
Appears in Parallel and Distributed Processing Techniques and Applications (PDPTA99), Aug, 1999, Las Vegas, NV.

Preliminary Report on the Design of a
Framework for Distributed Visualization

Martin Aeschlimann, Peter Dinda, Loukas Kallivokas,
Julio López, Bruce Lowekamp, and David O’Hallaron

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, U.S.A.
faeschli, pdinda, loukas, jclopez, lowekamp, drohg@cs.cmu.edu

Abstract The paper is a preliminary report on the de-
sign of a framework, called Dv, for building interactive
distributed visualizations on computational grids. The
framework is based on a form of mobile object, called an
active frame, that consists of applicationdata and a pro-
gram that manipulates the data. The system provides a
flexible framework for building distributed applications
that are performance-portable in the presence of hetero-
geneous resources and that adapt to dynamic changes in
the status of system resources such as processor cycles
and network bandwidth.

Keywords: distributed visualization, active frames,
computational grids.

1 Introduction

In a typical Internet application, a client requests
content from a server, which obtains the content
and sends it back to the client. The content that
the server obtains can be either static or dynamic.
Static contentis stored on the server in files or
databases, whiledynamic contentis generated on-
the-fly by the server. For most applications, the
amount of computation needed to satisfy a request
is fairly small. However, there is an emerging class
of Internet applications that require large amounts
of computation before the dynamic content can be
sent back to the client. An important example of
this kind of compute-intensive Internet application
is the interactive visualization of the massive scien-
tific datasets that are generated by computer simu-

lations.
For example, we are part of a group of seis-

mologists and engineers (called the Quake project)
that is developing the capability for predicting, by
computer simulation, the ground motion of large
basins during strong earthquakes in the Greater
Los Angeles and Kobe, Japan basins [1]. The
Quake ground motion simulations, which must be
run remotely on supercomputers because of their
complexity, can produce datasets on the order of
hundreds of gigabytes to terabytes of floating point
numbers that represent displacements of points in
the earth during an earthquake. In order to inter-
pret the numbers, the datasets must be transformed
into visualizations through a sequence of complex
transformations such as interpolating an irregular
grid onto a smaller regular grid, computing isosur-
faces, setting up the scene, and rendering the scene
into an image. This process is described in more
detail in Section 2.

Currently, Quake visualizations are created on
request by the graphics department of the super-
computing center where the simulations are com-
puted, with a response time of weeks or months.
This is unsatisfactory to the scientists and engi-
neers, who would rather manipulate the datasets
interactively from their personal desktop and lap-
top systems. However, manipulating huge datasets
interactively is difficult because the necessary re-
sources are limited, heterogeneous, and dynamic.

Limited resources.In an ideal world, we would
simply copy the entire dataset from the remote su-

percomputing center and manipulate it locally. Un-
fortunately, copying multi-terabyte files is not fea-
sible because of limited network bandwidth. And
even if we had access to sufficient network band-
width, we would not have the resources at our lo-
cal site to store and backup multi-terabyte files.
The crucial implications are that (1) Large scien-
tific datasets must reside on the remote site where
they are computed; and (2) Interactive visualization
applications that manipulate these remote datasets
must be distributed, with the computation parti-
tioned across hosts at the remote and local sites.
Thus, we need a framework for buildingdistributed
visualization applications. Since visualization al-
gorithms are complex and difficult to develop, the
framework must also be able to incorporate exist-
ing visualization packages such as AVS [9] and
vtk [7].

Heterogeneous resources.The resources avail-
able for distributed visualizations are wildly het-
erogeneous. Networks have different bandwidths
and hosts have different computing power, mem-
ory, and display capabilities. Thus, the appropriate
partitioning of a distributed visualization applica-
tion depends on the available computing, network-
ing, and storage resources. A distributed visual-
ization framework must provide tools for building
applications that areperformance portable, in the
sense that applications can sense the available re-
sources at load time and then configure themselves
to run as well as possible given those resources.
For example, we should be able to run the same
distributed visualization application from a PDA
attached to a wireless link, a laptop attached to a
slow 10 Mb/s LAN, or a powerful desktop system
attached to a fast 1 Gb/s LAN.

