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a b s t r a c t

This paper introduces a methodology to infer the spatial variation of the acoustic characteristics of a 1D
vertical elastic heterogeneous earth model via a Bayesian calibration approach, given a prescribed se-
quence of loading and the corresponding time history response registered at the ground level. This in-
volves solving an inverse problem that maps the ground seismic response onto a random profile of the
ground stratigraphy (i.e. a 1D continuous spatial random field). From a Bayesian point of view, the so-
lution to an inverse problem is fully characterized by a posterior density function of the forward model
random parameters, which explicitly overcomes the solution's non-uniqueness. This subsurface earth
model is parameterized using a Bayesian partition model, where the number of soil layers, the location of
the layers' interfaces, and their corresponding mechanical characteristics are defined as random vari-
ables. The partition model approach to an inverse problem is closely related to a Bayesian model se-
lection problem, where the likely dimensionality of the inverse problem (number of unknowns) is in-
ferred conditioned on the experimental observations. The main benefit of the proposed approach is that
the explicit regularization of the inverted profile by global damping procedures is not required. A Re-
versible Jump Markov Chain Monte Carlo (RJMCMC) algorithm is used to sample the target posterior of
varying dimension, dependent on the number of layers. A synthetic case study is provided to indicate the
applicability of the proposed methodology.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A subsurface earth model is composed of complex geophysical
formations, which embodies a wide range of physical and me-
chanical heterogeneities. The aim of probabilistic inverse modeling
is to reconstruct the random field structure of these subsurface
properties, while accounting for various sources of uncertainty
stemming from ground seismic geologic measurement errors,
aleatory formations, and limited theoretical understanding about
underground wave propagation.

In practice, one of the main goals of geophysical investigations
is to identify the main geomorphological features of an unknown
medium, meaning the spatial location and concentration of geo-
logical features such as the transition between materials, dis-
continuities and material concentrations [34]. In the case of a
vertical 1D profile, this requires the definition of the location of
eh),
the sharp transitions between layer interfaces (i.e. material prop-
erties), and the characterization of its corresponding mechanical
properties.

In a horizontally stratified earth model, prior to making an
inference about the likely variation of the elastic parameters
within the geological layers, an assumption must be made con-
cerning the number of layers in a certain depth range of interest.
This assumption defines the dimensionality (i.e., the number of
unknowns) of the inverse problem. In reality, however, such in-
formation is rarely available for the dimension and definition of
the parameter space to be fixed. Consequently, fixing the number
of layers based on an incorrect assumption results in an erroneous
subsurface characterization.

To relax the hypothesis about the subsurface structure or spa-
tial layering of the media's mechanical parameters, before the
forward model is calibrated, it is proposed to define the number of
layers, their locations, and their corresponding mechanical para-
meters, as random variables. From a Bayesian perspective, this set
up is closely associated with probabilistic model selection, where a
collection of models with varying number of parameters are
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presented for inversion, and the task is to select the models that
most likely describe the experimental observations.

To illustrate the applicability of the proposed probabilistic ca-
libration method, a one dimensional horizontally stratified med-
ium is presented in terms of a Bayesian partition model [8]. The
partition model divides the unknown material field into a number
of non-overlapping regions, where each region represents a soil
layer. Formulating the inverse medium problem in terms of a
partition model may help reduce the dimensionality of the para-
meter space. Hence, regularizing the solution through specific
prior distributions, which bears smoothness constraints (in a
Bayesian inversion framework [45,12,20]), or regularization terms
(in deterministic optimization problems [44,36,15]), is precluded.

A generalization of the simulation-based Markov Chain Monte
Carlo methods, the so-called reversible jump [18], is used to
sample the posterior distribution of varying dimensionality. In this
setting, the Markov Chain is capable of undergoing dimension
changes while moving among a number of candidate models. The
key aspect of the reversible jump algorithm is the introduction of
some auxiliary random variables to equalize the dimensionality of
the parameter space across models. A series of one-to-one de-
terministic functions are defined to perform dimension matching
such that the detailed balance condition is satisfied. Balance con-
dition is the necessary condition for a Markov Chain to converge to
the target density [7].

Since the introduction of Bayesian inference methods to the
geophysical community, this has received a great deal of attention
in a variety of applications [14,16,17,45,41,43]. However, a limited
number of studies have addressed the subsurface parameter esti-
mation as a model selection problem, many of which resort to
approximate methods to fulfill the model determination [10,13].
The varying dimensional formulation was first introduced to the
geophysics literature by Malinverno [31] in a 1D-DC resistivity
sounding inversion, and later implemented in a number of geo-
physical probing inverse problems [39,11,1,35].

