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Abstract: The impulse–response (IR) test is the most commonly used field procedure for assessing the structural integrity of piles embedded
in soil. The IR test uses the response of the pile to waves induced by an impulse load applied at the pile head in order to assess the condition
of the pile. However, due to the contact between the pile and the soil, the recorded response at the pile head carries information not only about
the pile, but about the soil as well, thus creating the as-yet-unexplored opportunity to characterize the properties of the surrounding soil. In
effect, such dual use of the IR test data renders piles into probes for characterizing the near-surface soil deposits and/or soil erosion along the
pile–soil interface. In this article, we discuss a systematic full-waveform-based inversion methodology that allows imaging of the soil
surrounding a pile using conventional IR test data. We adopt a heterogeneous Winkler model to account for the effect of the soil on the
pile’s response, and the pile’s end is assumed to be elastically supported, thus also accounting for the underlying soil. We appeal to a partial
differential equation (PDE)-constrained-optimization approach, where we seek to minimize the misfit between the recorded time-domain
response at the pile head (the IR data), and the response due to trial distributions of the spatially varying soil stiffness, subject to the coupled
pile–soil wave propagation physics. We report numerical experiments involving layered soil profiles for piles founded on either soft or
stiff soil, where the inversion methodology successfully characterizes the soil. DOI: 10.1061/JENMDT.EMENG-6865. © 2023 American
Society of Civil Engineers.

Introduction

The analysis of dynamic soil–structure interaction problems and
the evaluation of seismic site effects requires characterization of the
dynamic properties of the shallow soil layers. Typical needs arise
in the aseismic design of infrastructure components (Kausel 2010),
or in the analysis of vibration effects in the built environment
(Lombaert et al. 2015). The dynamic soil properties, which typi-
cally include the low-strain shear and dilational wave velocities,
can be determined by either laboratory tests or in situ methods.
Laboratory tests, such as bender element tests and resonant column
tests, are well-established, but sample preparation may influence
the measurements (Rix et al. 2000).

Alternatively, the in situ evaluation of dynamic soil properties in-
clude borehole and surface methods. Borehole methods (e.g., cross-
hole and downhole tests) (Stokoe et al. 1978; Bregman et al. 1989)
provide a good resolution of the dynamic soil properties with depth,

but are invasive, laborious, and expensive because boreholes are
required. Surface methods, such as the spectral analysis of surface
waves (SASW) method (Nazarian and Desai 1993; Stokoe et al.
1994), and its successor, the multichannel analysis of surface waves
(MASW) (Park et al. 1999), are based on measurements of free-
field vibrations generated by impacting the soil’s surface. Surface
methods are nonintrusive and relatively easy to perform, but have
limited resolution at larger depths (Schevenels et al. 2008), are
plagued by near-field effects, and are inherently one-dimensional
methods. More generally, the identification of soil properties from
in situ measurements relies on the solution of an inverse medium
problem. Commonly, the assumption of a horizontally layered me-
dium is made to make this inversion more tractable, but, recently,
full-waveform inversion techniques have emerged that do not rest
on such assumptions (Kallivokas et al. 2013; Fathi et al. 2015,
2016) and are viewed as the most promising for reconstructing the
soil profiles at shallow depths.

In assessing seismic risk to existing pile foundations or when
evaluating remaining service life, the condition assessment of piles
is also of importance. It is most often the case that the condition
assessment of piles embedded in soil is carried out without taking
into account the coupling effects with the surrounding soil [for ex-
ample, the nondestructive methods described by Rausche et al.
(1985) and Holeyman (1992)]. Methods are based on either high-
strain and low-strain dynamic pile loading. High-strain dynamic
pile testing involves high impact loading, where the force applied
at the pile head and the pile head velocity are monitored during
the impact. The main objective of high-strain dynamic pile testing
is to verify the ultimate bearing capacity of the pile, and the
load amplitude should be sufficiently high to mobilize the pile
capacity (Hertlein and Davis 2007). High-strain dynamic pile
testing involves signal matching of the measured signal with a
numerical model of wave propagation along the pile, and various
signal matching procedures of varying complexity have been
proposed (Middendorp and Verbeek 2004), such as CAPWAP
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(Rausche et al. 2000), TNOWAVE (Courage and Bielefeld 1992),
and GRLWEAP (Rausche et al. 1992).

In contrast, low-strain dynamic pile test methods aim at verify-
ing pile integrity, where in practical applications the impact sources
are instrumented hammers, or low-amplitude harmonic vibration
shakers. A distinction should be made between the sonic-echo test
and the impulse–response test: the sonic-echo test is performed by
measuring the pile head velocity due to (low-amplitude) hammer
impact, whereas in the impulse–response (IR) test, the hammer
force is also measured using an instrumented hammer. The IR test
is the most frequently used test for assessing piles (Baxter et al.
2004; Davis 2003; Finno and Gassman 1998; Liao and Roësset
1997; Rausche 2004), and is considered cost-effective due to the
ease of the associated field procedures. The IR test is used to
assess the material properties of the pile, or its geometric properties
(cross-sectional area and length), and more rarely both; exceptions,
using a signal-matching inversion procedure, include th studies by
Shahram and Fakharian (2008) and Warrington (2016).

The two interests—soil characterization and pile condition
assessment—have been, by and large, treated separately: whereas
characterizing the soil prior to construction remains of critical im-
portance, postconstruction condition assessment of the coupled
soil–pile system should not treat each medium separately because
the coupled effects cannot be ignored (Ekanayake et al. 2013;
Phuong et al. 2016). Although the literature is very rich in reports
of both field and numerical investigations of dynamic soil–pile
interactions (e.g., Seylabi et al. 2017), due to its complexity, the
associated inverse problem has not been treated in a systematic
manner.

In earnest, a complete imaging of both the soil and the pile would
require that one inverts for the spatially distributed properties of both
media; this includes Young’s modulus, mass density, cross-sectional
area, and length of the pile, in addition to soil parameters. From an
inversion perspective, the task is daunting, and, to date, has not been
attempted. It is only recently that a semiempirical process has been
reported (Yu et al. 2022), where the IR data have been used to
simultaneously assess the pile’s and the soil’s characteristics, but
a bona fide inversion process has yet to be reported.

In this paper, we address the as-yet-unexplored use of IR mea-
surements to characterize the soil properties in the vicinity of the
pile. The key idea explored in this paper is that the recorded re-
sponse at the pile head carries information not only about the pile,
but about the soil as well due to the dynamic interaction between
the pile and the soil. Therefore, the IR test may allow to also char-
acterize the properties of the surrounding soil. In effect, such dual
use of the IR test data treats the pile as a probe, tasked with inferring

the dynamic soil properties in the vicinity of the pile, and the method
could possibly also be used to detect erosion or pile-soil gaps
(Radhima et al. 2021) along the pile shaft. The explanation of the
methodology makes three key assumptions: (1) the soil in the vicin-
ity of the pile, although arbitrarily heterogeneous in depth, is hori-
zontally layered, (2) the soil is in contact with the pile along the
pile’s entire length, and (3) the induced soil response remains in the
small-strain regime. The first assumption does not preclude lateral
heterogeneity away from the pile’s immediate vicinity (e.g., within
a pile radius away from the pile), and the second assumption still
allows for weak pile–soil bonding to be captured in the form of
reduced soil stiffness.

This paper is organized as follows: in the next section, the
dynamic soil–pile model is introduced, where a heterogeneous
Winkler model is used to represent the soil surrounding an un-
capped axially loaded pile. The two most salient issues of the for-
ward problem are discussed, namely, the dispersive characteristics
of the coupled soil–pile problem and the sensitivity of the pile head
response to variations of the soil properties. In the following section,
the soil-pile model is used to formulate the IR-based soil characteri-
zation as a partial differential equation (PDE)-constrained optimiza-
tion problem. A full-waveform inversion technique is proposed,
where the misfit between the recorded time-domain response at
the pile head (the IR data) is minimized. The numerical implemen-
tation of the proposed methodology is discussed next, followed by
the Numerical Examples section, where we present the results from
four numerical experiments based on the proposed methodology.
The main conclusions are summarized in the last section.

