
ARTICLE IN PRESS

Soil Dynamics and Earthquake Engineering 29 (2009) 1016–1026
Contents lists available at ScienceDirect
Soil Dynamics and Earthquake Engineering
0267-72

doi:10.1

� Corr

E-m

(L.F. Kal
journal homepage: www.elsevier.com/locate/soildyn
Direct time-domain soil profile reconstruction for one-dimensional
semi-infinite domains
Seong-Won Na, Loukas F. Kallivokas �

Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
a r t i c l e i n f o

Article history:

Received 24 April 2008

Received in revised form

1 December 2008

Accepted 3 December 2008

Keywords:

Inverse medium problem

PDE-constrained optimization

Material profile reconstruction

Time-dependent regularization

Semi-infinite domains

Soil profile
61/$ - see front matter & 2008 Elsevier Ltd. A

016/j.soildyn.2008.12.003

esponding author.

ail addresses: swna@mail.utexas.edu (S.-W.

livokas).
a b s t r a c t

We discuss the inverse medium problem associated with the reconstruction of the heterogeneous

material profile of a semi-infinite (layered) soil medium, directly in the time domain, based on the

complete waveform response of the medium to interrogating waves. To tackle the inversion process, we

use a partial-differential-equation-constrained optimization approach, supplemented with a time-

dependent regularization scheme. We introduce an absorbing boundary to truncate the semi-infinite

extent of the physical domain, and propose two schemes to refine the reconstructed profiles: the first is

based on iteratively re-positioning the truncation boundary until convergence, and the second is based

on optimizing the observation period, so as to exclude records with information beyond the truncation

boundary. We present numerical results that attest to the efficacy of the proposed schemes in

reconstructing sharp profiles of semi-infinite soil domains using both noise-free and noisy data, while in

the presence of absorbing boundaries.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Reconstruction of material profiles for layered soils, whether in
terms of elastic moduli or wave velocities, based on surficial
measurements collected as the response of the soil to dynamic
loads imparted on its surface is central to geotechnical site
characterization efforts. The same problem, albeit at considerably
different length scales, is also of primary importance to seismic
hazard mitigation efforts, to soil–structure interaction problems,
and to geophysics applications (e.g., discovery of hydrocarbon
deposits). An often-used frequency-domain technique for
geotechnical site characterization is based on the spectral-
analysis-of-surface-waves (SASW) method [1]: the method relies
on the analysis of surface Rayleigh waves for determining the
dispersion curve that, in turn, leads to the shear wave velocity
profile. The method, however, is limited in several ways, not the
least of which is the assumption of a horizontally layered medium
that hinders reconstruction efforts in highly heterogeneous
domains in two or three spatial dimensions. The approach
presented herein, though also discussed in the context of
horizontally layered media, is directly extensible to heterogeneous
two- and three-dimensional domains, and thus offers a viable
alternative to the SASW methodology.
ll rights reserved.
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The approach we follow hinges on the simultaneous satisfac-
tion of the observations (measurements), as well as of the
underlying physics of the problem. To this end, our starting point
is a classic misfit functional of the time-averaged difference
between computed and measured response (in the least-squares
sense), where the computed response refers to that calculated for
a given estimate of the material profile. To enforce the satisfaction
of the physics, the misfit functional is augmented via the weak
imposition of the governing partial differential equations (PDEs),
similar to the approach followed by Akcelik et al. [2–4], and
originally suggested by Lions [5] in the 1970s. The goal is to
recover the spatial distribution of the elastic modulus
(or, equivalently, the wave velocity when the density is assumed
constant). Overall, we are interested in recovering both smoothly
varying and sharp profiles, without making an explicit distinction
between the two. Within the realm of inverse problems, the
problem is, naturally, tantamount to the recovery of continuous
and discontinuous PDE coefficients, respectively, based on
measurements. The reconstruction of discontinuous PDE coeffi-
cients, in particular, has been addressed in the numerical and
inverse problem communities primarily for elliptic problems (e.g.,
[6]). The reconstruction of discontinuous coefficients for hyper-
bolic problems remains a difficult and open problem and the
literature is rather thin on the subject (see though [7]). Even
though we too treat the PDE coefficients as spatially smooth, as it
will be seen, sharp profiles are still satisfactorily recoverable.

Once the, originally, constrained optimization problem is
converted to a constrained optimization problem by means of
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the augmented functional, we seek to enforce the functional’s
stationarity by requiring the vanishing of the first-order optim-
ality conditions: upon discretization, there results a classic
Karush–Kuhn–Tucker (KKT) system. Neither convexity of the
augmented functional, nor worse, solution existence and/or
uniqueness are guaranteed. Thus, as in most inverse problems,
to narrow the solution feasibility space, it is important that
specialized regularization schemes be considered. Here, we opted
for a direct time-domain regularization that results in a coupled
tempo-spatial formulation, which, initially, treats the design
variables (distributed material parameters) as time-dependent,
and enforces temporal stationarity at the end of the inversion
process. We then use a reduced-space approach for the resolution
of the ensuing first-order optimality conditions that result in
state, adjoint, and control field problems. As will be discussed,
these entail both initial, as well as final value boundary value
problems. All three problems are iteratively solved until conver-
gence of the material properties: the last obtained, spatially
distributed, material property reveals the soil profile, without
need for further intervention.