The major impact of utilizing probabilistic calibration via a
Bayesian approach is the systematic exploration of all combina-
tions of the model parameters through a transparent definition of
the impact of the participating uncertainty sources. During such
exhaustive parameter exploration, a probability metric is defined
to assess the likelihood of selecting sets of parameters that serve
to approximate the experimental observations (likelihood); but
also a probability density is defined to reflect the degree of
knowledge on the model parameters (prior) before the model
inversion. The combination of these two states of knowledge
about the model of interest yields the following benefits: a tran-
sition from deterministic to probabilistic model parameters, as-
sessment of the type and degree of correlation between the model
parameters (e.g. linear or non-linear), measurement of the impact
of the varying experimental observations (e.g. the effect of the
number of observations on the prediction of confidence levels),
assessment of the model performance, and most importantly, that
among a number of competing models to choose from, selecting
the best model which can describe the process that generated the
observations. Key applications of the probabilistic subsurface
imaging include integrated site investigation, since the recovery of
geophysical mechanical parameters allows enhanced geomecha-
nical characterization. [33,34]. The varying parameter dimension-
ality is formulated through a Bayesian inversion, to populate likely
configurations of a heterogeneous elastic medium occupying a
semi-infinite domain.

A key defining characteristic of full waveform inversion is the
numerical solution of the equations of motion. The governing
forward physics consist of a 1D transient scalar acoustic wave
propagation, where in order to model the semi-infinite extent of
the physical domain, a perfectly matched layer (PML) is introduced
at the truncation boundary to emulate the infiniteness of the earth
structure [22]. A displacement–stress mixed finite element scheme
is used for the numerical solution of the PML-augmented wave
PDE.
2. Bayesian approach to inverse problems

An inverse problem is described as the process of estimating
some characteristics or parameters of a physical system from a set
of directly measurable responses of the system (observations). The
vector of model parameters θ, and the vector of observable
quantities dobs are mapped through a forward model. The forward
model operator G relies on a physical theory to predict the out-
come of a possible experiment, or in other words to approximate
the reality: θ≈ Gd ( )obs , or

θ ϵ= +Gd ( ) (1)obs

where ϵ is the tradeoff component which quantifies the deviation
between model predictions and experimental observations. This
random term contains both theoretical and measurement errors
(assuming that the forward model is an unbiased estimate to the
true physical process). Explicit distinction, however, could be
made between model and observational errors in a full un-
certainty quantification framework (UQ) [32].

The basis of the proposed UQ framework is found on the de-
finition of a “true process” vector d, which in general represents
values of observable variables (in this case displacement time
history response of earth at the surface level). Notice that in a
typical geomechanical processes, d is not known. However, if the
true process is assumed to be random, d can be defined as a vector
of random variables. On the other hand, what the modeler can
determine are the following: (1) a vector of physical observations
dobs, and (2) a vector of model predictions dpred (prescribed at the
same control points in space and time). dpred represents a vector of
predictions stemming from the forward model G, conditioned on a
vector of control parameters θ. dpred could deviate from the true
process (d) as a result of the model not fully capturing the un-
derlying physics, due, for example to the fact that either the gov-
erning PDE is an inadequate idealization of the true process, in-
itial/boundary conditions are insufficiently modeled, or due to the
deficiency of the computational scheme or lack of resolution of the
numerical solver.

Having denoted physical random deviations between d and
dobs (observation error), and between d and dpred (model error) by
δdobs and δdpred respectively (δ = −d d dobs obs and δ = −d dpred

θ= − Gd d ( )pred ), the observed data is defined as = +d dobs pred

ϵδ δ+ = +d d dobs pred pred .
In general, the error components δdobs and δdpred are not

identifiable, meaning that several different combinations of values
could be equally consistent with the observed data. However, this
does not mean that all the possible values are equally likely [28].
For example, error trends that significantly deviate from zero most
likely imply either a bias in the model or a mis-calibration of the
data acquisition instrument. The Bayesian method provides a basis
for quantifying a priori and a posteriori measures of plausibility of
each type of error [27]. In this study, the model discrepancy term
δdpred vanishes, since the data is synthesized by perturbing the
model output. Therefore, the error component can be defined by a
single uncertainty metric as shown in Eq. (1). Notice that this latter
formulation is valid also when the model predictions are unbiased
along the domain of interest (where d is defined). That is, when
the probabilistic expectation  δ δ− =d d[ ] 0obs pred [32].