Pile Embedded in Soil: Preliminary Considerations

The Forward Problem

Consider a homogeneous pile embedded in soil [Fig. 1(a)]. The pile
has length L, constant Young’s modulus E, mass density ρ, and
cross-sectional area A. The surrounding soil is assumed to be hetero-
geneous and is modeled using the Winkler hypothesis: its distrib-
uted stiffness per unit length is denoted with kðxÞ, where x is the
axial coordinate measured from the pile head. The pile rests on a
soil layer, whose stiffness, following again a Winkler hypothesis,
is denoted with kb; the pile head is subjected to a dynamic load
PðtÞ [Fig. 1(b)]. The Winkler model is the simplest one can use
to represent the soil and is adopted herein precisely because of its
simplicity and common use in practice (Chin and Poulus 1991;
Crispin et al. 2018); however, the described methodology can readily

(a) (b)

Fig. 1. Pile embedded in soil: (a) physical model; and (b) mathematical idealization.
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accommodate more sophisticated soil models (e.g., Takemiya and
Yamada 1981; Holeyman and Whenham 2015) without substantial
changes to the approach.

The wave-propagation physics associated with the mathematical
model shown in Fig. 1(b) can be described by the following PDE:

∂
∂x

�
EA

∂u
∂x

�
− ku − ρA

∂2u
∂t2 ¼ 0; x ∈ ð0;LÞ; t ∈ ð0;TÞ ð1Þ

subject to the following boundary conditions:

EA
∂u
∂x þ P ¼ 0; x ¼ 0; t ∈ ð0;TÞ ð2aÞ

EA
∂u
∂x þ kbu ¼ 0; x ¼ L; t ∈ ð0;TÞ ð2bÞ

and initial conditions of

u ¼ 0; t ¼ 0; x ∈ ð0;LÞ ð3aÞ
∂u
∂t ¼ 0; t ¼ 0; x ∈ ð0;LÞ ð3bÞ

where u≡ uðx; tÞ = axial pile displacement.
Consider next a typical application of an IR test: the pile head

(x ¼ 0) is subjected to a Gaussian pulse, and the response uð0; tÞ is
recorded at the same point. Fig. 2 depicts the normalized response
at the pile head for two contrasting cases: (1) when the effect of
the surrounding soil is ignored [kðxÞ ¼ 0]; and (2) when the soil
is taken into account [kðxÞ ¼ k0 ≠ 0]. In both cases, it is assumed
that the pile rests on bedrock (kb ¼ ∞).

As it can be seen, the two traces differ significantly: the differ-
ence is due to the soil, and it is precisely this difference in the record
that we seek to exploit to infer the properties of the soil. Said differ-
ently, the head record contains information about the surrounding
soil properties (and, in general, of the underlying soil too when
kb ≠ ∞), which we seek to reveal by, effectively, using the piles
as probes.

Dispersion and the Cutoff Frequency

In a free-standing pile [no surrounding soil and kðxÞ ¼ 0], waves
propagate at a single velocity c ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

. However, the presence
of the soil leads to dispersive behavior, where waves propagate at
different frequency-dependent speeds. The behavior is typically
captured by the dispersion relation, which connects the spatial
wave number ξ to the frequency f. For constant soil stiffness
kðxÞ ¼ k0 and for an infinitely long pile fixed at its end, the
dispersion relation reads

ξ2 ¼
�
2πf
c

�
2 − k0

EA
ð4Þ

Fig. 3 depicts the dispersion behavior for two cases, correspond-
ing to kðxÞ ¼ k0 (solid line = dispersive) and kðxÞ ¼ 0 (dotted
line = nondispersive), respectively.

Of importance is the shaded region between the origin and the
cutoff frequency fc, which can be obtained by enforcing the
vanishing of the right-hand-side of the dispersion relation Eq. (4)

fc ¼
1

2π

ffiffiffiffiffiffi
k0
ρA

s
or

fcL
c

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffi
k0L2

EA

r
ð5Þ

Below the cutoff frequency, waves do not propagate and, con-
sequently, to be able to use the pile as a probe, it is imperative that
the frequency spectrum of the head load lies above the cutoff fre-
quency fc. In general, when the soil stiffness kðxÞ varies along the
pile length, the dispersion relation is more complicated than Eq. (4):
there can be multiple band gaps such as the shaded region of Fig. 3,
as indeed is the case with layered soils.

However, it can be shown, that the stiffness of the underlying
soil kb does not impact the (first) cutoff frequency: consider, for
example, a pile with L¼ 45 m, ρ¼ 2,400 kg=m3, E¼ 40 MN=m2,
A ¼ 1 m2, and k0 ¼ 120 MN=m2. Then, using Eq. (5), the cutoff
frequency is fc ≈ 35 Hz. To illustrate the effect of the cutoff fre-
quency and its invariance with respect to kb, the pile head is sub-
jected to two different Gaussian pulses, whose spectral bandwidth
is fb ¼ 20 Hz, and fb ¼ 200 Hz, respectively (the Appendix gives
a definition of the spectral bandwidth). In the first case, the pulse’s
frequency content lies below the cutoff frequency (fb < fc), i.e., it
is fully contained in the band gap, whereas in the second case, a
good portion of the pulse’s frequency content is within the pass-
band of the dispersion plot.

Fig. 4 depicts the time histories of the displacement computed
at the pile head for the two Gaussian pulses, and for two different
values of kb. In Fig. 4(a), the Gaussian pulse with the subcutoff
frequency content does not promote the propagation of waves for
either of the two kb values, whereas in Fig. 4(b), in the case of the
Gaussian pulse with the wider fb spectrum, waves propagate and in
fact result in different traces for the two different kb values.

In conclusion, provided that the frequency content of the pile
head excitation is within the pass-bands of the dispersion relation,
even if partially, then the time trace of the response at the pile head
is sufficiently sensitive to variations of the soil properties to allow
for their determination via full-waveform inversion, as outlined in
the next section.

Fig. 2. Typical response of a pile fixed at its end (kb ¼ ∞) when
subjected to a Gaussian pulse head load: (a) no surrounding soil
(dashed line) and kðxÞ ¼ 0; and (b) pile embedded in soil (solid line)
and kðxÞ ¼ k0 ¼ 120 MN=m2.

Fig. 3. Dispersion curve of a pile with kðxÞ ¼ k0 (solid line) and
kðxÞ ¼ 0 (dotted line). The shaded region below the cutoff frequency
depicts a band gap.
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Using the IR Data for Soil Characterization

In this section, we follow established lines of PDE-constrained op-
timization (Biegler et al. 2003; De Los Reyes 2015; Fathi et al.
2015) to invert for the properties of the soil in contact with the em-
bedded pile [kðxÞ and kb] when given time-domain records of the
applied load at the pile head and of the resulting motion recorded
also at the pile head; throughout, we also assume that the pile prop-
erties (EA and L) are known a priori. In general, kðxÞ is assumed to
vary arbitrarily with respect to x, i.e., there is no need to assume that
the surrounding soil is, for example, layered. Consequently, the
number of unknown material parameters that need to be determined
in order to recover the soil profile depends on the numerical discre-
tization scheme one uses to resolve the propagation of waves, and,
in general, is in the hundreds or thousands: the inverse problem of
determining the soil properties based on a single time-domain re-
cord is ill-posed and prone to solution multiplicity.