The time-dependent regularization scheme used herein was
originally suggested by Tadi [8], where it was used for the
reconstruction of the density profile of a one-dimensional
elastic fixed-end rod. It was subsequently extended to the
near-identical problem of the modulus inversion [9] for, again, a
fixed-end rod. Recently, in [10] we compared Tadi’s time-
dependent scheme against two well-known spatial regularization
schemes, namely, Tikhonov [11] and total variation schemes [12],
for the fixed-bottom soil medium case, under inexact initial
estimates, noisy data, regularization parameter choices,
and for both one- and two-distributed-parameter inversions: we
found its performance to be more robust than the spatial
schemes, albeit at increased computational cost. Thus, here,
we favor its adoption for the semi-infinite layered soil medium
case we consider, where the depth-to-bottom is not a priori

known. We remark that, from a physical perspective, the
semi-infinite domain case is considerably different than the
fixed-end case: in the latter case, the domain, in the absence of
damping, is continuously illuminated by the wave source,
whereas in the former case, the domain is only once illuminated,
with the illumination lasting, roughly, as long as it is required for
the wave to traverse the probed domain. The short-time
illumination makes the semi-infinite case harder to invert for,
than the fixed-end case.

There are also mathematical and algorithmic difficulties
associated with the semi-infinite case that are not present in
the fixed-end case: to tackle the semi-infinite extent of the
domain, we first truncate it by imposing an absorbing boundary
condition (ABC) at an arbitrarily selected truncation depth, which,
in general, does not coincide with a fixed-bottom. The resulting
computational domain is, in this way, rendered finite. Ideally, the
ABC ought to be such that the passage of waves is ensured without
any reflections from the truncation boundary, thus perfectly
mimicking the physical setting. In the presence of heterogeneity,
exact non-reflecting absorbing conditions are hard to devise,
depend on a priori knowledge of the property profile at the
truncation boundary, and are, typically, non-local in time. Here we
opt for a local condition, which is exact only if the exterior domain
is homogeneous. Therefore, since the ABC is predicated upon the
assumption of homogeneity of the semi-infinite extent of the part
of the medium excluded from subsequent computations
(the exterior domain), the choice of the truncation location
becomes critical. To this end, in this work, we contribute two
schemes that guide the placement of the truncation boundary,
one based on the optimal selection of the total observation time,
and the other on an iterative process, whereby the truncation
location is incrementally re-positioned until convergence of the
reconstructed material profile.

We report numerical experiments that demonstrate robust-
ness of the proposed time-domain scheme for inverting sharp
target profiles of semi-infinite domains based on noise-free and/or
noisy data, while in the presence of absorbing boundaries, and
aided by the two schemes we devised for ensuring the fidelity of
the reconstructed profiles. We remark that, as it will be shown,
the number of layers, the elastic properties of each layer, and the
layer thicknesses, are all recoverable automatically, without
having to describe each layer via individual parameters, owing
to the treatment of the material properties as spatially distributed.
2. Forward modeling

To fix ideas, we consider the response of a semi-infinite
horizontally layered (heterogeneous) soil medium to applied
stress on the top surface (Fig. 1). We formally reduce the problem
to a one-dimensional one by considering, for example, the case of
compressional waves emanating from the surface of the soil due
to a uniform excitation applied throughout the entire (two-
dimensional) soil surface. Similar physical problems arise if one
were to consider only shear waves in the same medium, or
compressional waves in a rod. The latter problem, as mentioned,
was similarly treated by Tadi [8,9], albeit for a finite medium,
without absorbing boundaries, and the schemes proposed herein.
We shall henceforth refer to compressional waves, which allow
the reduction of the problem to one dimension; ultimately, our
target application is the three-dimensional inversion of highly
heterogeneous deposits. In principle, the approach we discuss
herein can be applied to this more complex problem with only
minor modifications to account for the higher spatial dimension-
ality. Therefore, let uðx; tÞ denote the (scalar) displacement in the
direction of the applied excitation. Let T denote the total
observation period. Then, the strong form of the forward problem
can be stated as:

The forward problem: Find uðx; tÞ, such that

q2uðx; tÞqt2 �
q
qx

aðxÞ quðx; tÞ

qx

� �
¼ 0; ðx; tÞ 2 ð0;1Þ � ð0; TÞ, (1)

að0Þ qu

qx
ð0; tÞ ¼ f ðtÞ, (2)

quðx; tÞ

qx
þ

1ffiffiffi
a
p

quðx; tÞ

qt

� �
¼ 0 for xXx̄, (3)

uðx;0Þ ¼
qu

qt
ðx;0Þ ¼ 0, (4)
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where x denotes location and t denotes time. In the above, aðxÞ is
the soil’s modulus (e.g., lþ 2m for compressional waves, with l, m
denoting the Lamé constants), or the square of the wave
propagation velocity. Throughout we assume that the material
density is constant (a reasonable assumption in geotechnical site
investigations); in particular, in (1), we assume, without loss of
generality, that the density r ¼ 1. With these assumptions, (1) is
the one-dimensional wave equation with a spatially varying
coefficient and no damping.1 We further assume that the
system is initially at rest (condition (4)), and that the source
excitation is at the origin (condition (2)). Condition (3) implies
that the solution uðx; tÞ is outgoing for some xXx̄, where the
medium becomes homogeneous, i.e., aðxÞ ¼ a0 for xXx̄. We
remark that in higher spatial dimensions, Eq. (3) is tantamount
to a radiation condition.