In a Bayesian approach to inverse problems, a prior distribution
θp ( ) is incorporated in estimating each model unknown, which
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quantifies the initial uncertainty about the parameter. Ideally, this
density limits the space of plausible parameters by giving higher
probability to those which can help us to describe the system's
response more accurately. The objective of the inversion is to find
the posterior distribution θ|p d( )obs , built to fully describe the
model parameters in terms of a density function, given the data
dobs is observed. The Bayes theorem in this context is defined as

∫
θ

θ θ
θ θ θ

| =
|
|Θ

p
p p

p p
d

d
d

( )
( ) ( )
( ) ( ) d (2)

obs
obs

obs

where the likelihood function θ|p d( )obs assess the probability that
the observed realization dobs is produced by the model parameters
θ. Under the customary assumption that the random error com-
ponents ϵ = ϵ … ϵ( , , )n

T
1 are such that ϵ σ∼ 0 I( , )n

2 , with In being
an n�n identity matrix (i.e., uncertainty associated with the data
is normal with mean zero and standard deviation s and data
points are independent of each other), the likelihood function is
found with reference to a multivariate normal density:
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where n is the number of observations and σ=C Id n
2 is the cov-

ariance of the error term. The quantity in the denominator of Eq.
(2) (the probability of observing the data dobs) is a normalizing
constant, such that the posterior is integrated to one.
3. Forward model

This section introduces the forward model used in the model
inversion. The forward physics describes seismic vertical propa-
gation of compressional waves within a horizontally stratified
semi-infinite elastic earth, when the media is subjected to a uni-
form excitation p t( ) over the surface. This problem can be treated
as a one dimensional problem along the depth direction. In a
computational setting, a major issue associated with this geo-
acoustic inverse problem is to model the semi-infinite physical
domain. In order to arrive at a computationally finite region the
medium must be truncated at some depth. If the truncated
boundary is fixed or inadequately modeled, the propagating waves
are (partially) reflected in the domain, and distort the inverted
profile [23].

To address the issue, a perfectly matched layer (PML) approach
is adopted, and a PML buffer zone is introduced at the truncation
interface [22]. The PML enforces the rapid decay of the wave
motion within the buffer zone, with ideally no reflection back into
the domain. Fig. 1 illustrates the schematic representation of the
Fig. 1. Schematic presentation of the 1D problem. (a) Original semi-infinite soil
media. (b) PML truncated domain.
problem. We refer to the original work for the extensive deriva-
tions of the model [22], however, for the sake of completeness we
only include the governing wave equation: find ν z t( , ) and ∑ z t( , )

such that
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t

where ν is the normalized displacement with respect to the soil's
density ρ (i.e., ν ρ= u) and ∑ denotes the stress. g z( ) is an at-
tenuation function which accounts for the artificial dissipation of
the wave motion within the buffer zone, and c z( ) is the 1D soil
compressional wave velocity random field which is the inverse
problem parameter. Eq. (4) presents the displacement ν( )–stress
∑( ) mixed equations governing wave propagation in a PML
truncated one dimensional domain. The reader is cautioned not
to confuse the standard deviation ∑ appeared in Section 2 with
stress denoted by ∑ (i.e. upright Greek letter).
4. Bayesian partition models

As described in the preceding section, our geo-acoustic inverse
problem identifies the spatially dependent coefficient of a PML
augmented wave equation c z( ), given the probed medium's re-
sponse to a known excitation. This describes a functional inverse
problem where the unknown quantity is a function of the spatial
coordinate. Hence, in our Bayesian probabilistic setup, the inverse
problem parameter comprises a real-valued random field c z( ) (of
infinite dimensionality), which assigns a probability density
function to the subsurface property of interest at each point in the
spatial domain. In order to arrive at a computationally feasible
problem, this random field (and the forward model) must be ap-
proximated by its discretized version. Hence the velocity field is
approximated with an N-dimensional joint probability density

… |p c z c z d( ( ), , ( ) )N N obs1 1 , with N being the number of grid blocks in
the domain.

One way of treating the problem is to assign a prior to each
random variable = …c cc ( , , )N

T
1 , and directly apply the Bayesian

formulation to form the posterior density of |c dobs, and implement
MCMC methods to explore the resulting very high-dimensional
posterior density. Although MCMC methods converge to the pos-
terior by definition as the number of samples grows, in such high
dimensional, highly correlated target density configurations, slow
chain mixing and serious lack of convergence may arise, which
render the whole inversion procedure almost computationally
impractical.