Full-Waveform Inverse Problem

Our starting point is the introduction of a Lagrangian functional L,
comprising a misfit functional Fm, a regularization term RðkÞ as-
sociated with the soil properties kðxÞ, and the side imposition via
adjoint variables (or Lagrange multipliers) of the forward initial- and
boundary-value problem defined in Eqs. (1)–(3). Accordingly, let

Lðu;λ;λ0;λL; k; kbÞ

¼ Fm þRðkÞ þ
Z

L

0

Z
T

0

λ

� ∂
∂x

�
EA

∂u
∂x

�
− ku− ρA

∂2u
∂t2

�
dtdx

þ
Z

T

0

λ0

�
EA

∂u
∂x þ PðtÞ

�����
x¼0

dt

þ
Z

T

0

λL

�
EA

∂u
∂x þ kbu

�����
x¼L

dt ð6Þ

where T = total period of observations; λðx; tÞ, λ0ðtÞ, and λLðtÞ =
adjoint variables; and misfit functionalFm = difference, in the least-
squares sense, between the calculated uð0; tÞ and the measured or
recorded pile head displacements umð0; tÞ, normalized by the square
of the measured response, i.e., as follows:

Fm ≔
1

2

R
T
0 ½uð0; tÞ − umð0; tÞ�2dtR

T
0 ½umð0; tÞ�2dt

ð7Þ

As is the often the case with inverse problems, here too there can
be multiple solutions for kðxÞ and kb that would simultaneously
minimize the misfit Fm and satisfy the forward problem: the inclu-
sion of the regularization termRðkÞ in Eq. (6) of the Lagrangian L

aims at the alleviation of the solution multiplicity. In this work, we
explore two regularization schemes: a first-order Tikhonov (TN),
and a total-variation (TV) regularization scheme. The correspond-
ing regularization functionals RðkÞ for each of the two regulariza-
tion schemes are defined as

RTNðkÞ ≔ 1

2
R
Z

L

0

�
dk
dx

�
2

dx;

RTVðkÞ ≔ R
Z

L

0

��
dk
dx

�
2

þ ϵ

�1
2

dx ð8Þ

where ε = small number. The regularization factor R controls the
amount by which the Lagrangian is penalized by the regularization
term, relative to the misfit. In general, the TN scheme penalizes
the high-frequency spatial oscillations of the soil properties kðxÞ,
thereby eliminating any spatially rapid nonphysical property transi-
tions, thereby enforcing smooth profiles. In contrast, the TV scheme,
which is defined as the bounded variation seminorm of kðxÞ, tends to
preserve discontinuities of kðxÞ, such as those that may arise in lay-
ered soil profiles, while also penalizing spurious property oscilla-
tions in smooth regions. To find the properties kðxÞ and kb that
minimize the Lagrangian is equivalent to finding the properties that
simultaneously minimize the misfit and satisfy the underlying PDE
that describes the propagating waves.

Optimality Conditions

Next, we search for a stationary point of the Lagrangian by seeking
to satisfy the first-order optimality conditions. Accordingly, we re-
quire that the first variation δuL of L with respect to the state var-
iable uðx; tÞ, the first variations δλL, δλ0L, and δλLL of L with
respect to the adjoint variables λðx; tÞ, λ0ðtÞ, and λLðtÞ, and the
first variations δkL and δkbL of L with respect to the sought-after
properties kðxÞ and kb (or control parameters), all vanish. Specifi-
cally, enforcing the vanishing of the first variation of L with respect
to λ, λ0, and λL results in

δλL ¼ 0 ⇒
Z

L

0

Z
T

0

δλ

� ∂
∂x

�
EA

∂u
∂x

�
− ku − ρA

∂2u
∂t2

�
dtdx ¼ 0

ð9Þ

δλ0L ¼ 0 ⇒
Z

T

0

δλ0

�
EA

∂u
∂x þ PðtÞ

�����
x¼0

dt ¼ 0 ð10Þ

δλLL ¼ 0 ⇒
Z

T

0

δλL

�
EA

∂u
∂x þ kbu

�����
x¼L

dt ¼ 0 ð11Þ

(a) (b)

Fig. 4. Pile head displacement histories for two Gaussian pulses with fb ¼ 20 Hz and fb ¼ 200 Hz: (a) response due a Gaussian pulse with spectrum
in the band gap (fb ¼ 20 Hz), where there is no propagation for any kb; and (b) response due a Gaussian pulse with spectrum in the pass-band
(fb ¼ 200 Hz), where waves propagate and the response is sensitive to kb.
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Because δλ, δλ0, and δλL are arbitrary, it can be readily deduced
that Eqs. (9)–(11) recover the forward problem defined previously
in Eqs. (1)–(3).

Enforcing the vanishing of the first variation of Lwith respect to
uðx; tÞ yields
δuL¼ 0

⇒
Z

T

0

½uð0; tÞ−umð0; tÞ�δuð0; tÞdt

þ
Z

L

0

Z
T

0

λ

� ∂
∂x

�
EA

∂δu
∂x

�
− kδu− ρA

∂2δu
∂t2

�
dtdx

þ
Z

T

0

λ0EA
∂δu
∂x

����
x¼0

dtþ
Z

T

0

λL

�
EA

∂δu
∂x þ kbδu

�����
x¼L

dt¼ 0

ð12Þ
Using integration by parts while also taking into account the

initial conditions [Eq. (3)] and after rearranging terms, Eq. (12)
can be rewrittenZ

T

0

δuð0; tÞ
�
EA

∂λ
∂x ð0; tÞ þ ½uð0; tÞ− umð0; tÞ�

�
dt

þ
Z

L

0

Z
T

0

δuðx; tÞ
� ∂
∂x

�
EA

∂λ
∂x

�
− kλ− ρA

∂2λ
∂t2

�
dtdx

þ
Z

T

0

∂δu
∂x ðL; tÞ½EAλðL; tÞ þEAλLðtÞ�dt

þ
Z

T

0

δuðL; tÞ
�
−EA∂λ

∂x ðL; tÞ þ kbλLðtÞ
�
dt

þ
Z

T

0

∂δu
∂x ð0; tÞ½EAλ0ðtÞ−EAλð0; tÞ�dt

−
Z

L

0

ρA
∂δu
∂t ðx;TÞλðx;TÞdxþ

Z
L

0

ρAδuðx;TÞ∂λ∂t ðx;TÞdx¼ 0

ð13Þ
Considering the arbitrariness of the variations implicated in the

preceding, Eq. (13) results in the adjoint problem for λðx; tÞ, which
is defined as follows:

∂
∂x

�
EA

∂λ
∂x

�
− kλ − ρA

∂2λ
∂t2 ¼ 0; x ∈ ð0;LÞ; t ∈ ð0;TÞ ð14Þ

subject to the following boundary conditions:

EA
∂λ
∂x ¼ −ðu − umÞ; x ¼ 0; t ∈ ð0;TÞ ð15aÞ

EA
∂λ
∂x þ kbλ ¼ 0; x ¼ L; t ∈ ð0;TÞ ð15bÞ

and final-value conditions

λ ¼ 0; x ∈ ð0;LÞ; t ¼ T ð16aÞ

∂λ
∂t ¼ 0; x ∈ ð0;LÞ; t ¼ T ð16bÞ

From Eq. (13), it also holds that

λLðtÞ ¼ −λðL; tÞ; and λ0ðtÞ ¼ λð0; tÞ ð17Þ

Having obtained the forward and the adjoint problems, there
remains to seek to satisfy the third optimality condition by requir-
ing the vanishing of the first variations of Lwith respect to kðxÞ and
kb, respectively. Accordingly

δkL ¼ 0

⇒ R
Z

L

0

dk
dx

dδk
dx

dx −
Z

L

0

Z
T

0

λuδkdtdx ¼ 0

⇒ R

�
dk
dx

δk

�
L

0

− R
Z

L

0

δk
d2k
dx2

dx −
Z

L

0

Z
T

0

δkλudtdx ¼ 0

⇒ R
dk
dx

ðLÞδkðLÞ − R
dk
dx

ð0Þδkð0Þ

þ
Z

L

0

δk

�
−Rd2k

dx2
−
Z

T

0

λudt

�
dx ¼ 0 ð18Þ

Because δkðxÞ, δkðLÞ, and δkð0Þ are arbitrary, there results the
following boundary-value problem for kðxÞ:

gkðxÞ ¼ −Rd2kðxÞ
dx2

−
Z

T

0

λðx; tÞuðx; tÞdt ¼ 0; x ∈ ð0;LÞ ð19Þ

dk
dx

¼ 0; at x ¼ 0 and x ¼ L ð20Þ

where gk = Fréchet derivative of the Lagrangian with respect to k.
Next, we seek to similarly enforce the vanishing of the first

variation of L with respect to kb; this results in the following:

δkbL ¼ 0 ⇒ δkb

Z
T

0

λLujx¼Ldt ¼ 0 ⇒ δkbgkb ¼ 0 ð21Þ

where Eq. (17) was used, and gkb = Fréchet derivative of the
Lagrangian with respect to kb defined

gkb ¼ −
Z

T

0

λðL; tÞuðL; tÞdt ð22Þ

Eqs. (19) and (22) will vanish only when the soil properties kðxÞ
and kb coincide with the true or target properties. In deriving
Eq. (22), we used the TN scheme; if, instead, the TV scheme were
used, then Eq. (22) is replaced by

gkðxÞ ¼ −Rϵ d
2k

dx2

��
dk
dx

�
2

þ ϵ

�−3
2 −

Z
T

0

λudt ¼ 0; x ∈ ð0;LÞ

ð23Þ

Implementation

Given a known pile head load PðtÞ and displacement measurements
umð0; tÞ, it is possible, albeit costly, to solve simultaneously the for-
ward problem [Eqs. (1)–(3)], the adjoint problem [Eqs. (14)–(16)],
and the control problems [Eqs. (19)–(22)], and obtain the soil prop-
erties kðxÞ and kb that would satisfy the stationarity of the Lagran-
gian. Here, we opt for a reduced-space method, whereby the soil
properties kðxÞ and kb are calculated iteratively. Specifically, at each
inversion iteration, the forward problem [Eqs. (1)–(3)] is solved
first, using trial properties kðxÞ and kb. The resulting displace-
ments uð0; tÞ at the pile head are then used to construct the misfit
uð0; tÞ − umð0; tÞ, which, as previously shown, drives the adjoint
problem. The adjoint problem [Eqs. (14)–(16)] is solved next, re-
sulting in the adjoint solution λðx; tÞ. To numerically solve the for-
ward and adjoint problems, we use finite elements to discretize in
space and a Newmark scheme to integrate in time the resulting
semidiscrete equations of motion.

Lastly, using the forward and adjoint solutions uðx; tÞ and λðx; tÞ,
respectively, the soil properties kðxÞ and kb are updated using a con-
jugate gradient method with inexact line search that makes use of the
reduced gradients gk and gkb defined in Eqs. (19) and (22), respec-
tively. The details of the numerical scheme are provided next.
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Forward and Adjoint Discrete Problems

We appeal to a standard Galerkin procedure in order to solve nu-
merically using finite elements the forward and adjoint problems.
First, the weak form of Eq. (1) becomesZ

L

0

ρAv
∂2u
∂t2 dxþ

Z
L

0

EA
∂v
∂x

∂u
∂x dx

þ
Z

L

0

kvudxþ kbvðLÞuðL; tÞ ¼ vð0ÞPðtÞ ð24Þ

where vðxÞ ∈ H1ðΩÞ, where Ω ¼ fx ∶ 0 < x < Lg, is an admissible
test function, and the boundary conditions in Eq. (2) were taken
into account.

Next, we introduce standard Lagrange-family approximations
ϕðxÞ for the trial function uðx; tÞ and test function vðxÞ; their intro-
duction yields the classic semidiscrete form for the forward problem

MforÜðtÞ þ KforUðtÞ ¼ FforðtÞ ð25Þ
whereUðtÞ is the vector of nodal displacements uðx; tÞ; and the mass
matrixMfor, stiffness matrix Kfor, and force vector FðtÞ are defined,
respectively, as follows:

Mfor ¼
Z

L

0

ρAϕðxÞϕTðxÞdx

Kfor ¼
Z

L

0

�
EA

∂ϕðxÞ
∂x

∂ϕTðxÞ
∂x þ kϕðxÞϕTðxÞ

�
dxþ kbϕðLÞϕTðLÞ

FforðtÞ ¼ ϕð0ÞPðtÞ ð26Þ
Following similar steps for the adjoint problem yields the fol-

lowing weak form of Eq. (14):Z
L

0

ρAw
∂2λ
∂t2 dxþ

Z
L

0

EA
∂w
∂x

∂λ
∂x dxþ

Z
L

0

kwλdx

þ kbwðLÞλðL; tÞ ¼ wð0Þ½uð0; tÞ − umð0; tÞ� ð27Þ
where wðxÞ = admissible test function. Introduction of approxima-
tions for λðx; tÞ and wðxÞ would lead to the following semidiscrete
form for the adjoint problem:

MadjΛ̈ðtÞ þ KadjΛðtÞ ¼ FadjðtÞ ð28Þ
where ΛðtÞ is the vector of nodal values of the adjoint variable
λðx; tÞ, and
Madj ¼Mfor; Kadj ¼ Kfor; FadjðtÞ ¼ ϕð0Þ½uð0; tÞ− umð0; tÞ�

ð29Þ
Although the forward semidiscrete form [Eq. (25)] is subject to

initial conditions [Eq. (3)], the adjoint semidiscrete form [Eq. (28)]
is subject to final conditions [Eq. (16)]. Clearly, the equality of the
system matrices between the forward and the adjoint problems
shown in Eq. (29) entails computational cost advantages, irrespec-
tive of the time integration scheme of choice.

Soil Property Updates

The continuous Winkler parameter kðxÞ, representing the varying
in-depth soil stiffness, is discretized using Ns linear elements, re-
sulting in Ns þ 1 unknown nodal properties; thus

kðxÞ ≈ XNsþ1

i¼1

ψiðxÞki ¼ ψTðxÞk ð30Þ

where ψiðxÞ = basis functions; and k is the vector of nodal soil
property values. During each ith inversion iteration, the vector k
of the nodal values of kðxÞ is updated according to

kiþ1 ¼ ki þ αk
i d

k
i ð31Þ

where dki is the search direction vector at ki; and α
k
i = step length in

the dki direction. Similarly, the soil stiffness at the pile bottom kb is
updated using

ðkbÞiþ1 ¼ ðkbÞi þ αkb
i dkbi ð32Þ

where αkb
i = step length in the direction of dkbi . At each iteration, the

search directions are defined as the negative of the property gra-
dients, i.e., as follows:

dki ¼ −gki and dkbi ¼ −gkbi ð33Þ

To complete the update process, it remains to define the gradients
gk and gkb at each inversion iteration. To this end, gk is the discrete
version of the Fréchet derivative defined in Eq. (19), which is com-
puted by collocating Eq. (19) at the Ns þ 1 nodal points where the
properties are evaluated; gkb was defined in Eq. (22). At each inver-
sion iteration, the misfit functionalFm is evaluated using the updated
material properties and compared against a preset tolerance. If it ex-
ceeds the tolerance threshold, then the inversion proceeds to the next
iteration. We used an inexact line search with a sufficient decrease
condition in the misfit functional, as measured by the following in-
equality (Armijo condition):

Fmðkiþ1; ðkbÞiþ1Þ − Fmðki; ðkbÞiÞ
≤ minfμkαk

i g
k
i · d

k
i ;μ

kbαkb
i gkbi dkbi g ð34Þ

where μk and μkb are typically chosen to be small values,
e.g., μk ¼ μkb ¼ 10−10. If the inequality Eq. (34) is not satisfied, a
backtracking procedure is performed by multiplying the step lengths
(αk

i and/or α
kb
i ) by a contraction factor ρ ∈ ð0; 1Þ (e.g., ρ ¼ 0.5) un-

til the sufficient decrease condition is satisfied. The step lengths for
kðxÞ and kb are determined independently because each has its own
search direction. The entire inversion process discussed thus far is
summarized as follows.

