both of
the Lamé parameters (linear in depth or homogeneous), and
iteratively updates the profile until the misfit between the mea-
sured response and the computed response obtained at each
inversion iteration is minimized. The convergence rate of the
inversion process to the target profile, and even the success of
the process itself, depends greatly on the initial guess, as is
typically the case. An initial profile, which is close to the target
profile, will likely need a fewer number of iterations to converge,
compared to an arbitrary initial profile. This fact can be exploited
to speed up the convergence. If, for example, during a field

experiment, an SASW experiment is performed in addition to the
data collection for the full waveform inversion approach, then
the SASW-rendered profile could be used as initial guess for the
full waveform inversion. The SASW profile will be, by definition,
horizontally layered, whereas the full waveform-based inverted
profile will be, in general, arbitrarily heterogeneous.

We start the inversion process by applying the first (measured)
equivalent force corresponding to chirp C-3-8 (see Table 2 for the
theoretical curve and Fig. 22 for the actual, equivalent measured
force). There are 5 loads at our disposal, and 36 measuring
locations for every load. Owing to linearity, we apply all 5 loads
simultaneously and add their corresponding responses at every
sensor location. Other possibilities for combining the loads also
exist [6,18].

Due to the very construction of the chirp signals, their frequency
increases linearly with time. This may be exploited to further
regularize the inversion process, i.e., we start the inversion process
by considering only a portion of the total chirp duration, arrive at an
inverted profile, use the inverted profile as an initial guess to the
next round of inversion, where we increase the duration of the same
chirp signal, thus, gradually, bringing additional frequencies to bear

Fig. 24. Inverted profile for cs via the SASW method.

Fig. 23. Inverted profiles for cp and cs at iteration 1900: (a) cpðm=sÞ and (b) csðm=sÞ.
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on the inversion process (a, so-called, continuation scheme). For
example, for the site under study, we start with the first 2 s of the
signals, and progressively move up to 7 s duration, in increments of
1 s. A similar idea was discussed in [11,12].

After 1900 iterations, the misfit between the measured
response and the computed response becomes small enough, with
no discernible update in the material properties. The correspond-
ing compressional and shear wave velocity profiles for the Hornsby

Fig. 26. Comparison of measured surface displacement time-histories against those resulting from the SASW and full waveform-based inversion: (a) x1 ¼�80 m, (b)

x1 ¼�40 m, (c) x1 ¼ þ5 m, (d) x1 ¼ þ35 m and (e) x1 ¼ þ70 m.

Fig. 25. Shear wave velocity profiles obtained via SASW and full waveform-based inversion: (a) x1 ¼�90 m, (b) x1 ¼ 70 m and (c) x1 ¼ þ90 m.
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Bend site are shown in Fig. 23 (a constant mass density of r¼
2000 kg=m3 is considered for the soil medium throughout the
analysis).

7.2. Comparison with SASW

Next, we compare our shear wave velocity (cs) profile with that
obtained via the SASW method. The Spectral-Analysis-of-Surface-
Waves method relies on the dispersive nature of Rayleigh wave
velocity in layered media, i.e., the propagation speed of the
surface waves depends on the frequency of the load [19].
Measuring this wave speed for different frequencies in a field
experiment results in the experimental dispersion curve. Next, a
theoretical dispersion curve can be computed for a homogeneous
elastic layered medium. The material properties for each layer are
varied until a match is attained between the experimental and the
theoretical dispersion curve (a comprehensive description of the
SASW method can be found in [3]). The method assumes that the
dominant portion of the wave energy is transported through
Rayleigh waves, and disregards other wave types such as com-
pressional and shear waves. The SASW is capable of rendering
only horizontally layered profiles and only of the shear wave
velocity. Despite its limitations it is widely used.

We performed three SASW experiments at our site: at the
centerpoint ðx1,x2Þ ¼ ð0,0Þ and close to the two end points of the
domain ðx1,x2Þ ¼ ð790,0Þ. The cs profile corresponding to the center

point is shown in Fig. 24, whereas Fig. 25 compares the SASW profile
with those obtained from the inversion process at the x1 ¼�90 m,
0 m, and þ90 m cross-sectional lines of the domain. In general,
there is good agreement between the two methods. Discrepancies
may be attributed to the three-dimensional nature of the physical
problem. While in our study, we use a two-dimensional model
for the full waveform inversion, the model is one-dimensional for
the SASW method. Whereas there may exist lateral property
variability in the actual physical problem, these effects are com-
pletely neglected in the SASW method, and are only partially
accounted for in the two-dimensional inversion process. We also
observe that while the SASW method predicts sharp profile changes
in depth, the inversion process yields profiles that vary gradually.
Indeed, this is due to the Tikhonov regularization scheme, which
precludes high gradients in the material profile while allowing
smooth spatial variations.