In the inverse profile reconstruction problem, the spatial
distribution of the properties aðxÞ is not known. Worse yet, x̄ is
not a priori known either, and the physical domain extends, on one
side, to infinity. For computational purposes, we limit the semi-
infinite extent by truncating the physical domain at depth x ¼ l

(Fig. 1). We remark that the truncation point x ¼ l may be either
greater or smaller than x̄, that is, the exterior semi-infinite domain
is either homogeneous beyond the truncation point (when l4x̄),
or heterogeneous (when lox̄). From a mathematical perspective,
and to account for the part of the physical domain that will be left
out of the computations, we introduce an absorbing boundary
condition at the truncation boundary. The strong form of the
resulting modified forward problem can be recast as:

Modified forward problem for truncated domain: Find uðx; tÞ,
such that

q2uðx; tÞ

qt2
�

q
qx

aðxÞ quðx; tÞ

qx

� �
¼ 0; ðx; tÞ 2 ð0; lÞ � ð0; TÞ, (5)

að0Þ qu

qx
ð0; tÞ ¼ f ðtÞ, (6)

qu

qx
ðl; tÞ ¼ �

1ffiffiffiffiffiffiffiffi
aðlÞ

p qu

qt
ðl; tÞ, (7)

uðx;0Þ ¼
qu

qt
ðx;0Þ ¼ 0. (8)

We remark that for homogeneous deposits, the absorbing
condition (7) is exact. For heterogeneous deposits (of interest
here) it is only approximate [13], whereas the exact condition is
non-local in time. From a physical point of view, the approximate
character of (7) will introduce reflections at the truncation
boundary, especially in the presence of strong low frequency
components in the propagating waves.
3. Inverse modeling

For the physical setting described by the forward problem
(5)–(8), the inverse problem can be cast as a PDE-constrained
optimization problem using a (least-squares) misfit functional,
as in:

Minimize:

J ¼
1

2

Z T

0
½uð0; tÞ � umð0; tÞ�

2 dt þRaðaÞ (9)

subject to (5)–(8).
Here, J is the misfit functional in which um denotes the

response measured on the surface, and u is the computed
1 In [10] we also treated the special case of viscous damping.
response under an assumed modulus profile aðxÞ. We seek to
minimize J, that is, to match the observation with the computed
response, in an attempt to recover the spatial distribution of aðxÞ,
and thus to reconstruct the material profile. One primary
difficulty stems from the apparent possibility of having multiple
aðxÞ distributions that could yield the same surface response
under the same surface excitation. Such aðxÞ distributions need
not necessarily be physically meaningful. To alleviate, to an
extent, such solution multiplicity, we seek to narrow the solution
space by adding a regularization term RaðaÞ to the misfit in (9).
Two candidate schemes for Ra are discussed in the next section.
4. Regularization schemes

One of most widely adopted regularization schemes is due to
Tikhonov [11]. A Tikhonov-type regularization enforces smooth
spatial variation on the model parameters (here the material
profile aðxÞ), and may help alleviate the inherent ill-posedness of
the inverse problem. Accordingly, let RTk denote the regulariza-
tion term per Tikhonov; RTk is defined as

RTk
ðaÞ:¼Ra

2

Z l

0

da
dx

� �2

dx, (10)

where Ra is a scalar, user-defined, regularization parameter, which
controls the amount by which the regularization term penalizes
the misfit functional in (9). Clearly, the Tikhonov scheme favors
smooth profiles, since the penalty term becomes smaller (modulo
the regularization parameter) for smooth aðxÞ distributions,
whereas it increases with ‘‘high-frequency’’ perturbations of the
material parameters. Therefore, the Tikhonov scheme works well
for reconstructing smooth target profiles, but is not expected to be
conducive to the reconstruction of sharply varying target profiles.
In addition, the Tikhonov scheme requires initial estimates that
are quite close to the target, since the scheme precludes large
perturbations from the initial guess. Lastly, the regularization
parameter should be chosen with care, since the solution is quite
sensitive to its choice [10].

An alternative choice for the regularization term is to use time-
derivatives of the material parameters [8,9]. For this work, the
motivation for a time-dependent scheme stems from the desire to
depart from spatial regularizations that may over-penalize the
spatial variability of the material parameters, often disallowing
sharp material variations that are typical of soil stratifications. In
this sense, as argued in [10], the only other possible dimension is
to regularize the problem with respect to time, as was also done in
[8,9]. We, thus, assume that a � aðx; tÞ, that is, a becomes a
function of both space and time, effectively violating the physical
setting of the problem. Then, a possible form for the time-
dependent regularization term RTD is

RTD
ðaÞ:¼Ra

2

Z T

0

Z l

0

qaðx; tÞ
qt

� �2

dx dt. (11)

Even though the material parameter is assumed to depend on
both time and space, at the end, the minimization process
enforces it to be independent of time: of all the possible
trajectories aðx; tÞ for times t 2 ð0; TÞ, the time-independent aðxÞ
is the one minimizing (11). To this end, we further impose that

aðx;0Þ ¼ a0, (12)

qa
qt
ðx; TÞ ¼ 0. (13)