Algorithm 1. Inversion process for reconstructing soil stiffnesses
kðxÞ and kb
1: Choose ρ, μk, and μkb (e.g., ρ ¼ 0.5, μk ¼ μkb ¼ 10−10)
2: Choose initial step lengths ᾱk, ᾱkb , and regularization factor R̄
3: Set convergence tolerance tol (e.g., tol = 10−12)
4: Set the initial guess for k0 and kb0
5: i← 0
6: Set αk

i ¼ ᾱk, αkb
i ¼ ᾱkb , and Ri ¼ R̄

7: Set ðFmÞi ¼ tolþ 1
8: while ððFmÞi > tolÞ do
9: Solve the state problem for uðx; tÞ [Eqs. (1)–(3)]
10: Solve the adjoint problem for λðx; tÞ [Eqs. (14)–(16)]
11: Update the regularization factor Ri
12: Compute gki [Eq. (19) for TN, Eq. (23) for TV]
13: Compute gkbi [Eq. (22)]
14: Compute the search directions dki and dkbi
15:while [ðFmÞiþ1 − ðFmÞi >minfμkαk

i g
k
i · d

k
i ;μ

kbαkb
i gkbi dkbi g] do

16: αk
i ← ραk

i if ½ðFmÞiþ1 − ðFmÞi > μkαk
i g

k
i · d

k
i �

17: αkb
i ← ραkb

i if ½ðFmÞiþ1 − ðFmÞi > μkbαkb
i gkbi dkbi �

18: end while
19: Update material properties ki and ðkbÞi [Eqs. (31) and (32)]
20: i← iþ 1
21: end while
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Inversion Acceleration Schemes

We are concerned with accelerating the convergence of the inversion
process, and to this end, we deploy schemes we have previously
used in similar problems: specifically, we consider a regularization
continuation scheme and a source frequency continuation scheme;
Kang and Kallivokas (2011) have givn implementational details.
The aim of the regularization factor continuation scheme is to main-
tain a balance between the misfit functional and the regularization
term in the Lagrangian: if the regularization factor becomes too
small, especially during early inversion iterations, the recovered soil
profiles will exhibit nonphysical fluctuations, whereas if it is too
large, the profile may become overly smoothed, the misfit may not
be reduced, and, consequently, the inversion process may fail to
converge.

With the frequency continuation scheme, we aim at gradually
refining the soil property profile by subjecting the pile to loads of
incrementally higher frequency content. We first probe using lower-
frequency content (still in the pass-band), and use the converged
profile as initial guess for a next step, where the probing is done

using higher-frequency content. In this manner, we not only prog-
ress through the inversion with physically meaningful profiles, but
also alleviate solution multiplicity.

In addition, for the first time, we experimented with alternating
regularization schemes: specifically, we drive the early inversion
iterations with the Tikhonov scheme to filter out spurious solutions,
but switch to the total variation scheme in order to sharpen soil
profiles during later inversion stages. As the numerical examples
attest, alternating regularization schemes proved to be quite useful.

Numerical Examples

We discuss next results from four numerical experiments conducted
using the procedure outlined in the preceding sections. Throughout,
we used synthetic IR data to drive the soil characterization; in all
cases, synthetic data were generated using meshes that were differ-
ent from the ones used for inversion to avoid committing so-called
inverse crimes. For the first two examples, we used a pile embedded
in clayey soil of unknown stiffness distribution, but of known end
conditions: in the first example, the pile was assumed to rest on
bedrock (kb ¼ ∞), whereas in the second example, the pile was
elastically supported with known kb. The third example pertains to
the most general case, where both the surrounding soil stiffness
kðxÞ and the underlain soil layer’s stiffness kb were assumed un-
known, and are, therefore, inverted for simultaneously. For the last
example, we report on the effect that measurement noise has on the
inversion. In all cases, we use both the regularization factor and
source frequency continuation schemes.

Table 1. Material properties of the three-layer target soil profile used in
Examples 1b, 2b, 3, and 4

Layer Range (m) Gs (MPa) k (MN=m2) Soil type

1 0 ≤ x < 15 40 120 Hard clay
2 15 ≤ x < 30 60 180 Sandy clay
3 30 ≤ x < 45 80 240 Sandy clay
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Fig. 5. Example 1a of a homogeneous soil target profile, IR data, resulting soil characterization, and inversion performance characteristics:
(a) measured versus computed pile head displacements umð0; tÞ for a pile embedded in homogeneous soil with kðxÞ ¼ 120 MN=m2 and kb ¼ ∞;
(b) homogeneous soil profiles for target (solid line), inverted (circles), and initial guess (diamonds); and (c) misfit evolution.
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Example 1: Pile Embedded in Clayey Soil with
Fixed Bottom

We consider first the pile depicted in Fig. 1(a) for which ρ ¼
2,400 kg=m3, E ¼ 40 GPa, A ¼ 1 m2, and L ¼ 45 m. The pile
was assumed fixed at its end. When using a Winkler model for
representing soil stiffness, there are several possibilities for as-
signing realistic values to the soil stiffness parameters (Anoyatis
and Lemnitzer 2017); among those, we adopted a model proposed
by Dobry and O’Rourke (1983) that sets the soil stiffness equal to
three times the soil’s shear modulus Gs. For the first example, we
considered two target soil profiles, one homogeneous with constant
soil stiffness kðxÞ ¼ 120 MN=m2, and a layered profile, compris-
ing three layers of equal thickness with increasing stiffness, as de-
tailed in Table 1.

The pile head was excited with a Gaussian pulse of amplitude
po ¼ 1,000 N. To generate the synthetic data, we used pulses with
different frequency bandwidth fb (a mathematical description of
the Gaussian pulse and the definition of fb are provided in the
Appendix). To discretize the pile, we used quadratic elements with
0.225 m element length, resulting in 200 elements and 401 dis-
placement unknowns for each forward and adjoint problem solu-
tions. To represent the distributed soil stiffness we used 200 linear
elements, resulting in 201 nodal values for kðxÞ.
Characterization of a Homogeneous Soil Profile
Fig. 5(a) shows the synthetically generated measured displace-
ment history umð0; tÞ recorded at the pile head due a Gaussian pulse
with fb ¼ 200 Hz and the computed response corresponding to
the inverted profile; as it can be seen, the agreement is excellent.
Fig. 5(b) depicts the initial guess (set at kðxÞ ¼ 72 MN=m2), the

target, and the inverted profiles. As can be seen, the inverted profile—
reconstructed using 201 inverted-for nodal soil stiffnesses—matched
the target quite accurately. To arrive at the inverted profile, we used
the regularization factor continuation scheme, as well as the source
frequency continuation with six distinct Gaussian pulse loads with
fb ¼ 200, 300, 400, 500, 600, and 700 Hz. Fig. 5(c) shows the evo-
lution of the misfit during the inversion process, which exhibits a
drop of about seven orders of magnitude.