Instead of exploring the value of zc( ) at each of the N grid
blocks, we introduce a varying dimensional Bayesian model to
parameterize the velocity random field. We opt for a Bayesian
partition model [9,19] representation of the material field, as-
suming that c(z) takes the form of a step function (Fig. 2). This



Fig. 2. Partition model presentation of the 1D velocity random field.
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setting is well suited for parameterizing a stratified earth model
with sharp transition between materials. The Bayesian partition
model can be defined by

=c z Zc( ) (6)
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where Z is called the basis matrix, each column of which forms a
basis function. This formulation states that the true k-layer soil is
made up of a linear combination of these basis functions and the
corresponding coefficients (c). = …c cc ( , , )k

T
1 hold the value of

partition weights (i.e. wave velocity at each layer), and I (. ) is the
indicator function which assumes the value one, if its argument is
true, and zero otherwise. The vector … −z z( , , )k1 1 denotes the −k 1
change point locations (position of the layer interfaces), where k is
unknown number of partitions (layers). …z z, , N(1) ( ) are the co-
ordinates of N prespecified grid points, which conveniently coin-
cide with the forward model discretization mesh. Fig. 2 shows the
partition model presentation of a 1D velocity random field. By
partitioning the velocity field the reduced dimension parameter
vector will be = =

−k c z( , { } , { } )i i
k

i i
k

1 1
1 .
5. Bayesian model selection

The proposed Bayesian partition model is categorized within a
special class of models namely variable dimension models. A
variable dimension model is defined as a model whose number of
unknowns is an unknown itself [9]. A Bayesian variable dimension
model is composed of a set of plausible models ={ }k k

K
1, each

reflecting a hypothesis about the data. Having K such competing
models, it is desired to find the model that best describes the
observations. Here, k represents a k-layer subsurface structure.
This definition by nature pertains to the spatial case of a Bayesian
model selection problems, where the competing models belong to
the same family, with differing number of parameters, namely
nested models [38].

A variable dimension model can be formulated as an extension
to the standard Bayesian inference (see Section 2), where a prior
distribution is assigned on the model indicator k, which implies
extending the prior modeling from parameters to models.
Θ Θ= ⋃ ×∈ k{ }k k is the parameter space associated with the set
of models k, where denotes the space of model indicators.
Having defined priors πk on the indicator parameter k (being
considered now part of the parameters), and the parameter sub-
space Θk, by virtue of Bayes's theorem

∫
θ

θ θ
θ θ θ

π
π

| =
| |

∑ | |Θ∈
p

p p

p p
d

d
d

( , )
( , ) ( )

( , ) ( ) d (8)
k k obs

obs k k k k k

k k obs k k k k kk

where θk is a set of parameters specific to model k, and
θ|p d( , )k kobs and θ |p ( )k k are the likelihood function and the

prior density of the model specific parameters θk, respectively,
given k is the true model. Bayes factors in the Bayesian model
selection context offer a thorough criterion to pairwise compar-
ison of members in { }k . The relative plausibility of model i ver-
sus model j, having observed dobs, is determined by the Bayes
factor given by

=
|
|

BF
p
p

d
d

[ : ]
( )
( ) (9)

i j
obs i

obs j

where |p d( )obs i is the marginal likelihood of data under model
i, which is the normalizing constant of the posterior density (see

the denominator in Eq. (8)), and is given by

∫ θ θ θ| = | |
Θ

p p pd d( ) ( , ) ( ) d
(10)obs i obs i i i i i

i

The above quantity (equation (10)) is the basis for the Bayesian
method's natural penalty against complex models, also known as
Occam's razor [8]. The Bayesian embodiment of Occam's razor is
briefly explained in Appendix A. Non-Bayesian model selection
procedures [2,42,25] rely on comparing (penalized) maximum
likelihoods of the competing models [46]. Such criterion breaks
down when a set of nested models is to be compared, and over-
fitting becomes a serious problem. Since a more flexible model is
able to describe the data better, it gives rise to a higher likelihood
measure, and therefore is favored in a likelihood-based test, while
it performs poorly in terms of prediction. The Bayesian method's
built-in penalty against overly complex models provides a robust
tool to treat varying dimensional problems.
6. Prior elicitation

The first step in a Bayesian inference analysis setting is to
specify prior densities to the model parameters θ (given the model
representation ( ) is chosen). The prior distribution θp ( ) is basi-
cally a tool to summarize the initially available information on the
process, and to quantify the uncertainty associated with this in-
formation. Selecting standard vague or non-informative priors is
favored in this case in order to base the inference only on the
experimental observations.