In other words, we force at final time t ¼ T, the material property
distribution aðxÞ to be chosen to be the time-independent one,
among all possible aðx; tÞ. As will be shown numerically, this choice
appears to work well for sharp profiles (in [9,10] it was shown that it
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works well for smooth profiles as well, and it compares favorably
against spatial schemes in the fixed-end problem case).
5. PDE-constrained optimization approach

5.1. Augmented functional

To reconstruct the material profile we seek to minimize (9)
subject to the governing PDE and the boundary and initial
conditions given by (5)–(8). To this end, we recast first the
problem as an unconstrained optimization problem by defining an
augmented functional based on (9) as2:

Aðu; l;aÞ ¼ 1

2

Z T

0
½uð0; tÞ � umð0; tÞ�

2 dt þ
Ra

2

Z T

0

Z l

0

qa
qt

� �2

dx dt

þ

Z T

0

Z l

0
l

q2u

qt2
�

q
qx

a qu

qx

� �( )
dx dt

�

Z T

0
lð0; tÞ að0; tÞ qu

qx
ð0; tÞ � f ðtÞ

� �
dt

þ

Z T

0
lðl; tÞ aðl; tÞ qu

qx
ðl; tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qu

qt
ðl; tÞ

� �
dt

þ

Z l

0
lðx;0Þ

qu

qt
ðx;0Þdx, (14)

where now the governing PDE and the boundary/initial conditions
have been imposed (added) via Lagrange multipliers l as side
constraints. Notice that only Neumann-type conditions need to be
added as part of the side constraints; any essential conditions are
explicitly enforced.

5.2. The first-order optimality conditions

Next, we seek stationarity of A by requiring that the first-
order variations of A with respect to the Lagrange multipliers (or
adjoint variables) l, the state variables u, and the material
parameters a, vanish, or equivalently that

dlA
duA

daA

8><
>:

9>=
>; ¼ 0. (15)

5.2.1. The first optimality condition

We require that dlA ¼ 0; there results

dlA ¼
Z T

0

Z l

0
dl

q2u

qt2
�

q
qx

aqu

qx

� �( )
dx dt

�

Z T

0
dlð0; tÞ að0; tÞ qu

qx
ð0; tÞ � f ðtÞ

� �
dt

þ

Z T

0
dlðl; tÞ aðl; tÞ qu

qx
ðl; tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qu

qt
ðl; tÞ

� �
dt

þ

Z l

0
dlðx;0Þ

qu

qt
ðx;0Þdx ¼ 0, (16)

and by taking into account the explicitly imposed initial condition
of uðx;0Þ ¼ 0, we recover the state (or forward) problem:

State problem:

q2uðx; tÞ

qt2
�

q
qx

aðx; tÞ quðx; tÞ

qx

� �
¼ 0; ðx; tÞ 2 ð0; lÞ � ð0; TÞ, (17)
2 We assume that a ¼ aðx; tÞ to pave the path for the time-dependent

regularization; the case of Tikhonov regularization is simpler and can be similarly

treated.
qu

qx
ðl; tÞ ¼ �

1ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qu

qt
ðl; tÞ, (18)

uðx;0Þ ¼
qu

qt
ðx;0Þ ¼ 0, (19)

að0; tÞ qu

qx
ð0; tÞ ¼ f ðtÞ. (20)
5.2.2. The second optimality condition

Similarly, from the variation of the augmented functional A
with respect to the state variable u, we obtain

duA ¼

Z T

0
½uð0; tÞ � umð0; tÞ�duð0; tÞdt

þ

Z T

0

Z l

0
l

q2du

qt2
�

q
qx

aqdu

qx

� �( )
dx dt

�

Z T

0
lð0; tÞað0; tÞ qdu

qx
ð0; tÞdt

þ

Z T

0
lðl; tÞ aðl; tÞ qdu

qx
ðl; tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qdu

qt
ðl; tÞ

� �
dt

þ

Z l

0
lðx;0Þ

qdu

qt
ðx;0Þdx. (21)

Integrating by parts, while taking into account any homogeneous
essential boundary and initial conditions, there results

duA ¼

Z T

0

Z l

0
du

q2l
qt2
�

q
qx

aql
qx

� �( )
dx dt

þ

Z T

0
duð0; tÞ ½uð0; tÞ � umð0; tÞ� � að0; tÞ

ql
qx
ð0; tÞ

� �
dt

þ

Z T

0
duðl; tÞ aðl; tÞ ql

qx
ðl; tÞ �

q
qt
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p
lðl; tÞÞ

� �
dt

þ

Z l

0
lðx; TÞ

qdu

qt
ðx; TÞdxþ lðl; TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðl; TÞ

p
duðl; TÞ

�

Z l

0

ql
qt
ðx; TÞduðx; TÞdx. (22)

Since du is arbitrary, by setting duA ¼ 0 we obtain the following
adjoint problem:

Adjoint problem:

q2lðx; tÞ
qt2

�
q
qx

aðx; tÞ qlðx; tÞ
qx

� �
¼ 0; ðx; tÞ 2 ð0; lÞ � ð0; TÞ, (23)

aðl; tÞ ql
qx
ðl; tÞ ¼

q
qt
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p
lðl; tÞÞ, (24)

lðx; TÞ ¼
ql
qt
ðx; TÞ ¼ 0, (25)

að0; tÞ ql
qx
ð0; tÞ ¼ ½uð0; tÞ � umð0; tÞ�. (26)

Notice that the governing operator in the adjoint PDE (23) is
identical to that of the state problem (17). In addition, the
absorbing boundary condition has changed sign, and from a
temporal point of view, the problem has reversed direction, that
is, it is a final value problem, as betrayed by (25), as opposed to an
initial value problem. Lastly, notice that, by virtue of (26), the
adjoint problem is driven by the misfit between computed and
observed responses. From an implementation point of view, the
fact that both the state and adjoint problems share the same
governing operator can be exploited to reduce the computational
cost. However, the storing of the time histories for both u and l is
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unavoidable, given the simultaneous, but in opposite direction,
traversing of the time line.