We also compute time-history results corresponding to numer-
ical simulation of the medium based on profiles obtained from the
inversion process and the SASW method, and compare them with
the actual field measurements at a few locations. To this end, since
the SASW method only yields the shear wave velocity of the soil
medium, we supplemented it with an estimation of the compres-
sional wave velocity, by assuming that the Poisson ratio decreases
from 0.35 on the ground surface to 0.25 at a depth of �50 m. This
allowed us to compute the response at the ground surface using the
SASW-rendered profile. Due to the small variability between the

Fig. 27. Juxtaposition of CPT results and the inverted profiles: (a) x1 ¼�80 m, (b) x1 ¼�50 m, (c) x1 ¼�8 m and (d) x1 ¼ þ80 m.
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three SASW profiles, we use their average in the time-history
analysis for simplicity. Displacement time-histories at x1 ¼�80 m,
�40 m, 5 m, þ35 m, and þ70 m are shown in Fig. 26. Excellent
agreement can be observed between the time histories computed
based on the full waveform inverted profile and the true recorded
motion, whereas the SASW-based time histories exhibit significant
amplitude discrepancies. We should mention, however, that since
the full waveform inversion process forces time-history matching,
this may not be a fair comparison.

7.3. Comparison with cone penetration test (CPT) results

The cone penetration test (CPT) is an intrusive field experi-
ment which provides information on soil properties and the soil’s
stratification. A rod with a cone-shaped ending is forced into
the ground at a constant rate, while two load cells measure the
required load that drives the rod into the ground. The first load
cell measures the force that acts directly on the cone and yields
the cone resistance, which is obtained by dividing the force over
the cone’s area. The second load cell measures the force that acts
on the lateral sides of the rod, immediately past the cone, and
provides sleeve friction [10]. Unfortunately, CPT results cannot be
correlated with elastic properties of the soil. However, the cone
resistance is an indicator of soil stiffness, and the depth at which
the cone cannot be forced further into the ground, corresponds to
a stiff layer. We present CPT results at the same site, and consider
mainly the qualitative information that the test provides.

We performed CPT tests at four sample locations to investigate
if they hit the stiff zones predicted by the inverted profile. These
locations are at the x1 ¼�80 m, �50 m, �8 m, and þ80 m cross-
sectional lines of the domain. The cone resistance along depth at
these locations is shown in Fig. 27, along with the inverted cp and
cs profiles. It can be observed that the cone cannot be pushed any
further once it reaches a zone where the shear wave velocity is
approximately around 400 m/s. There is general agreement
between the CPT results and the inverted profile. For instance,
at x1 ¼�80 m, the cone resistance and the shear wave velocity
have the same pattern in depth. At x1 ¼�50 m, cone resistance
has a spike at a shallow depth, reaches its minimum value at a
depth of 5 m, and increases again after that. We observe a similar
trend for both the shear and the compressional wave velocities.
It is difficult to find a correlation at x1 ¼�8 m and þ80 m.

8. Conclusions

We discussed recent advances in the development of a general
and robust methodology for geotechnical site characterization
based on full waveform inversion. We complemented the theory
and the numerical implementation with numerical results
derived not only from synthetic data but also from field data.
To the best of our knowledge, this is the first attempt that field
data have been successfully used for geotechnical site character-
ization using full waveform inversion techniques.

A focal point of this communication dealt with the design and
post-processing needs of the field experiment, so that collected
records can be seamlessly integrated into the software toolchain. In
this paper, we dealt exclusively with two-dimensional site character-
ization. We assumed that the site under investigation can be idealized
as a plane strain problem, which clearly poses a restriction on the
applicability of our software. However, extension to three dimensions
is straightforward and will be addressed in future communications.

Our results are in good agreement with the widely used SASW
method, with the clear advantage of allowing for arbitrary profile
heterogeneity, as opposed to the one-dimensional character of
the SASW technique. We have also demonstrated how this

technology can be used in practice by discussing various elements
involved in an industrial-scale field experiment.

Key elements of this development include:

� Efficient numerical simulations of forward wave motion within
the arbitrarily heterogeneous near-surface deposits that accu-
rately capture the underlying physics. To this end, the site under
study is truncated using state-of-the-art perfectly-matched-
layers, and a hybrid finite element technique is used to resolve
the motion within the interior domain and the PML buffer
(standard Galerkin for the interior domain coupled with a non-
classically mixed for the PML).
� Tackling of the inverse medium problem via a PDE-based

optimization apparatus, where we favor a discretize-then-
optimize implementation of the associated adjoint and control
problems due to its numerical robustness. Moreover, we tackle
ill-posedness and solution multiplicity through an appropriate
regularization approach (Tikhonov) and via a continuation
scheme that allows the gradual probing of the domain with
signals of the increasing frequency content.
� Development of a simple procedure for the design of a field

experiment that is well coupled with the algorithmic
development.