A number of techniques are currently available for constructing
such standard priors [26]. The use of non-informative priors,
however, is rather delicate for varying dimensional model settings,
since the majority of non-informative priors are improper. Im-
proper priors are only defined up to a proportionality constant
(i.e., not integrable) [26]. In general, improper priors cannot be
assigned to model specific parameters in Bayesian model selection
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problems, as the choice of the arbitrary normalizing constant will
influence the Bayes factor (Eq. (9)). Notice that the Bayes factor is a
multiple of this normalizing constant (Eqs. (9) and (10)). Proper
vague priors (proper priors with large dispersion parameter) also
do not address the difficulty, for they give rise to the so-called
Jeffreys–Lindley paradox [29,24]. The Jeffreys–Lindley paradox is a
problem related to the stability of the Bayes factor, which causes
the simplest model (which might be a very poor reflection of the
data) to always be favored by the Bayes factor.

We address these concerns in our choice of priors. In particular,
we propose the use of a hierarchical Bayes approach to model the
lack of information on the parameters of the prior distribution, by
introducing a second level of prior distributions on these para-
meters. Hence we refrain from using improper priors, yet avoiding
any subjective input to the inference by introducing unground
informative priors. The posterior kernel (of varying dimension)
according to the Bayes rule is

θ θ θ| ∝ |p k p k p kd d( , ) ( , ) ( , ) (11)k obs obs k k

where θk is the parameter vector associated to the k soil layer
model. dobs denotes the ×n 1 vector of normalized displacement
response, recorded at the soil surface. Introducing the second layer
of hierarchy will lead to
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| ∝ | |

∝ | | | |
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For the ease of notation, we define vectors θP and θH which
contain the model specific parameters and the global hyperpara-
meters, respectively. The global parameters are unknowns which
bear on parameters common to all models. Thus
θ = × − ×c z( , )P k
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We, a priori, assume that the velocity field within each layer is
populated from a log-normal distribution. Hence, the log-velocity
field has a multi-variate Gaussian prior density (Eq. (13a)). This
assumption ensures that velocity is a positive-valued random filed.
We further suppose that …c c, , k1 are a priori independent. The
correlation structure of the layered elastic properties will be re-
constructed a posteriori (if there exists any). c0 is set to 200 m/s,
meaning that before the inversion, the media is assumed to be
homogeneous.

The hyper parameters s2 and v are the noise variance and the
precision parameter respectively. We opt for a broadly non-in-
formative priors for these parameters (α δ= = 0.010 0 and
ζ η= = 0.010 0 ), (Eqs. (13b) and (13c)). Since the inference is highly
sensitive to the choice of v, it is important to avoid fixing this
parameter [8]. By considering it as a random variable we elevate
the robustness of the method against poor choices of v. There is no
restriction in using improper priors for the global parameters
(which are common among all the models) [3], since in Bayes
factor calculation (Eq. (9)) the arbitrary constant of proportionality
cancels out. Notice that the Bayes factor is a multiple of the prior
normalizing constant. Hence, the problem with the arbitrary
proportionality constant, which brings about Lindley's paradox, is
removed.

z is the position vector of the −k 1 layer interfaces. |p kz( ) (Eq.
(13d)) reflects the prior assumptions about the position of the
material interfaces. We define an underlying grid of T points
(which coincides with the finite element discretization of the
physical domain). This prior suggests that given a k layer model is
the true process, and there are T candidate nodes to locate −k 1
interfaces, any combination of … −z z( , , )k1 1 is equally likely. We
assign a hierarchical truncated Poisson prior on λ|k , with K being
the maximum number of layers in partitioning (Eq. (13e)). This
setting controls the prior weights given to over-parameterized
models. λ is a hyperparameter to be elicited from the data. A
natural choice of prior on this parameter is a flat Gamma dis-
tribution ι κ= =( 0.010 0 ). The defined prior θp k( , )k does not place
an explicit penalty on the model complexity. However, as stated
earlier, the marginal likelihood contains a built-in penalty on the
model dimension, which strongly depends on the prior variance v