5.2.3. The third optimality condition

Lastly, the variation of the augmented functional with respect
to a yields

daA ¼ Ra

Z T

0

Z l

0

qa
qt

qda
qt

dx dt �

Z T

0

Z l

0
l
q
qx

da qu

qx

� �
dx dt

�

Z T

0
lð0; tÞdað0; tÞ qu

qx
ð0; tÞdt

þ

Z T

0
lðl; tÞ daðl; tÞ qu

qx
ðl; tÞ þ

daðl; tÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qu

qt
ðl; tÞ

( )
dt. (27)

By integrating by parts, and taking into account that
(qa=qtÞðx; TÞ ¼ 0 and daðx;0Þ ¼ 0, while canceling like-terms, (27)
yields the control problem for a as

Control problem:

daA ¼
Z T

0

Z l

0
� Ra

q2aðx; tÞ
qt2

þ
qlðx; tÞ
qx

quðx; tÞ

qx

(

þ
lðx; tÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx; tÞ

p quðx; tÞ

qt
Dðx� lÞ

)
daðx; tÞdx dt ¼ 0, (28)

where Dðx� lÞ denotes the Dirac delta function.
6. The inversion process

Seeking a solution for the triad ðu; l;aÞ that simultaneously
satisfies all three optimality conditions is tantamount to the
stationarity of the augmented functional A, and therefore to a
distribution of the material properties aðxÞ that respects the
observations. In principle, the state (17)–(20), the adjoint
(23)–(26), and the control problem (28) can be solved as a fully
coupled problem, i.e., by using a full-space method. However, the
computational cost per (material property) iteration increases,
given the resulting matrix sizes. We remark that for the solution
of the state and the adjoint problems (either as a coupled system
or individually) any numerical scheme may be used (finite
differences, finite elements, etc.). By contrast to a full-space
method, here we opt for a reduced-space method that maps the
optimization problem to the space of the design variables ðaÞ,
thereby eliminating the state and adjoint variables. We start by
solving the state problem (17)–(20) to obtain the state variables u,
for given estimates of the material parameters a, thereby
satisfying the first optimality condition dlA ¼ 0. Then, we solve
the adjoint problem using the state variables computed in the first
step, to obtain the Lagrange multipliers l that satisfy the second
optimality condition duA ¼ 0. To solve both the state and adjoint
problems, we employ conventional finite elements. Again, owing
to the self-adjoint operator of the original problem, the system
matrices of both the state and adjoint problems are identical.
Then, there remains to seek to update the material parameters a
so that the third condition (28) be satisfied. We use the control
equation to iteratively provide updates to the material para-
meters. The details of the inversion process follows.

6.1. State and adjoint semi-discrete forms

In order to satisfy the first KKT system for assumed inversion
material parameters a, we solve the state problem given in
(17)–(20) using a standard Galerkin approach. Accordingly,
the weak form can be obtained by multiplying the state equation
(17) by an appropriate test function uðxÞ (with uðlÞ ¼ 0) and
integrating over the entire domain. Using integration by parts,
there results

Z l

0

q2uðx; tÞ

qt2
uðxÞ þ aðx; tÞ quðx; tÞ

qx

duðxÞ
dx

" #
dx

þ uðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qu

qt
ðl; tÞ ¼ �uð0Þf ðtÞ, (29)

where the boundary conditions have been taken into account.
With a similar process, where qðxÞ is now used as a test function,
we obtain the weak form of the adjoint problem:

Z l

0

q2lðx; tÞ
qt2

qðxÞ þ aðx; tÞ qlðx; tÞ
qx

dqðxÞ

dx

" #
dx

� qðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p qlðl; tÞ
qt
¼ qð0Þ½umð0; tÞ � uð0; tÞ�. (30)

Next, we introduce standard polynomial approximations for the
state uðx; tÞ, the adjoint lðx; tÞ, and their respective test functions
uðxÞ, and qðxÞ; let

uðx; tÞ ¼
XN

i¼1

uiðtÞfiðxÞ; uðxÞ ¼
XN

i¼1

uifiðxÞ, (31)

lðx; tÞ ¼
XN

i¼1

liðtÞfiðxÞ; qðxÞ ¼
XN

i¼1

qifiðxÞ, (32)

where N is the number of nodal points, f are basis functions, and
ui; li; ui; qi denote nodal quantities. Then, the semi-discrete forms
of the state and adjoint problems can be cast as

M
q2uðtÞ

qt2
þ KðtÞ uðtÞ þ CðtÞ

quðtÞ

qt
¼ FðtÞ, (33)

M
q2kðtÞ

qt2
þ KðtÞkðtÞ � CðtÞ

qkðtÞ
qt
¼ GðtÞ, (34)

where

Mij ¼

Z l

0
fifj dx, (35)

KijðtÞ ¼

Z l

0
aðx; tÞdfi

dx

dfj

dx
dx, (36)

CijðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
aðl; tÞ

p
diNdjN , (37)

Fi ¼ �f ðtÞdi1, (38)

Gi ¼ ½umð0; tÞ � uð0; tÞ�di1. (39)

In the above, di1 and diN denote the Kronecker delta, u and k are
the vectors of the nodal state and adjoint variables, respectively,
and customary notation has been used for the matrices. Notice
that because of the time-dependent regularization scheme, where
the material distribution is assumed to be time-dependent, the
mass matrix M is independent of time, but the stiffness K and
damping C matrices depend on time.