Dynamic resources.Finally, we must also deal
with the fact that most computing and network-
ing resources are shared. Networks become more
or less congested, processors become more or less
loaded, and thus the availability of these resources
changes over time. In general, a distributed visu-
alization framework must provide tools for build-
ing applications that areadaptive, in the sense that
applications can sense the availability of compute
and network resources at run time, and dynami-
cally readjust themselves to run as well as possible
given those resources.

This paper is a preliminary report on the high-
level design of a framework calledDv (distributed
visualization) for building interactive distributed
visualizations of massive scientific datasets. A
Dv application runs on acomputational gridof
hosts[5] that communicate over the Internet. Sec-
tion 3 introduces the Dv model for providing ser-
vices on such a grid.

The Dv framework is based on the central notion
of an active frame, which is an application-level
mobile object that contains both application data
and a program that manipulates the data. Active
frames are processed byactive frame serversrun-
ning on hosts at the remote and local sites. Each
server waits for an input active frame to arrive at
a well-defined port, then executes the active frame
program, which applies one or more transforma-
tions to the active frame data, generates a new out-
put active frame, and computes the address of the
next active frame server. Finally, the server sends
the output frame to the next server in the grid.

Active frames and their servers are described in
more detail in Section 4. The intent is to provide an
application-level mechanism that is simple enough
to deploy widely, flexible enough to build applica-
tions that are both performance-portable and adap-
tive, and yet reasonably efficient. Also, the idea of
active frames is quite general and could prove use-
ful for other types of distributed signal processing
and multimedia applications. However, our work is
still preliminary and we do not yet have any strong
evidence to support these claims. Nonetheless, per-
formance results from a prototype implementation
of an active frame server (detailed in Section 4)
are encouraging and suggest that we do not have
to pay an inordinate cost for the flexibility of the
active frame mechanism.

Finally, Section 5 describes how a collection
of active frame servers are customized and com-
posed to form a Dv application. This section also
describes in a general sense the hooks that Dv pro-
vides — in conjunction with system monitoring
tools like the CMU Remos system [3, 6] or Net-
work Weather Service [11] — to create applications
that are both performance-portable and adaptive.

remote
dataset

interpolation scene
synthesis

local
display

and
user

simulation
results

materials
database ROI resolution contours scene

I II III IV V

isosurface
extraction renderingreading

resolution

Figure 1: An earthquake visualization application.

2 Motivating application

The initial motivatingapplication for the Dv frame-
work is the visualization of massive datasets that
model the motion of the ground during strong earth-
quakes. The datasets are produced by simulations
developed by the Quake project [1]. Quake simula-
tions manipulate large unstructured finite element
meshes. For a moderately sized basin such as the
San Fernando Valley of Southern California, the
meshes consist of 15M nodes and 80M tetrahedral
elements. A simulation of 60 seconds of shaking
can generate on the order of 6 TB of data.

In a typical Quake visualization, the dataset is
stored at aremote siteand consists of thousands of
3D frames, where each frame records the displace-
ment amplitude (i.e., the amount of motion at that
spot in the earth) at each node of a large unstruc-
tured mesh. A user at thelocal site interactively
requests data from someregion of interest(ROI) in
the dataset. The region of interest can be expressed
both in space within a frame or in time across mul-
tiple frames. If the user requests data from a single
frame, then the result at the local site is a still im-
age. If the user requests multiple frames, then the
result at the local site is an animation.

The process of interactive visualization can be
thought of as a series of queries to a massive dataset.
Before the data is presented to the user it is pro-
cessed by a sequence of filters. The computations
are usually expressed in the form of a flowgraph.

Figure 1 shows the form of a typical Quake visu-
alization flowgraph. Stage I reads the appropriate
part of the dataset, as indicated by the ROI. Stage
II interpolates the displacements from the origi-
nal unstructured mesh onto a smaller regular mesh

whose size is determined by an adjustable reso-
lution parameter. Stage III computes isosurfaces
(contours) based on the soil densities and the dis-
placement amplitudes. In stage IV the scene is
synthesized according to various scene parameters
such as point of view and camera distance. Finally,
the scene is rendered from polygons into pixels
that are displayed on a monitor. The resolution of
the displayed image is determined by a resolution
parameter.