of the coefficients c [8].
7. Posterior computation

A customary burden of using Bayes factors (Eq. (9)) is the
computation of, oftentimes, high dimensional marginal likelihood
integrals (Eq. (10)). To circumvent this difficulty, one may resort to
alternative solutions such as Monte Carlo simulation based
methods (e.g., pseudo-priors [4,5]), or asymptotic approximation
to Bayes factors (e.g., Schwartz's criteria also known as BIC) [42].
The latter is widely used in a variety of applications including
geophysical modeling (e.g., see [13,10,45]) due to the ease of its
implementation. BIC provides a first-order approximation to the
logarithm of the Bayes factor as the sample size grows. The ap-
plicability of the approximation, however, is restricted to models
with regular likelihoods, and i.i.d. data structures. Also the method
calls for the derivation of maximum likelihood estimates for the
parameters of all models, which is an unfavorable fact when K is
large. Monte Carlo methods provide essentially the only accurate
mean of inferring the posterior which does not depend on the
knowledge of the proportionality. Markov Chain Monte Carlo
(MCMC) is an iterative stochastic method designed to generate
random samples from the posterior kernel. A generalization of
MCMC, the so-called Reversible Jump MCMC (RJMCMC), was in-
troduced by Green [18] to generate random samples which are
distributed according to a varying dimensional posterior. The key
aspect of the reversible jump algorithm is the introduction of
some auxiliary random variables to equalize the dimensionality of
the parameter space across models in order for the Markov chain
to be able to move among different dimensions. RJMCMC has re-
cently become increasingly popular in geophysical inversion as a
robust tool for subsurface modeling. A detailed introduction to
geophysical transdimensional Bayesian inversion can be found in
Sambridge et al. [40].

7.1. Reversible jump MCMC implementation as birth–death process

In this section we extract the details involved in the RJMCMC
algorithm designed for our specific inversion setup. Suppose we
want to draw random samples from varying dimensional target
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distribution θ |p k d( , )k obs (Eq. (11)), where the sequence of random
samples constructs a Markov chain.

In order to traverse the varying dimensional posterior surface,
we iteratively perform four types of transitions: Birth (B), Death
(D), Move (M), and Perturb (P). Different search strategies have
been designed depending on the application (e.g., see the original
work by Green [18], and Denison et al. [6]). As long as the algo-
rithm satisfies the balance condition, and the acceptance ratio
remains computationally efficient, we assume that our approach
offers a flexible design.

Let us suppose that at the s( ) th step the chain is at θ θk , ,s
P

s
H

s( ) ( ) ( )

(denoting number of layers, model specific parameters
= … = … −c c z zc z( , , ) , ( , , )s s

k
s T s s

k
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1
( ) ( ) ( )

1
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s( ) , where is the

set of candidate node locations, and T is the size of the set
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that (B) and (D) involve dimension changes in θP
s( ) , while (M), and

(P), proposes moves within the current dimension, hence the
latter proceeds similar to regular Metropolis–Hastings algorithm
[37]. Below is the definition of each transition:
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these four types of transitions, MCMC searches the parameter space for the
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θ θ|p kd( , , )obs P H is the likelihood function, which is constructed
according to Eq. (3).
Notice that the parameter space for the interface positions is
discrete (whereas it is continuous for the velocity space), and a
discrete uniform random variable was drawn to propose the
position of the new interface (16b). Denison et al. [9] show
that the Jacobian term is always unity for discrete transforma-
tions. Therefore only where continuous model spaces change
in dimensions, determining the Jacobian is required, and the
dimension matching transformation maps the continuous
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layer interface is randomly chosen from a uniform probability,
and moved to an available knot location (Fig. 3c). A new set of
hyper parameters θ *

H is drawn from the probability θ θ|*q ( )H H
s( ) .

Log-normal proposals are used to update all the hyperpara-
meters.
In a Move step, as the number of material layers is fixed, the
algorithm reduces to the regular Metropolis–Hastings MCMC
with the acceptance probability of the following form: (Notice
that the hyperparameters of the model are also updated in
Move and Perturb.)
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Perturb: * =k k s( ).
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With probability = *p q

k
P

k k
( )

,s s( ) ( ) , a Perturb move is proposed. A
layer is randomly picked from a uniform density, and its ma-
terial property is perturbed with a Gaussian proposal (Fig. 3d).
It is also attempted to update the model hyperparameters
from log-normal proposal densities (similar to the M move).
The probability of accepting the candidate state is found from
Eq. (19). Notice that the uniform and Gaussian proposals to
update θP do not appear in this ratio (also in the M step), for
reasons of symmetry.
8. Application to a synthetic case

The inversion scheme outlined in the preceding sections is
applied to a synthetic data set to deduce the subsurface elastic
properties of a soil model. We consider the horizontally stratified
semi-infinite soil medium depicted in Fig. 4. The medium is
modeled as a one-dimensional PML-truncated domain, with the
regular domain extending to z¼100 m, and the PML buffer zone
thickness being 10 m. Fig. 4 illustrates the target wave velocity
profile, which reflects sharp transitions between different mate-
rials in depth. The medium is probed with a Gaussian pulse-type
excitation p t( ) applied at the soil surface (Fig. 5a). The maximum
frequency of the excitation is 40 Hz and the peak amplitude is
10 kPa. Fig. 5b depicts the frequency spectrum of the excitation.