6.2. Temporal discretization

To arrive at a solution, first for the state variables, and then
for the adjoint variables, the semi-discrete forms (33) and (34)
need next be discretized in time. We note that, whereas (33) is an
initial value problem for which uð0Þ ¼ ðqu=qtÞð0Þ ¼ 0, (34) is a
final value problem for which kðTÞ ¼ ðqk=qtÞðTÞ ¼ 0. In addition,
the time-dependent matrices KðtÞ and CðtÞ need to be appro-
priately treated. Their temporal dependence stems from the
moduli, which in turn, need also be discretized in both space
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and time. Accordingly, let

aðx; tÞ ¼
XN

j¼1

ajðtÞjjðxÞ, (40)

in which jj are basis functions, and aj denotes nodal values of a.
At the first iteration we start with a spatial distribution of
the modulus aðxÞ (i.e., we enforce, initially, the modulus to be
constant in time). Upon updating the modulus, there will result a
spatially variable and time-dependent modulus aðx; tÞ. Next,
using the latter update, one could formally proceed by also
updating KðtÞ, and CðtÞ, per (36) and (37). However, such an
approach is computationally costly, as it entails the evaluation of,
primarily, the stiffness matrix, on a per time-step basis. Alter-
natively, one could approximate the temporal dependence of the
moduli by constant values (per inversion iteration); candidate
choices include

ajðtÞ ’ hajðtÞi or ajðtÞ ’ ajðTÞ; 8j ¼ 1; . . . ;N, (41)

where the former expression refers to the mean value of ajðtÞ over
the period ð0; TÞ, and the latter expression refers to its final value
(similarly, for the coefficients of b, bj). We opted for the second of
(41) (piecewise constant in space, as well). Thus, effectively, over
an element e, (40) can be rewritten as

aðx; tÞje ’ aeðTÞ. (42)

Consequently, the element matrix ke, and ce, corresponding to K
and C in (36) and (37), respectively, are modified to now read

ke ¼ aeðTÞ

Z
e

q/
qx

q/T

qx
dx; ce ¼

ffiffiffiffiffiffiffiffiffiffiffi
aeðTÞ

p
deN . (43)

A variant of the latter scheme was used in [8], whereas in [10] we
showed that only minor differences are observed in the numerical
results between the two schemes. Here, we used the simpler and
less costly second scheme. Next, standard time integration
schemes can be used: we opted for Newmark’s average-accelera-
tion scheme. We remark that the effective stiffness matrix
implicated in the Newmark scheme ðK̂ ¼ K þ ð4=Dt2ÞM þ
ð2=DtÞCÞ is the same for both the state and the adjoint problems,
and thus it needs to be inverted (or triangularized) only once.
6.3. Material parameter updates

By solving the state and adjoint problem, the state variable u

and the adjoint variable l satisfying the first and the second
optimality conditions, respectively, are obtained. Then, the
problem is reduced to a minimization problem with respect to
the material parameters a. Here, notice that the variation of the
augmented functional with respect to the material parameter a,
daA, is tantamount to the gradient component of the misfit
functional, raJ, since the side constraints in the augmented
functional (14) have already vanished owing to the satisfaction/
solution of the state problem. Then, what remains to be done is to
provide a mechanism for updating the material parameters: this
can be directly accomplished via the control equation given in
(28). We outline the details below: (28) yields

q2aðx; tÞ
qt2

¼
1

Ra

qlðx; tÞ
qx

quðx; tÞ

qx
þ

lðx; tÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx; tÞ

p quðx; tÞ

qt
Dðx� lÞ

( )
. (44)

The right-hand-side of (44) can be readily computed, once u and l
have been obtained. Then, the update to a can be obtained using
(44), and the approximations (31) and (32), by integrating (44)
twice in time, while taking into account the conditions shown
below (superscripts to a indicate new and previous values
between inversion iterations):

aðkþ1Þ
e ¼ aðkÞe ðtÞ ¼ aðkÞe ðTÞ �

t

Ra

Z T

0

d/T

dx
kðtÞd/T

dx
uðtÞ

(

þ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx; tÞ

p /T
ðxÞkðtÞ/T

ðxÞ
duðtÞ

dt
Dðx� lÞ

)
dt

þ
1

Ra

Z t

0

Z s

0

d/T

dx
kðtÞd/T

dx
uðtÞ

(

þ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx; tÞ

p /T
ðxÞkðtÞ/T

ðxÞ
duðtÞ

dt Dðx� lÞ

)
dtds,

(45)

where /, k, and u are restricted to element e, and we have
enforced

aðkþ1Þ
e ð0Þ ¼ aðkÞðTÞ;

qaðkþ1Þ
e

qt
ðTÞ ¼ 0. (46)