3 Grid service model

We envision that applications such as the dis-
tributed earthquake visualization in Figure 1 will be
provided as services that operate on computational
grids of hosts.

Figure 2 shows the basic idea. Suppose that
a scientist at some site has an interesting dataset
that he wants to make available to members of
the research community to visualize and otherwise
manipulate. We will refer to him as theservice
provider and to his site as theremote site. As
part of creating the service, the service provider
designates a collection ofm � 1 hosts under his
administrative control that are available for running
programs that might be required to satisfy service
requests from other sites. At least one of thesem

hosts has access to the dataset and in general them

hosts will be shared with other applications. The
m hosts will typically be physically located at the
remote site, but in general this is not a require-
ment; some of them hosts could be acquired using
grid-based resource management services such as
Globus [4].

A scientist at another site (i.e., aservice userat

Remote compute hosts
(allocated once per service

by the service provider)

Local compute hosts
(allocated once per session

by the service user)

WAN

Figure 2: Grid service model.

thelocal site) visualizes or manipulates the dataset
at the remote site by issuing a finite series of re-
quests to a host on the remote site. The period of
time between the first request and the last request is
called asession. Before the scientist begins a par-
ticular session, he must designate a collection of
n � 1 hosts that are available for running any pro-
grams that are needed to satisfy service requests.
As with them remote hosts, then local hosts are
not necessarily physically located at the local site,
although most likely they will be.

The main idea is that there are a total ofm + n
hosts available to perform the necessary computa-
tions during the session,m of which were desig-
nated by the service provider to handle all requests
from all service users, andn of which were allo-
cated by the service user at the local site for that
session. The motivation for choosing this partic-
ular model is that it allows service providers to
bound the number of compute cycles that will be
consumed at their site by any particular service.
However, it also gives the service user the option
to contribute resources that might help reduce the
response times for their service requests. A service
user who needs better response times can always
do so by increasing the value ofn.

Note that our model is a simple generalization of
some other grid service models. For example, the
usual client/server Internet model assumesm =

n = 1. Netsolve, a network-enabled solver toolkit
from University of Tennessee [2], hasm � 1 and
n = 1.

4 Active Frames

At the core of the Dv framework is the notion of
anactive frame, which is an application-level mo-
bile object that containsframe dataand aframe
programthat manipulates the data. The frame pro-
gram implements a singlerun() method

interface ActiveFrame {
NextHost run();

}

that computes an output frame and returns the net-
work location of the destination host for the output
frame.

Active frames are processed byactive frame
servers, which are processes that run on each host
in the computational grid described in the previous
section. A server consists of two components: an
application-independent interpreter that executes
active frame programs, and an optional collection
of application-specific library routines that can be
called from the frame program. Figure 3 shows the
basic architecture.

At run-time, an active frame server waits on a
well-defined port for an input active frame to arrive
from the network. The server reads the input from
the network, extracts and demarshals the frame pro-
gram and data, and passes them to the interpreter,
which executes therun()method on the input frame
data to produce a new output frame data. After the
execution finishes, the server marshals the output
frame data and the frame program into a new out-
put frame, and sends this frame to the destination
host.

The idea of bundling programs with network
data is certainly not new to active frames. This no-

frame
data

frame
program

active
frame

interpreter

application
libraries

frame
data’

frame
program’

Active Frame
Server

Input
Active Frame

Output
Active Frame

Host

Figure 3: Active frame server.

tion has been exploited effectively by active mes-
sages in the context of parallel processing [10], and
by active networks in the context of adding addi-
tional functionality to network routers [8]. The
rationale behind active frames is the suspicion that
this same notion will also prove effective in the
context of grid computing.

The active frame is clearly a general and flexible
mechanism. A potential disadvantage is that this
flexibility introduces performance overhead. Addi-
tional space, and thus bandwidth, is required by the
frame program, and extra processing time is nec-
essary to interpret and execute the frame program.
However, for the distributed visualization applica-
tions we are interested in, we expect the size of
the frame data and the time required to process it
to swamp the overhead associated with processing
the frame program.

