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Abstract:We are concerned with controlling wave propagation in an elastic medium by engineering its dispersive properties. To this end, we
discuss a flexible and systematic framework for designing the material composition of the unit cell of a periodic medium when given a target
dispersion relation or, equivalently, a target group velocity profile at a user-defined frequency range. We cast the inverse medium design
problem as a dispersion-constrained optimization problem that minimizes the distance between the target and the computed group velocity
profiles. We rely on the Hellmann–Feynman theorem to obtain the computed group velocity of a trial unit cell, and use a gradient-based
algorithm to drive the engineered medium’s material properties to convergence. We numerically demonstrate the capabilities of the approach
using scalar waves in one and two dimensions. We also use the method to design metamaterials exhibiting user-defined omnidirectional band
gaps and to provide numerical evidence of the metamaterial’s intended performance via time-domain simulations. DOI: 10.1061/(ASCE)
EM.1943-7889.0001688. © 2019 American Society of Civil Engineers.
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Introduction

The interest in understanding and modeling wave propagation in
periodic structures is centuries old, originating possibly with the
modeling of spring-mass chains; important contributions can be
found in the seminal works of Newton (1740), Rayleigh (1887),
and Brillouin (1946). Recent renewed attention to waves in periodic
structures is due to the ability to design and manufacture periodic
media at various length scales that exhibit unconventional proper-
ties (Movchan et al. 2018), which, in turn, can be harnessed to ad-
vantage. Whereas the periodic structure’s unit cell constituent
materials have conventional properties (e.g., positive mass density
and positive elastic modulus) the composite periodic structure’s
homogenized properties may exhibit singly negative, or doubly
negative material properties, thus endowing the structure with
metamaterial status.

The exotic or unconventional properties of metamaterials are
exploited to drive novel applications in solid state physics, in pho-
tonics, and in phononics; related contributions of note include the
works of Pendry (2000) and Luo et al. (2003) in subwavelength
focusing, and of Alù and Engheta (2005), Schurig et al. (2006),
Norris (2008), and Brun et al. (2009) in invisibility cloaking.
The aforementioned, as well as similar developments in optics have
fueled interest in extending the gains realized therein to the case
of media supporting elastic waves, most notably for seismic shield-
ing applications (Meseguer et al. 1999; Alagoz and Alagoz 2011;
Krödel et al. 2015; Miniaci et al. 2016; Colombi et al. 2016a;
Palermo et al. 2018), despite the difficulties imposed by the pres-
ence of two different bulk wave types and large wavelengths.

Whether in optics or elastodynamics, key interests include
the design of metamaterials capable of steering or channeling
waves, band-gapping, filtering, focusing, etc. (Dubois et al. 2013;
Finocchio et al. 2014; Torrent et al. 2014; Climente et al. 2014;
Colombi 2016; Colombi et al. 2016b; Huang et al. 2017). Irrespec-
tive of the application field, to date, metamaterial design is done on
an ad hoc basis, driven mostly by physical insight: no systematic
process has been proposed to guide either the topological or
material inverse problems associated with the design of a metama-
terial when given a target outcome. Examples of a few exceptions
include band-gap maximization (Sigmund and Søndergaard Jensen
2003; Qian and Sigmund 2011), wave amplitude control (Rupp
et al. 2007; Biros et al. 2004), design for effective medium proper-
ties (Wang et al. 2014), a topological optimization for optical wave-
guides (Castelló-Lurbe et al. 2014), optimal design of seismic
metamaterials (Wagner et al. 2018), and the systematic approach
for metamaterial band gap design in Goh and Kallivokas (2019).

Specifically, in Goh and Kallivokas (2019), we proposed a
method for designing a metamaterial exhibiting a user-defined band
gap, using the discriminant of the associated quadratic eigenvalue
problem as the inverse medium problem driver. Though systematic,
the approach is limited to band gaps: broader design considerations,
including wave directivity control, spectrum-specific wave speed
control, multiple target band gaps, etc., can only be accommodated
if the design approach considers the dispersive behavior in a holis-
tic manner. Thus, to design the topology or the material properties
of a metamaterial in order for it to exhibit a user-prescribed behav-
ior, requires engineering the metamaterial’s dispersive characteris-
tics, or, equivalently, its dispersion curve(s)/surface(s). A suitable
metric—perhaps the most suitable—for engineering the dispersion
curve is its derivative, i.e., the group velocity, for it readily allows
for the simultaneous consideration of several of the aforementioned
design targets.