We remark that, whereas the regularization parameter Ra can
be chosen arbitrarily to equal a fixed value at the onset of the
inversion process, an alternative approach, based on an inexact
line search scheme, leads to an optimal choice for the regulariza-
tion parameter. Specifically, in (45), the integrals play the role of
the search direction and the reciprocal of the regularization
parameter plays the role of the step length. Therefore, by
combining any gradient-based scheme with a line search, we
could obtain an optimal value for the regularization parameter,
and, thus, accelerate the convergence rate. To this end, we use
steepest descent with an inexact line search scheme; the process
is summarized in Algorithm 1.
Algorithm 1 Inversion algorithm using time-dependent regularization with

optimal regularization factor

1: Choose y;r;m;Ra

2: Set k ¼ 0

3: Set initial guess of inversion variables, ak
e

4: Set convergence tolerance TOL

5: Set misfit ¼ TOLþ 1

6: while ðmisfit4TOLÞ do
7: Solve the state problem (17)–(20) and obtain u

8: Solve the adjoint problem (23)–(26) and obtain l

9: Compute q2aðkÞ

qt2 using:

d2aðkÞe

dt2
¼

1

Ra

ql
qx

qu

qx

				
e

þ
1

Ra

l
2
ffiffiffi
a
p

qu

qt
Dðx� lÞ

10: Compute the search direction dðkÞðtÞ, where

dðkÞðtÞ ¼ �t
R T

0

q2aðkÞðtÞ
qt2

dtþ
R t

0

R s
0

q2aðkÞðtÞ
qt2

dtds;

11: while ðJðaðkÞ þ yðkÞdðkÞÞ4JðaðkÞÞ þ myðkÞaðkÞ � rJðaðkÞÞÞ do

12: y ry
13: end while

14: Update the estimates aðkþ1Þ ¼ aðkÞ þ yðkÞdðkÞ

15: k ¼ kþ 1

16: endwhile
7. Optimal positioning of the truncation boundary

Thus far we have described the inversion process by which we
could reconstruct the heterogeneous material profile of a
horizontally layered medium when the lack of a priori information
on the depth-to-bottom necessitates the introduction of a
truncation boundary and its associated ABC. However, as
discussed earlier, the ABC is predicated upon the assumption of
a homogeneous medium past the truncation boundary. In general,
at a given site, the presence of homogeneity beyond a certain
depth cannot be guaranteed. But even if there is a depth beyond
which material homogeneity can be safely assumed, that depth,
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which would have been the ideal location for truncating
the physical domain, is not a priori known. To address the
difficulty with the selection of an appropriate depth for truncating
the physical domain, we introduce two schemes, both iterative
in nature.

Scheme 1. Iterative relocation of the truncation boundary.

We assume that there is a depth beyond which the medium is
indeed homogeneous, and seek to place the truncation boundary
x=0.0
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at the bottom of the very layer where the homogeneity begins (or
beyond). Our iterative process is as follows: (a) first, we truncate
the domain at an arbitrary depth x ¼ xð0Þ, and invert to obtain the
material profile; (b) next, we increase the domain depth and
truncate at x ¼ xð1Þ, where xð1Þ4xð0Þ, and invert again to obtain a
new material profile; (c) we compare the profiles from steps (a)
and (b) (up to xð0Þ), and if the difference is small (in an appropriate
norm), we consider the process converged; otherwise, we increase
again the domain depth to xð2Þ, with xð2Þ4xð1Þ and obtain anew the
material profile. We repeat steps (b) and (c) until convergence.
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Through this iterative scheme, we can typically position the
truncation boundary within the homogeneous semi-infinite
extent of the domain. However, in the absence of a homogeneous
domain below the layered medium, we resort to a second scheme.

Scheme 2. Optimal observation period.

Accordingly, we seek to optimize the observation period
based on (assumed) wave travel times, so that we take
into account information stemming only from the layers
contained within the finite computational domain, that is, only
up to the truncation depth. The process can be summarized
as follows: (a) first, we truncate the domain at an arbitrary
depth x ¼ l. We start with a homogeneous assumption for
the target profile, i.e., with aðxÞ ¼ að0Þ, and set the observation
period Tð0Þ such that

T ð0Þ ¼ td þ 2
lffiffiffiffiffiffiffiffi
að0Þ
p , (47)

where
ffiffiffiffiffiffiffiffi
að0Þ
p

represents velocity, and td denotes the dura-
tion of the excitation. That is, Tð0Þ is set equal to the duration
of the excitation td, augmented by twice the travel time it
will take for the signal to travel down and up the truncated
domain of size l. (b) We then invert for the material profile,
and obtain the, in general, inhomogeneous distribution
að1ÞðxÞ. (c) Next, using the new profile, we update the observation
time, as

T ðiÞ ¼ td þ 2

Z l

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
aðiÞðxÞ

p dx, (48)

where i denotes the i-th iteration. Steps (b) and (c) are repeated
until convergence, where, again, convergence is considered to
have been attained when there is small difference between
successive profiles.
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Fig. 6. Data misfit (a) and solution errors (b).
8. Numerical experiments