A simple experiment provides some preliminary
results to support this conjecture. The experiment
compares the cost of processing an active frame
to that of processing a “passive frame”, which is
simply an active frame with no frame program.
The operation in each case is the extraction of a
plane from a Quake ground motion dataset with
7K unstructured mesh nodes and 35K tetrahedral
elements. The active frame version is written in
Java with calls to a native C++ method to perform
the plane extraction. The passive frame version is
written in C++, and the call to the extract opera-
tion is defined statically on the server. The size
of the frame data is 820 KB, which is quite small
and makes it more difficult to amortize any perfor-

mance overheads associated with the frame over-
heads. The measurements were gathered on three
Pentium II/450 MHz hosts — one for the server,
one for the source of the input frame, and one for
the sink of the output frame — each with 256 MB
of memory running Linux 2.0, and connected to
the others by a 100 Mb switched ethernet network.

Figure 4 shows the results of the experiment.
The active frame version introduces an additional
delay of 119 ms, which represents a 16% overhead
of the total processing time. The receive phase
in the active frame version is 23% slower than the
receive phase in the passive frame version, account-
ing for 112 ms of the total delay. This is due to the
demarshalling of the frame program and its inter-
pretation. The additional delay introduced in the
compute and send phases is relatively small.

Passive frames Active frames
Operation Elapsed time (ms) Elapsed time (ms)

Receive 485.95 (66%) 598.13 (70%)
Compute 172.04 (23%) 175.00 (20%)
Send 80.79 (10%) 84.46 (10%)

Figure 4: Performance of a prototype active frame
server.

The results show that any improvement in the
receive phase of the process would have a major
impact in the overall performance of the system.
In particular, the use of a caching strategy to avoid
copying the static parts of the datasets with every
frame would offer a significant performance incre-

Dv
Server

Remote
DV Servers

Remote
dataset

Local
Dv

client

Local
DV Servers

Response
frames

Dv
Server

Dv
Server

Dv
Server

Dv
ServerResponse

frames
Response

frames
Response

frames

Display

...

Request frame

Response
frames

User
inputs

Figure 5: The Dv framework.

ment. For example, in the first stage of the Quake
visualization application, the structure of the mesh
does not change from one frame to the next one.
Only the amplitude values vary. However, in many
situations the structure of the output dataset varies
in every step because it depends on the attribute
values of the input, making it less useful to cache
the structure.

5 Dv overview

Figure 5 shows the basic architecture of a Dv sys-
tem. The system is a collection of identical active
frame servers (Dv servers) running on the hosts of a
computational grid, plus an additional active frame
server (the local Dv client) specialized with a user
interface that accepts user inputs and displays ren-
dered images. Each Dv server is an active frame
server specialized with an existing visualization li-
brary. The initial implementation of Dv supports
vtk, a powerful and comprehensive open-source
visualization library from GE [7].

During the course of a visualization session, the
Dv client sends a series ofrequest framesto a Dv
server (therequest server) that has direct access
to the remote dataset. Each request frame con-
tains visualization parameters such as region of
interest and resolution, a description of the visu-
alization flowgraph, a scheduler that assigns flow-

graph nodes to Dv servers, and a frame generator
that produces a sequence of one or moreresponse
framesoriginating from the request server. Re-
sponse frames pass from server to server until they
arrive at and are processed by the Dv client.

Figure 6 shows an example of a Dv version of
the earthquake ground motion visualization from
Figure 1. In this example, each frame carries a
program that statically assigns stage I to the first
remote Dv server, stages II and III to the second
remote Dv server, stage IV to the local Dv server,
and stage V to ythe local Dv client.)

read (I)

Remote
dataset

Dv
client

interp (II)
iso (III) scene (IV)

Remote
Dv server

Remote
Dv server

Local
Dv server

Figure 6: Example Dv Quake simulation.