Fig. 6a shows the displacement time history response of the
soil model depicted in Fig. 4 to the prescribed load. This is ob-
tained by solving the forward problem (4) and (5) using a mixed
finite element method. 220 elements of length 0.5 m are used in
the analysis. The readings are recorded every 0.001 s for a total
duration of 2 s. Displacement response, as a measurable char-
acteristic of the wave field, will serve as the input to our inversion
scheme. We generate the synthetic data by perturbing the
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displacement response of the soil model computed at the ground
level v t(0, ) with 20% Gaussian noise. Fig. 6b illustrates this data
set. The attenuation effect is disregarded in this study, and the soil
density is assumed to be known a priori (ρ = 2000 kg/m3).
9. Results

In this section, we illustrate the applicability of the Bayesian
varying dimensional inversion, and model determination using the
methodology introduced in the preceding sections. The inversion
is allowed for a maximum of 40 soil layers (up to the truncation
interface), which indicates maximum number of 83 model un-
knowns. This maximum resolution is attributed to the frequency
of the exerted load (maximum frequency 40 Hz). The simplest
earth model is k¼1, which corresponds to the state of a homo-
geneous medium. No additional assumption is made concerning
the regularization of the deduced velocity profile.

We started the inversion with homogeneous initial guess
( = =k c1, 200 m/s). The RJMCMC sampler was run, and a total of
100K iterations were stored as the generated samples. The first
20K samples were discarded as burn-in iterations. Every fifth
visited sample was kept in the chain as high dependency is ex-
pected, especially between successive values of k, since the
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Fig. 5. (a) Time history of the applied stress p t( ). (b
difference between the current and the proposed k values could be
at most one. Fig. 7 illustrates the first 300 RJMCMC sampling se-
quence for the model index (number of layers), starting from k¼1.
This figure shows that k increases rapidly up to k¼10 and in about
200 iterations, then it settles down to the five layer target model.
This figure also implies that even though our sampling strategy
does not force the model to undergo dimension changes at every
iteration (we are pointing to M and P moves) the waiting time at a
single model is not long. Hence the sampler promptly explores the
space of plausible models until it converges to the target model
k¼5. The rest of the simulation effort is committed to arriving at
the stationary condition in sampling the soil parameters of the few
favored models. This observation confirms the efficiency of the
algorithm design and of the proposal density formulations.

Fig. 8a depicts the full sampling history for the same parameter,
to further emphasize the stability of the RJMCMC chain. The
marginal posterior probability mass function of k is shown in
Fig. 8b, which quantifies the level of certainty in accepting each
hypothesis. According to this figure, 6 layer profile is also a likely
model to describe the observations with much less probability.
The figure manifests the Bayesian inversion capability to deduce
the true nature of the underlying process without imposing any
regularization constraint to penalize overly complex models.
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Figs. 9 and 10 illustrate the marginal posterior densities of the
model specific parameters, given the true model k¼5. Fig. 9 shows
the posterior estimates for the layer thicknesses | =p kz d( , 5)obs ,
and their associated uncertainties. The target values are also su-
perimposed on each histogram (dashed lines as reference). The
figure indicates the ability of the inversion scheme to deduce the
target parameters (notice that the deviation of the posterior mean
from the target values are about one to two element dimensions
and that the scales of the figures are not the same). The thickness
of the fifth layer is not included here, as it is considered to be
semi-infinite.

Theoretically, the PML is assumed to be located at a depth
beyond which homogeneity is ascertained. Fig. 10 shows the in-
verted acoustic soil velocities of the true model | =p kc d( , 5)obs ,
together with the target values (notice the variation of scales on
the figures as well).

Fig. 11 shows inference for model hyperparameters. Although
these parameters might not be incorporated directly in model
predictions, they are highly influential in attaining reliable para-
meter estimates. In Fig. 11a the standard deviation of the ob-
servational error term s2 is displayed, which is relatively centered
around the target added Gaussian noise (signal to noise ratio,
SNR¼5).
1 2 3 4 5 6 7 8 9 10
k

sterior samples of k. (b) Posterior mass function of k.



Fig. 9. Marginal posterior density of the layer thicknesses given k¼5 and the corresponding target values (dashed line).

Fig. 10. Marginal posterior density of the layer velocities given k¼5 and the cor-
responding target values (dashed line).