We discuss the performance of the described schemes with the
aid of numerical experiments. First, we consider reconstructing
the sharply varying modulus profile depicted in Fig. 2(a); the
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Clearly, beyond x ¼ 1:5 and extending to infinity we assume
the medium to be homogeneous with a ¼ 12:0. First, we truncate
the domain at precisely the start of the semi-infinite homo-
geneous region, as if there were a priori knowledge on its
precise location, simply to exercise the inversion algorithm
under ideal conditions. The initial profile guess is set at aðxÞ ¼
1:2 (Fig. 2), that is, we assume the entire domain to be
homogeneous. The target profile and the initial estimate are
depicted in Fig. 2(b). The source excitation is a rapidly decaying
pulse-like signal given by (50). Both the signal and its Fourier
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transform are depicted in Fig. 3:

f ðtÞ ¼ exp �
ðt � 0:1Þ2

0:0003

" #
. (50)

We synthesize the measured data for the given source, and invert
for the modulus profile using both noise-free and noisy data. To
avoid committing a classic ‘‘inverse crime,’’ we use a different
mesh when computing the synthetic (measured) data, than the
one we use for inversion. More importantly, when computing the
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synthetic data, we use a domain that is considerably larger than
the target, so as to guarantee reflection-free synthetic data on the
surface. To simulate noise in the data we add Gaussian noise
having a standard deviation of 5% with respect to the maximum
amplitude of the measured data. The noise-free and noisy data are
depicted in Fig. 4. Based on the given measured data, we invert for
the modulus profile via Algorithm 1. The results shown in Fig. 5
exhibit quite satisfactory performance for both the noise-free data
and noisy data cases. It can also be seen that the profile estimated
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l ¼ 1:5; (f) ABC at l ¼ 2:0.
in (Fig. 5(b)) is a bit more oscillatory due to the presence of noise
in the data.

At every iteration, we compute a data misfit error and a
solution error norm between the estimated and target profiles;
specifically:

Edata ¼
1

2

Z T

½uð0; tÞ � umð0; tÞ�
2 dt, (51)
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Esol ¼
XN

i¼1

½aexactðxiÞ � ai�
2Dx. (52)

In the above, Edata denotes the data misfit error, which is the misfit
functional given in (9) without the regularization term. Esol

denotes the solution error, in which Dx is the length of the discrete
elements, and xi is the element midpoint. In Fig. 5 both norms
have been plotted for, both, the noise-free and noisy data cases. It
can be seen that, as expected, the errors for the noisy data case are
higher than the noise-free data case. However, both cases
converge quite nicely to the target profile.

Next, we consider the more realistic case where it is not a priori

known where to best truncate the physical domain. We use again
the same sharply varying profile depicted in Fig. 2. To address the
problem we used the inversion Algorithm 1 in conjunction with
the two iterative Schemes 1 and 2 discussed in the previous
section for addressing the truncation boundary difficulty.

First, we fix the observation period T at 3 s, and iteratively
increase the domain length l from 0.5 to 2.0, using Scheme 1. As
shown in Fig. 6, for the cases of l ¼ 0:5, 0:7, and 1:0, there are
differences between successive profiles, which imply that the
location of the truncation boundary was inappropriate. However,
for x ¼ 1:3, 1.5, and 2:0, the solutions are quite close to each other,
and thus we consider the process converged (could consider even
the profile corresponding to truncation depth x ¼ 1:3 satisfac-
tory). As it can be seen from Fig. 6 the recovered profiles for the
last two cases (e) and (f) agree quite well with the target profile.

Next, we fix the domain size at l. We consider different domain
sizes l ¼ 0:5, 0:7, 1:0, 1:3, 1:5, and 2:0, and for each one of them we
seek to optimize the observation period T based on (48). The
reconstructed profiles are shown in Fig. 8. For each one of these
cases, the profile has been remarkably well reconstructed up to
the considered domain depth. Notice the contrast between, for
example, Figs. 7(b) and 8(b), where, for the same truncation
depth, the scheme where the observation period is iteratively
optimized to match the inverted profile, yields far superior results.
In fact, the results in Fig. 8 suggest that the iterative scheme based
on the observation period (Scheme 2) yields excellent results
regardless of the domain depth l.
9. Conclusions

We discussed a PDE-constrained optimization approach for
reconstructing the material profile in a semi-infinite horizontally
layered heterogeneous soil medium based on surface measure-
ments of the soil’s response to surface excitation. The process is
endowed with absorbing boundary conditions to account for the
introduction of truncation boundaries, which are necessary when
dealing with physical domains of semi-infinite extent. We
presented a formal framework for the systematic treatment of
such problems under the auspices of a time-dependent regular-
ization scheme, though spatial regularization schemes are equally
possible. In addition, to address the cases where there is no
homogeneous bottom layer, or its precise location is not a priori

known, we proposed two iterative schemes based (a) on the
iterative relocation of the truncation boundary; or (b) on
optimizing the observation period over which we compute
solutions to the inversion process. To study the algorithmic
performance, we carried out numerical experiments with sharply
varying target profiles using both noise-free and noisy data.

Through the results we observed that the time-dependent
regularization scheme, thus far used only on fixed-end domains,
works quite satisfactorily for semi-infinite domains, even in the
presence of absorbing boundary conditions, that typically add
noise to the solution (even for forward problems). In addition, it
also appears that the observation period iterative scheme that we
proposed captures the target profile regardless of the location of
the truncation boundary. The overall approach is readily scalable
to problems in higher dimensions.
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