5.1 Scheduling Dv applications

An interesting aspect of the Dv design is that it pro-
vides a flexible framework for investigatingand ex-
perimenting with different scheduling policies. By

making scheduling decisions at different points in
a visualization session, we can create applications
with different degrees of resource awareness and
adaptivity. Here are a number of possible scenar-
ios:

Scheduling at request frame creation time.In
this scenario, when the client issues a request
frame, a single schedule for all of the response
frames that result from the request is constructed.
Each of these response frames visits the same se-
quence of hosts, and each host performs the iden-
tical computation on each frame. The decision
can be made by the client and passed along with
the request frame, or the decision can be made by
the server when it receives the request. The ap-
plication can be endowed with some measure of
performance-portability if the scheduler consults a
resource monitoring system such as Remos [6] or
NWS [11]. However, since all response frames ad-
here to the same schedule, the application will not
be able to adapt to dynamic resource availability.

Scheduling at response frame creation time.In
this scenario, the request server schedules each
frame when it is created. The application can be
scheduled so that it is performance-portable, and
also so that it has some degree of adaptivity. How-
ever, since the schedule for any individual frame is
fixed once the frame is in flight, the application can
only adapt at frame boundaries.

Scheduling at response frame delivery time: In
this scenario, a new scheduling decision is made
each time a Dv active frame server computes a
destinationhost for an output frame. This approach
provides the greatest degree of adaptivity, but it
may be overkill.

6 Summary and conclusions

We have described a framework calledDv for build-
ing interactive distributedvisualizationsof massive
remote scientific datasets. The framework is based
on the notion of an active frame, which is a form
of mobile object that contains both application data
and a program that manipulates the data. The idea
is quite general and could prove useful for appli-
cations besides distributed visualization. Besides
having a fairly simple design that could allow it to

be deployed on a wide scale, Dv provides a flexi-
ble framework for building distributed applications
that are performance-portable and adaptive.

References
[1] BAO, H., BIELAK , J., GHATTAS, O., KALLIVOKAS , L.,

O’HALLARON, D., SHEWCHUK, J.,AND XU, J. Large-scale sim-
ulation of elastic wave propagation in heterogeneous media on
parallel computers.Computer Methods in Applied Mechanics
and Engineering 152(Jan. 1998), 85–102.

[2] CASANOVA, H., AND DONGARRA, J. Netsolve: A network server
for solving computational science problems. Tech. Rep. CS-95-
313, University of Tennessee, Nov. 1995.

[3] DEWITT, T., GROSS, T., LOWEKAMP, B., MILLER, N.,
STEENKISTE, P., SUBHLOK, J., AND SUTHERLAND, D. Remos:
A resource monitoring system for network-aware applications.
Tech. Rep. CMU-CS-97-194, School of Computer Science,
Carnegie Mellon University, Dec. 1997.

[4] FOSTER, I., AND KESSELMAN, C. Globus: A metacomputing
infrastructure toolkit.International Journal of Supercomputer
Applications 11, 2 (1997), 115–128.

[5] FOSTER, I., AND KESSELMAN, C., Eds.The Grid: Blueprint for
a New Computating Infrastructure. Morgan Kaufman, 1999.

[6] LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS, T.,
STEENKISTE, P., AND SUBHLOK, J. A resource query interface
for network-awareapplications. InProc. 7th IEEE Symp. High-
Performance Distr. Comp.(July 1998).

[7] SCHROEDER, W., MARTIN, K., AND LORENSEN, B., Eds.The Vi-
sualization Toolkit: An Object-Oriented Approach to 3D Graph-
ics, second ed. Prentice Hall PTR, Upper Saddle River, NJ, 1998.
www.kitware.com.

[8] TENNENHOUSE, D., AND WETHERALL, D. Towards an active
network architecture.Computer Communication Review 26, 2
(August 1995), 5–18.

[9] UPSON, C., FAULHABER, T., KAMINS, D., ET AL. The application
visualization system: A computational environment for scien-
tific visualization. IEEE Computer Graphics and Applications
9, 4 (July 1989), 30–42.

[10] VON EICKEN, T., CULLER, D., GOLDSTEIN, S., AND SCHAUSER,
K. Active messages: a mechanism for integrated communica-
tion and computation. InProc. 19th Intl. Conf. on Computer
Architecture(May 1992), pp. 256–266.

[11] WOLSKI, R. Forecasting network performance to support dy-
namic scheduling using the network weather service. InPro-
ceedings of the 6th High-Performance Distributed Computing
Conference (HPDC97)(Aug. 1997), pp. 316–325. extended
version available as UCSD Technical Report TR-CS96-494.