Characterization of a Three-Layer Soil Profile
The inversion algorithm was also exercised to characterize the three-
layer soil profile described by the properties in Table 1. Fig. 6(a)
shows that the collected IR data at the pile head due to a Gaussian
pulse with fb ¼ 200 Hz were matched closely by the computed
response based on the inverted profile. Fig. 6(b) shows the recon-
structed kðxÞ profile for the layered soil medium. As can be seen,
the soil profile obtained by the inversion matcheed exceedingly well
the true profile: this includes not only the soil stiffness values, but
also the layer thicknesses and layer interface locations. The inver-
sion process was initiated with a homogeneous guess of kðxÞ ¼
144 MN=m2, and both the regularization factor continuation and
the source continuation schemes were used—the latter with six
Gaussian pulses with fb ranging from 200 to 700 Hz in steps of
100 Hz. In addition, owing to the alternating use of the TN and
TV regularization schemes described previously, the sharp layer
interfaces have been remarkably well reconstructed. Similarly
to Example 1a, Fig. 6(c) depicts the evolution of the misfit: the
occasional sharp rises in the misfit correspond to switching of the
source frequency content fb, and are followed by sharp decreases,
as expected.
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Fig. 6. Example 1b of a three-layer soil target profile, IR data, resulting soil characterization, and inversion performance characteristics: (a) measured
versus computed pile head displacements umð0; tÞ for a pile embedded in a three-layer soil (kb ¼ ∞); (b) three-layer soil profiles for target (solid line),
inverted (circles), and initial guess (diamonds); and (c) misfit evolution.
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Characterization of a Four-Layer Soil Profile with
a Stiff-over-Soft Layer
One of the most challenging characterization problems arises when
a soft layer lies under a stiffer soil layer. Such soil layering tends to
mask the presence of the soft layer, and inversion algorithms, es-
pecially when overregularized, tend to result in profiles whose stiff-
ness increases monotonically with depth. To explore the capability
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Fig. 7. Example 1c of a four-layer soil target profile with a stiff-over-soft layer, IR data, resulting soil characterization, and inversion performance
characteristics: (a) measured versus computed pile head displacements umð0; tÞ for a pile embedded in a four-layer soil profile with a stiff-over-soft
layer (kb ¼ ∞); (b) four-layer soil profiles for target (solid line), inverted (circles), and initial guess (diamonds); and (c) misfit evolution.
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Fig. 8. Example 2a of a homogeneous soil target profile, IR data, and resulting soil characterization: (a) recorded pile head displacements umð0; tÞ for
a pile embedded in homogeneous soil with kðxÞ ¼ 120 MN=m2 and kb ¼ 300.8 MN=m; and (b) homogeneous soil profiles for target (solid line),
inverted (circles), and initial guess (diamonds).

Table 2. Material properties of the four-layer soil profile with a stiff-over-
soft layer used in Example 1c

Layer Range (m) Gs (MPa) k (MN=m2) Soil type

1 0 ≤ x < 10 40 120 Hard clay
2 10 ≤ x < 20 60 180 Sandy clay
3 20 ≤ x < 30 40 120 Hard clay
4 30 ≤ x < 45 80 240 Sandy clay
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of our inversion scheme to capture the stiff-over-soft layering, we
used the four-layer profile whose properties are described in Table 2.
The soil layering included a soft layer (20 m ≤ x < 30 m) sand-
wiched between two stiffer layers, and the bottom layer rested again
on rock (kb ¼ ∞). We initiated the inversion with a homogeneous
guess of kðxÞ ¼ 144 MN=m2, and as before, both the regularization
factor continuation and the source continuation schemes were used.

Fig. 7(a) depicts the computed response at the pile head obtained
using the inverted four-layer profile. As can be seen, it matched well
the IR data. Fig. 7(b) depicts the inverted four-layer profile against
the initial guess and the target profile: the algorithm delineated
well the sandwiched soft layer; departures from the very sharp tran-
sitions of the target profile can be further improved upon through
mesh refinement. Fig. 7(c) depicts the misfit’s evolution.
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Fig. 9. Three-layer soil profiles of Example 2b for target (solid line), inverted (circles), and initial guess (diamonds): (a) recorded pile head dis-
placements umð0; tÞ for a pile embedded in a three-layer soil (kb ¼ 300.8 MN=m); and (b) three-layer soil profile for target (solid line), inverted
(circles), and initial guess (diamonds).
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Fig. 10. Simultaneous inversion for the distributed soil stiffness kðxÞ and the bottom soil stiffness kb of Example 3: (a) measured versus computed
pile head response; (b) three-layer soil profile of Example 3 for target (solid line), inverted (circles), and initial guess (diamonds); (c) convergence
of kb; and (d) misfit evolution.
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Example 2: Elastically Supported Pile Embedded in
Clayey Soil

Next, we allowed the pile of the previous example to be elastically
supported on a soil layer whose stiffness was modeled with the kb
spring, as shown in Fig. 1(b). The soil stiffness kb can be expressed
as follows (Warrington 1997; Holeyman 1988):

kb ¼
4Gsrt
1 − νs

ð35Þ

where Gs and νs = underlying soil’s shear modulus and Poisson
ratio, respectively; and rt = pile’s radius at the toe. Using customary
values and Eq. (35), we set kb to 300.8 MN=m, and sought again to
characterize both a homogeneous soil profile (Example 2a), and a
three-layer profile (Example 2b), using the same target data as in
Example 1.

Figs. 8(a) and 9(a) depict the recorded pile head IR data for the
two soil profile cases, and Figs. 8(b) and 9(b) show the initial guess,
the target, and the reconstructed soil profiles. As the results attest,
the inversion algorithm successfully characterized the soil in the
pile’s vicinity with accuracy similar to the one exhibited in Exam-
ple 1 for both the homogeneous and layered soils.

Example 3: Simultaneous Inversion for k �x� and kb

We attempt next to characterize simultaneously the distributed soil
stiffness kðxÞ and the underlain soil’s stiffness kb using the IR data
at the pile head. The target kðxÞ is the three-layer profile described
in Table 1, andthe target value of kb was 300.8 MN=m. The mea-
sured pile head displacement time history was the same as for the

three-layer inversion of Example 2b [Fig. 9(a)]. We used a constant
initial guess kðxÞ ¼ 144 MN=m2 and set the initial guess for kb to
150.4 MN=m. Fig. 10(b) shows the reconstructed kðxÞ profile, and
Fig. 10(c) depicts the evolution of the kb values during the inversion
iterations.

As can be seen, the simultaneous inversion recovered both the
three-layer soil profile and the underlain soil’s stiffness reasonably
well. During the early iterations, kb increased rapidly, and then
decreased gradually to the target value. The source frequency and
regularization factor continuation schemes played again a critical
role in the simultaneous inversion: we used consecutively the same
six Gaussian pulses as in previous examples, with fb ranging be-
tween 200 and 700 Hz, in steps of 100 Hz. The change of source
frequency can be identified in the variation of the misfit shown in
Fig. 10(d); it corresponds to the spikes in the curve. The source
frequency was updated to the next level every time the normalized
misfit was reduced to 5 × 10−6 during the inversion. Overall, the
misfit was reduced from a starting value of 6.2 × 10−1 to approx-
imately 5 × 10−7 after 130,000 iterations. To improve on the sharp-
ness of the layer interfaces, we used the TN regularization scheme
with the smallest fb and switched to the TV scheme when process-
ing all subsequent loads. The calculated pile head displacement ob-
tained using the reconstructed kðxÞ and kb agreed well with the
recorded data, as can be seen in Fig. 10(a).

Example 4: Inversion Using Noisy IR Data

Lastly, we return to the three-layer profile of Example 2b with
the elastically supported pile and assess the effect of measurement
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Fig. 11. Example 4: three-layer soil target profile where the pile is elastically supported and soil profiles reconstructed using noisy data: (a) measured
pile head displacements umð0; tÞ with 5% Gaussian noise for the three-layer target kðxÞ profile of Example 2b versus computed displacements;
(b) three-layer soil profiles for target (solid line), inverted (circles), and initial guess (diamonds); and (c) misfit evolution.
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noise in the ability of the inversion process to reconstruct the soil
profiles. Fig. 11(a) depicts the measured displacement response
umð0; tÞwhen 5% Gaussian noise was injected. The target kðxÞ pro-
file was again the same three-layer profile described in Table 1, and
kb has been set to 300.8 MN=m, and is considered a priori known.
Fig. 11(b) shows the target, initial guess, and inverted kðxÞ profiles.

As before, here too we exploited the source frequency and regu-
larization factor continuation schemes to alleviate solution multi-
plicity. To address the presence of noisy data, we used 13 probing
Gaussian pulses—all resulting in noisy measurements—with fb
ranging from 200 to 2,000 Hz (source frequency bandwidth was
incremented in 100-Hz steps between 200 and 1,000 Hz, and in
200-Hz steps between 1,000 and 2,000 Hz). The TN regularization
was used in all cases. Fig. 11(c) shows the evolution of the misfit:
due to the noise, the misfit was reduced to only 2.8% of its initial
value. Still, as shown in Fig. 11(a) there was good agreement be-
tween the computed pile head displacements and the noisy IR data,
testifying to the fact that the inversion algorithm has reasonably
well-characterized the soil even in the presence of noisy data.