It is noted that engineering the dispersion curve(s), or equiva-
lently the group velocity profile, is a bona fide inverse medium
problem. In this article, we describe a systematic method for de-
signing a metamaterial unit cell to exhibit a user-defined group
velocity profile. The associated inverse medium problem borrows
from the systematic framework used in related work in inverse
medium geoscience problems (Kallivokas et al. 2013; Fathi et al.
2015; Mashayekh et al. 2018; Kucukcoban et al. 2019).
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The structure of the article is as follows: we briefly review
the dispersive characteristics of a periodic medium and discuss the
complex band structure, band gaps, and group velocity. Then, we
define the metamaterial unit cell design problem driven by a target
group velocity profile, and describe the resolution of the associated
inverse medium problem. Numerical examples resulting in the
design of one- and two-dimensional unit cells are provided to
demonstrate the method’s capabilities in the frequency domain, in-
cluding the design of a unit cell exhibiting an omnidirectional user-
defined band gap. Lastly, we reinforce the findings via time-domain
simulations, with limited-width metamaterial blocks that show sub-
wavelength performance.

Preliminaries

We are interested in controlling a medium’s dispersive properties.
To fix ideas, we use a target group velocity profile to drive the in-
verse metamaterial design problem. Band gaps and other similar
design goals emerge as particular cases of the group velocity design
problem. To describe the approach, we appeal first to the properties
of the eigenvalue problem of a periodic medium.

Periodic Medium and Its Complex Dispersion Relation

A periodic medium is characterized by a dispersion relation
exhibiting band gaps, backward propagating waves, slow and fast
waves, mode conversions, etc. To arrive at the dispersion relation
of a periodic medium, we begin with a quadratic eigenvalue
problem. To this end, consider the scalar Helmholtz equation in
Nd-dimensional space, i.e.

0 ¼ div½μðxÞgradUðxÞ� þ ρðxÞω2UðxÞ; x ∈ RNd ð1Þ

where, for a scalar elastodynamic problem, UðxÞ = displacement;
μðxÞ = shear modulus; ρðxÞ = density; and ω = temporal frequency.
For a periodic medium, the spatial distribution of the material
properties satisfy

ρðxÞ ¼ ρ

�
xþ

XNd

i¼1

mipi

�
and ð2aÞ

μðxÞ ¼ μ

�
xþ

XNd

i¼1

mipi

�
∀ x ∈ RNd ; ∀ mi ∈ Z ð2bÞ

Each primitive vector pi ∈ RNd defines the periodicity in the ith
direction, and mi is an arbitrary integer. For example, a choice of
p1 ¼ ð1; 0Þ and p2 ¼ ð0; 1Þ defines a square periodic unit cell in a
two-dimensional plane. Then, the Bloch theorem (Ashcroft 1976)
provides the general solution of Eq. (1) under the periodicity rela-
tions of Eq. (2), as

UðxÞ ¼ eik·xuðxÞ ð3Þ

where the displacement-like quantity uðxÞ is also periodic with the
same periodicity pi of the medium, and k is the Bloch wavevector.
Thus, the general solution UðxÞ consists of a plane wave eik·x en-
veloped by the periodic function uðxÞ. The Bloch theorem allows
us to obtain an eigenvalue problem defined over a unit cell Ωcell by
substituting the general solution of Eq. (3) into the Helmholtz
Eq. (1). Then, in weak form, the eigenvalue problem can be cast
as (Banerjee 2011)