Fig. 11. Marginal posterior density for model hyper-parameters. (a) Noise standard
deviation (s). (b) Precision parameter (v). (c) Rate parameter in poisson prior (λ).
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Fig. 11b depicts the dispersion parameter v. This parameter is of
crucial significance in our model determination framework, since
fixing v to small values (choice of relatively sharp priors on c)
limits the flexibility of each basis function coefficient, therefore
many partitions (layers) are required to adequately model the
target process ( |k d( )obs grows). The definition of the basis func-
tions in a Bayesian partition model is given in Eq. (7). By contrast,
large v (relatively diffuse prior on c) results in a more flexible
regression function posterior mean c̃ z( ) (see Eq. (6)), which can
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Fig. 13. Posterior mean estimate together with 95% credible intervals for the mean
posterior and the mean prior.
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accommodate wilder oscillations in its behavior. Hence, fewer
basis functions are needed to reflect the true underlying process
( |k d( )obs becomes increasingly small), as each basis function has
more degrees of freedom. Notice that here we did not choose to
set up a fixed value for v, rather this parameter is considered as a
random variable (Eq. (13c)), and its value is deduced from the data
such that the marginal likelihood is maximized. The marginal
posterior density of the rate parameter λ in the Poisson prior (Eq.
(13e)) is provided in Fig. 11c. We can see that the Bayesian point
estimate for λ is closely approximated by λ̂≊5. This parameter is
the mean of the Poisson prior equation (13e), which reflects the
numbers of layers k accommodated in the model c z( ). Fig. 12 de-
monstrates the essence of Bayesian updating and uncertainty re-
duction as a result of introducing the experimental observations.
Fig. 12a presents 5�102 superimposed likely prior soil models (Eq.
(6)), with the coefficients of each curve drawn directly from the
definition of the priors (Eq. (13)). These curves show the state of
minimum knowledge about the subsurface structure. No stratifi-
cation and velocity measure is discernible at this initial state.
Fig. 12b depicts 5�103 posterior soil model realizations, which
mimic accurately the general trend of the target process.

Fig. 13 quantifies the observations of the previous figure. The
posterior mean soil profile c̃ z( ) (black solid curve) is illustrated
together with 95% credible intervals for the posterior predictions
(dark shaded area). The prior credible region is also included in the
figure (light shaded area), which occupies the entire space (and
extends to infinity). The mean posterior prediction of the dis-
placement time history response of the media =v z t( 0, ) is pic-
tured in Fig. 14. The figure also provides a measure of uncertainty
around the posterior mean estimate ṽ t(0, ). This plot accentuates
the high fidelity of the posterior estimates to the experimental
observations.
Fig. 14. Posterior displacement prediction together with 95% credible intervals
around the mean.
10. Conclusions

This paper introduces a probabilistic calibration approach via a
Bayesian formulation for the solution of inverse problems, defined
by the random field characterization of heterogeneous media, for
an acoustic one-dimensional velocity field with horizontally
layered structure. A self-regularized varying structure model is
formulated based on the notion of Bayesian partition models in
order to parameterize the acoustic wave velocity random field. The
method offers a reduced dimensional inversion technique by di-
viding the velocity random field into an unknown number of soil



Fig. 15. A Schematic presentation of Bayesian Occam's razor.
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layers within a certain depth interval. Number of layers, their ve-
locities and thicknesses are inferred, conditioned on the observa-
tions. The reward of the approach is that the explicit regularization
of the inverted profile by global damping procedures or even
through imposition of priors, which carry smoothness constraints
(and might introduce subjectivity to the inference process), is not
required. The reversible jump MCMC algorithm was implemented
to carry out the simulation of the resulting varying dimensional
posterior density. The provided synthetic case indicates significant
functionality of the inversion scheme to retrieve the benchmark
subsurface profile.
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Appendix A. Bayesian Occam's Razor

A simple explanation of why the Bayesian model selection
adheres to the concept of parsimony is presented in Fig. 15. This
figure illustrates the Bayesian embodiment to the latter concept
[21,30,8]. The horizontal axis presents the data space, and the
vertical axis shows the measure of the marginal likelihood. 1

and 2 are two competing explanations of a same process. Model
1 is the simpler theory, and 2 is the more complex one. The

simple model is only capable of reaching a limited subdomain in
the data space 1, whereas the more complex model is able to
embrace a wider space due to its flexibility. As both |p d( )1 and

|p d( )2 are integrated to one over the data space, if the observed
data lies in 1 which is accessible by both the models, then 1 is
favored over 2, as it assumes higher probability in this region.
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