Conclusions

We discussed a full-waveform inversion approach for characteriz-
ing the soil in contact with a pile when given the recorded time
traces of displacements at the pile head generated by short pulse
loads also applied at the pile head. To model the soil, we used the
Winkler hypothesis, but other soil models can be similarly accom-
modated. With the aid of synthetically generated pile head data, we
demonstrated the ability of the developed approach to fully char-
acterize vertically heterogeneous soils enveloping the pile, includ-
ing the soil layer on which the pile is founded. The developed
approach extends the potential use of the traditional IR data, under
the assumption that the pile’s integrity has not been compromised.
Importantly, however, the approach opens the possibility for simul-
taneously characterizing the soil and assessing the pile’s condition
under a joint inversion procedure where the pile’s characteristics
(material and geometric properties, EA and L) are inverted for to-
gether with the soil properties.

Appendix. Gaussian Pulse Characteristics

Let PðtÞ be defined as the Gaussian pulse described by

PðtÞ ¼ poe−ðt−6σÞ
2=ð2σ2Þ ð36Þ

where po = amplitude of the pulse at peak time 3σ. The amplitude
P̂ðfÞ of the Fourier transform of the Gaussian pulse is

jP̂ðfÞj ¼ po

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
e−2π2σ2f2 ð37Þ

Thus, in the time domain, the sharpness of the pulse is con-
trolled by σ [Fig. 12(a)]; in the frequency domain, it can be shown
that, approximately 99.7% of the pulse’s spectrum lies between a
zero frequency and 3=ð2πσÞ [Fig. 12(b)]. Accordingly, we define
the pulse’s bandwidth of interest as follows:

fb ¼ 3=ð2πσÞ ð38Þ

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request. This includes the input data, the inversion code, and the
output data.

Acknowledgments

The work of the third author was partially supported by a Na-
tional Research Foundation of Korea (NRF) Grant (NRF-
2017R1C1B2004975).

References

Anoyatis, G., and A. Lemnitzer. 2017. “Kinematic Winkler modulus for
laterally-loaded piles.” Soils Found. 57 (3): 453–471. https://doi.org/10
.1016/j.sandf.2017.05.011.

Baxter, S. C., M. O. Islam, and S. L. Gassman. 2004. “Impulse response
evaluation of drilled shafts with pile caps: Modeling and experiment.”
Can. J. Civ. Eng. 31 (2): 169–177. https://doi.org/10.1139/l03-086.

Biegler, L. T., O. Ghattas, M. Heinkenschloss, and B. van Bloemen
Waanders. 2003. “Large-scale PDE-constrained optimization: An intro-
duction.” In Large-scale PDE-constrained optimization, 3–13. Berlin:
Springer.

Bregman, N., R. Bailey, and C. Chapman. 1989. “Crosshole seismic tomog-
raphy.” Geophysics 54 (2): 200–215. https://doi.org/10.1190/1.1442644.

Chin, J., and H. Poulus. 1991. “A ‘TZ’ approach for cyclic axial loading
analysis of single piles.” Comput. Geotech. 12 (4): 289–320. https://doi
.org/10.1016/0266-352X(91)90027-D.

Courage, W., and M. Bielefeld. 1992. “TNOWAVE automatic signal
matching.” In Application of stress-wave theory to piles, 241–246.
Oxfordshire, UK: Routledge.

Crispin, J., C. Leahy, and G. Mylonakis. 2018. “Winkler model for axially
loaded piles in inhomogeneous soil.” Geotech. Lett. 8 (4): 290–297.
https://doi.org/10.1680/jgele.18.00062.

Davis, A. G. 2003. “The nondestructive impulse response test in North
America: 1985-2001.” NDT & E Int. 36 (Jun): 185–193. https://doi.org
/10.1016/S0963-8695(02)00065-8.

(a) (b)

Fig. 12. Gaussian pulses with two bandwidth spectra of fb 20 and 200 Hz (or, equivalently, for σ of 23.87 and 2.387 ms, respectively): (a) Gaussian
pulse PðtÞ; and (b) Fourier spectrum jP̂ðfÞj.

© ASCE 04023078-12 J. Eng. Mech.

 J. Eng. Mech., 2023, 149(10): 04023078 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
ou

ka
s 

K
al

liv
ok

as
 o

n 
07

/3
1/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1016/j.sandf.2017.05.011
https://doi.org/10.1016/j.sandf.2017.05.011
https://doi.org/10.1139/l03-086
https://doi.org/10.1190/1.1442644
https://doi.org/10.1016/0266-352X(91)90027-D
https://doi.org/10.1016/0266-352X(91)90027-D
https://doi.org/10.1680/jgele.18.00062
https://doi.org/10.1016/S0963-8695(02)00065-8
https://doi.org/10.1016/S0963-8695(02)00065-8


De Los Reyes, J. C. 2015. Numerical PDE-constrained optimization. New
York: Springer.

Dobry, R., and M. O’Rourke. 1983. “Discussion on ‘Seismic response of
end-bearing piles’ byR. Flores-Berrones and R. V. Whitman.” J. Geo-
tech. Eng. 109 (5): 778–781. https://doi.org/10.1061/(ASCE)0733-9410
(1983)109:5(778).

Ekanayake, S. D., D. Liyanapathirana, and C. J. Leo. 2013. “Influence zone
around a closed-ended pile during vibratory driving.” Soil Dyn. Earth-
quake Eng. 53 (Oct): 26–36. https://doi.org/10.1016/j.soildyn.2013.06
.005.

Fathi, A., L. F. Kallivokas, and B. Poursartip. 2015. “Full-waveform inver-
sion in three-dimensional PML-truncated elastic media.” Comput. Meth-
ods Appl. Mech. Eng. 296 (Nov): 39–72. https://doi.org/10.1016/j.cma
.2015.07.008.

Fathi, A., B. Poursartip, K. H. Stokoe, and L. F. Kallivokas. 2016. “Three-
dimensional P- and S-wave velocity profiling of geotechnical sites using
full-waveform inversion driven by field data.” Soil Dyn. Earthquake
Eng. 87 (Aug): 63–81. https://doi.org/10.1016/j.soildyn.2016.04.010.

Finno, R. J., and S. L. Gassman. 1998. “Impulse response evaluation of
drilled shafts.” J. Geotech. Environ. Eng. 124 (10): 965–975. https://doi
.org/10.1061/(ASCE)1090-0241(1998)124:10(965).

Hertlein, B., and A. Davis. 2007. Nondestructive testing of deep founda-
tions. Hoboken, NJ: Wiley.

Holeyman, A. 1988. “Modeling of dynamic behavior at the pile base.” In
Proc., 3rd Int. Conf. on the Application of Stress-Wave Theory to Piles,
174–185. Vancouver, BC, Canada: Bi-Tech Publishers.

Holeyman, A. 1992. “Keynote lecture: Technology of pile dynamic testing.”
In Application of stress-wave theory to piles, 195–215. Oxfordshire, UK:
Routledge.

Holeyman, A., and V. Whenham. 2015. “Axial non-linear dynamic soil-pile
interaction.” In Structural nonlinear dynamics and diagnosis, 305–333.
New York: Springer.

Kallivokas, L. F., A. Fathi, S. Kucukcoban, K. H. Stokoe, J. Bielak, and O.
Ghattas. 2013. “Site characterization using full waveform inversion.”
Soil Dyn. Earthquake Eng. 47 (Apr): 62–82. https://doi.org/10.1016/j
.soildyn.2012.12.012.

Kang, J. W., and L. F. Kallivokas. 2011. “The inverse medium problem
in heterogeneous PML-truncated domains using scalar probing waves.”
Comput. Methods Appl. Mech. Eng. 200 (Mar): 265–283. https://doi.org
/10.1016/j.cma.2010.08.010.