Overall, our full waveform inversion-based site characteriza-
tion methodology seems robust and promising. The framework
we discussed is systematic, and can be applied to the more
realistic three-dimensional case without major modifications;
the key challenge is in the computational efficiency.
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Appendix A

A.1. On the third discrete optimality condition

We discuss the derivation of the discrete control equations, i.e.,
of the third discrete optimality condition, given in (29) and (30).
We take the derivative of L with respect to k and l over the interior
domain only, since the values of the Lamé parameters at the interface
nodes are extended into the PML domain, without any variation along
the direction of projection [7]. This assumption greatly simplifies the
derivation and implementation of the control equations.
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A.1.1. The k control problem

Eq. (1) governs the interior domain, denoted by ORD, where l,m
contribute only to terms in the K matrix of (9), which contributes
to Q in (13). We denote the part of K that belongs to the interior
domain by KRD: it is the stiffness matrix of the interior problem,
and is given by [9]:

where v is the vector of interpolation functions for the Lamé
parameters, U are the displacement interpolants, and subscripts
x1,x3 denote differentiation with respect to x1, and x3, respec-
tively. Taking the derivative of KRD with respect to k yields

@KRD

@k
¼

Z
ORD

Ux1
UT

x1
v Ux1

UT
x3
v

Ux3
UT

x1
v Ux3

UT
x3
v

2
4

3
5 dORD, ð46Þ

which are the building blocks of @Q=@k in (29), thus enabling its
computation.

A.1.2. The l control problem

In a way similar to what we did above, we take the derivative
of KRD with respect to l to obtain

@KRD
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¼

Z
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½2Ux1
UT

x1
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UT
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x1
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�v

2
4

3
5 dORD,

ð47Þ

thus allowing the computation of @Q=@l in (30).

A.2. On the spatial integration of (40)

We assume that the line load is applied along the x2-axis with
a total length of 2L, and that the observer is positioned along
the x1-axis. We make the following change of variable to ease the
analytical integration:

G2L
ðx1,tÞ ¼

Z L

�L
G3D
ðx1,x2,tÞ dx2 ¼ 2

Z rL

x1

G3D
ðr,tÞ
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r2�x2

1

q dr, ð48Þ
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2
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, and Green’s function G3D is
given as
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We have the following definitions:
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where n is Poisson’s ration, m is the shear modulus, cs is the shear
wave velocity, and xi are the roots of the Rayleigh function:

Rðx2
Þ ¼ ð2x2
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x2
�a2
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x2
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q
¼ 0:

The above relations are valid when no0:2631. In such a case,
all roots are real and satisfy 0ox2

1ox2
2oa2o1ox2

3 [5]. Making

use of Heaviside functions, we rewrite (49) as follows:
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Substituting (50) into (48) yields
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It is easy to verify that I1, I2, I3, and I4 consist of the following
integrals with the corresponding closed-form solution:

F1 ¼

Z rH r�
tcs

l

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2�
t2c2

s

x2

 !
ðr2�x2

1Þ

vuut
dr¼

1

2
H r�

tcs

l

� �

�ln

ðr2�x2
1Þþ r2�

t2c2
s

x2

 !
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�

t2c2
s

x2

 !
ðr2�x2

1Þ

vuut
t2c2

s

l2 �x2
1

� �
þ

t2c2
s

l2
�

t2c2
s

x2

 !
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2c2

s

l2
�

t2c2
s

x2

 !
t2c2

s

l2 �x2
1

� �vuut

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

,

KRD
¼

Z
ORD

ðkTvþ2lTvÞUx1
UT

x1
þðlTvÞUx3

UT
x3

. . . ðkTvÞUx1
UT

x3
þðlTvÞUx3

UT
x1

ðkTvÞUx3
UT

x1
þðlTvÞUx1

UT
x3

. . . ðkTvþ2lTvÞUx3
UT

x3
þðlTvÞUx1

UT
x1

2
4

3
5dORD, ð45Þ

L.F. Kallivokas et al. / Soil Dynamics and Earthquake Engineering 47 (2013) 62–82 81



Author's personal copy

F2 ¼

Z rH r�
tcs

l

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r2�

t2c2
s

x2

 !
ðr2�x2

1Þ

vuut
dr

¼�
1

2
H r�

tcs

l

� �
tan�1

t2c2
s

x2
�r2

 !
þðx2

1�r2Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2c2

s

x2
�r2

 !
ðr2�x2

1Þ

vuut

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2
6666664

�tan�1

t2c2
s

x2
�

t2c2
s

l2

 !
þ x2

1�
t2c2

s

l2

� �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2c2

s

x2
�

t2c2
s

l2

 !
t2c2

s

l2
�x2

1

� �vuut

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

3
7777775

,

F3 ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x2

1

q
dr¼ lnðrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x2

1

q
Þ,

F4 ¼

Z
H r�

tcs

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x2

1

q
dr¼H r�

tcs

l

� � ln ðrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x2

1

q
Þ

ln
tcs

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2c2

s

l2
�x2

1

s !
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

,

where l takes the value of a,1, or x3. Clearly, by exploiting the
above closed-form expressions, (40) can be evaluated accurately
and efficiently.
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