Kausel, E. 2010. “Early history of soil–structure interaction.” Soil Dyn.
Earthquake Eng. 30 (9): 822–832. https://doi.org/10.1016/j.soildyn
.2009.11.001.

Liao, S.-T., and J. M. Roësset. 1997. “Impulse response evaluation of
drilled shafts.” Int. J. Numer. Anal. Methods Geomech. 21 (4): 255–275.
https://doi.org/10.1002/(SICI)1096-9853(199704)21:4<255::AID-NAG869
>3.0.CO;2-J.

Lombaert, G., G. Degrande, S. François, and D. Thompson. 2015. “Ground-
borne vibration due to railway traffic: A review of excitation mechanisms,
prediction methods and mitigation measures.” In Vol. 126 of Proc., Noise
and Vibration Mitigation for Rail Transportation Systems: Proc. of the
11th Int. Workshop on Railway Noise, 253–287. Berlin: Springer. https://
doi.org/10.1007/978-3-662-44832-8_33.

Middendorp, P., and G. Verbeek. 2004. “Thirty years of experience with
the wave equation solution based on the method of characteristics.”
In 7th Int. Conf. on the Application of Stress Wave Theory to Piles.
Kuala Lumpur, Malaysia: World Press.

Nazarian, S., and M. R. Desai. 1993. “Automated surface wave method:
Field testing.” J. Geotech. Eng. 119 (7): 1094–1111. https://doi.org/10
.1061/(ASCE)0733-9410(1993)119:7(1094).

Park, C. B., R. D. Miller, and J. Xia. 1999. “Multichannel analysis of sur-
face waves.” Geophysics 64 (Apr): 800–808. https://doi.org/10.1190/1
.1444590.

Phuong, N., A. Van Tol, A. Elkadi, and A. Rohe. 2016. “Numerical inves-
tigation of pile installation effects in sand using material point method.”
Comput. Geotech. 73 (Apr): 58–71. https://doi.org/10.1016/j.compgeo
.2015.11.012.

Radhima, J., K. Kanellopoulos, and G. Gazetas. 2021. “Static and dy-
namic lateral non-linear pile–soil–pile interaction.” Géotechnique 72 (7):
642–657. https://doi.org/10.1680/jgeot.20.P.250.

Rausche, F. 2004. “Non-destructive evaluation of deep foundations.” In
Proc., 5th Int. Conf. on Case Histories in Geotechnical Engineering,
1–9. Rolla, MO: Univ. of Missouri Rolla.

Rausche, F., G. Goble, and G. Likins. 1992. “Investigation of dynamic soil
resistance on piles using GRLWEAP.” In Application of stress-wave
theory to piles, 137–142. Oxfordshire, UK: Routledge.

Rausche, F., G. G. Goble, and G. E. Likins Jr. 1985. “Dynamic determi-
nation of pile capacity.” J. Geotech. Eng. 111 (3): 367–383. https://doi
.org/10.1061/(ASCE)0733-9410(1985)111:3(367).

Rausche, F., B. Robinson, and L. Liang. 2000. “Automatic signal matching
with CAPWAP.” In Proc., 6th Int. Conf. on the Application of Stress-
wave Theory to Piles, edited by S. Niyama and J. Beim, 53–58.
São Paulo, Brazil: A. A. Balkema, Rotterdam.

Rix, G. J., C. Lai, andW. A. Spang Jr. 2000. “In situ measurements of damp-
ing ratio using surface waves.” J. Geotech. Geoenviron. Eng. 126 (5):
472–480. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(472).

Schevenels, M., G. Lombaert, G. Degrande, and S. François. 2008.
“A probabilistic assessment of resolution in the SASW test and its im-
pact on the prediction of ground vibrations.” Geophys. J. Int. 172 (1):
262–275. https://doi.org/10.1111/j.1365-246X.2007.03626.x.

Seylabi, E., A. Kurtuluş, K. H. Stokoe, and E. Taciroglu. 2017. “Interaction
of a pile with layered-soil under vertical excitations: Field experiments
versus numerical simulations.” Bull. Earthquake Eng. 15 (Mar): 3529–
3553. https://doi.org/10.1007/s10518-017-0099-5.

Shahram, F. M., and K. Fakharian. 2008. “Verification of signal matching
analysis of pile driving using a finite difference based continuum numeri-
cal method.” Int. J. Civ. Eng. 6 (3): 174–183.

Stokoe, K., E. Arnold, R. Hoar, D. Shirley, and D. Anderson. 1978. “Devel-
opment of a bottom-hole device for offshore shear wave velocity meas-
urement.” In Proc., Offshore Technology Conf., 1367–1380. Richardson,
TX: OnePetro.

Stokoe, K. H., S. G. Wright, J. A. Bay, and J. M. Roësset. 1994. “Axial non-
linear dynamic soil-pile interaction.” InCharacterization of geotechnical
sites by SASW method, edited by R. D. Woods, 15–25. New Delhi, India:
Oxford & IBH Publishing.

Takemiya, H., and Y. Yamada. 1981. “Layered soil-pile-structure dynamic
interaction.” Earthquake Eng. Struct. Dyn. 9 (5): 437–457. https://doi
.org/10.1002/eqe.4290090504.

Warrington, D. 1997. “Closed form solution of the wave equation for piles.”
M.S. thesis, Dept. of Computational Engineering, Univ. of Tennessee at
Chattanooga.

Warrington, D. C. 2016. “Improved methods for forward and inverse
solution of the wave equation for piles.” Ph.D. thesis, Dept. of Com-
putational Engineering, Univ. of Tennessee at Chattanooga.

Yu, C.-P., S.-T. Liao, and L. F. Kallivokas. 2022. “An extension of the
mobility analysis of the impulse response method for coupled pile-soil
integrity testing.” J. Earthquake Eng. 26 (7): 3703–3723. https://doi.org
/10.1080/13632469.2020.1814451.

© ASCE 04023078-13 J. Eng. Mech.

 J. Eng. Mech., 2023, 149(10): 04023078 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

L
ou

ka
s 

K
al

liv
ok

as
 o

n 
07

/3
1/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(778)
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(778)
https://doi.org/10.1016/j.soildyn.2013.06.005
https://doi.org/10.1016/j.soildyn.2013.06.005
https://doi.org/10.1016/j.cma.2015.07.008
https://doi.org/10.1016/j.cma.2015.07.008
https://doi.org/10.1016/j.soildyn.2016.04.010
https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(965)
https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(965)
https://doi.org/10.1016/j.soildyn.2012.12.012
https://doi.org/10.1016/j.soildyn.2012.12.012
https://doi.org/10.1016/j.cma.2010.08.010
https://doi.org/10.1016/j.cma.2010.08.010
https://doi.org/10.1016/j.soildyn.2009.11.001
https://doi.org/10.1016/j.soildyn.2009.11.001
https://doi.org/10.1002/(SICI)1096-9853(199704)21:4%3C255::AID-NAG869%3E3.0.CO;2-J
https://doi.org/10.1002/(SICI)1096-9853(199704)21:4%3C255::AID-NAG869%3E3.0.CO;2-J
https://doi.org/10.1007/978-3-662-44832-8_33
https://doi.org/10.1007/978-3-662-44832-8_33
https://doi.org/10.1061/(ASCE)0733-9410(1993)119:7(1094)
https://doi.org/10.1061/(ASCE)0733-9410(1993)119:7(1094)
https://doi.org/10.1190/1.1444590
https://doi.org/10.1190/1.1444590
https://doi.org/10.1016/j.compgeo.2015.11.012
https://doi.org/10.1016/j.compgeo.2015.11.012
https://doi.org/10.1680/jgeot.20.P.250
https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(367)
https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(367)
https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(472)
https://doi.org/10.1111/j.1365-246X.2007.03626.x
https://doi.org/10.1007/s10518-017-0099-5
https://doi.org/10.1002/eqe.4290090504
https://doi.org/10.1002/eqe.4290090504
https://doi.org/10.1080/13632469.2020.1814451
https://doi.org/10.1080/13632469.2020.1814451