0 ¼
Z
Ωcell

½ð−ikdv̄þ gradv̄Þ · μðikduþ graduÞ − v̄ρω2u�dΩ ð4Þ

In Eq. (4), k ¼ k · d is the wavevector in any direction of
interest d, v is a test function, and an overline ð Þ denotes complex
conjugation of the subtended quantity. For a given real-valued ω,
the eigenvalue problem in Eq. (4) can be solved for a complex-
valued k. Specifically, we rearrange the weak form of Eq. (4) to
obtain the following quadratic eigenvalue problem:

Given ω ∈ R and d ∈ RNd , find k ∈ C and u ∈ V \ f0g such
that

0 ¼ a0ðv; uÞ þ ka1ðv; uÞ þ k2a2ðv; uÞ≡ PðkÞðu; vÞ ∀ v ∈ V

ð5Þ

where

V ¼
�
u ∈ H1ðΩcellÞjuðxÞ ¼ u

�
xþ

XNd

i¼1

mipi

�
∀ x ∈ ∂Ωcell

�

ð6aÞ

a0ðv; uÞ ¼
Z
Ωcell

½gradv̄ · μgradu − v̄ω2ρu�dΩ ð6bÞ

a1ðv; uÞ ¼ i
Z
Ωcell

½gradv̄ · μdu − dv̄ · μgradu�dΩ; and ð6cÞ

a2ðv; uÞ ¼
Z
Ωcell

dv̄ · μdudΩ ð6dÞ

Notice that the dispersion relation is symmetric about k ¼ 0,
and periodic with periodicity of 2πqi. Moreover, qi are the recip-
rocal primitive vectors satisfying pi · qj ¼ 2πδij, where δij is a
Kronecker delta. The complete dispersion relation, or equivalently,
the band structure is the collection of dispersion curves obtained
from solving Eq. (5).

We note that the quadratic eigenvalue problem of Eq. (5) is also
characterized by a discriminant D, which allows distinguishing be-
tween propagating and nonpropagating states (Goh and Kallivokas
2019). Specifically, by replacing the test function v with u in
Eq. (5), we obtain

0 ¼ PðkÞðu; uÞ
¼ a0ðu; uÞ þ ka1ðu; uÞ þ k2a2ðu; uÞ
¼ cþ bkþ ak2 ð7Þ

where a, b, and c are real-valued scalars due to the Hermitian char-
acter of aið·; ·Þ. Then, the discriminant of the quadratic Eq. (7) is
given by

D ¼ b2 − 4ac ð8Þ

A positive D implies a propagating state, or a real-valued k, and
a negative D implies a nonpropagating state, or a complex-valued
k. If the sole aim of the unit cell design is to engineer the periodic
structure to exhibit user-defined band gaps, the design problem can
be driven by the discriminant, as was done in Goh and Kallivokas
(2019). If, however, broader design goals are of interest, e.g., a
target slow-wave region, lensing, or focusing, then relying on the
discriminant alone is not sufficient. The more general problem of
engineering the dispersive properties requires consideration of the
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group velocity: in the next section, we relate the group velocity to
the parameters of the eigenvalue problem in Eq. (5).

Group Velocity in Terms of the Eigenpair

The group velocity vg is defined as the real part of the complex
group velocity (Moiseyenko and Laude 2011), i.e.

vg ¼ Refgradkωg ¼
XNd

i¼1

Re

�∂ω
∂ki

�
ei ð9Þ

where ei are orthonormal bases. Substituting v with u, and taking a
partial derivative of Eq. (5) with respect to k, results in

0 ¼ ∂
∂kPðkÞðu; uÞ

¼ 2ω
∂ω
∂k a0;2ðu; uÞ þ a1ðu; uÞ þ 2ka2ðu; uÞ

þ 2Re

�
a0;0

�∂u
∂k ; u

��
þ 2ω2Re

�
a0;2

�∂u
∂k ; u

��

þ 2kRe

�
a1

�∂u
∂k ; u

��
þ 2k2Re

�
a2

�∂u
∂k ; u

��
ð10Þ

In deriving Eq. (10), we decomposed a0ðv; uÞ into two parts:
a term with no ω-dependency, denoted by a0;0ðv; uÞ, and a term
exhibiting ω2-dependency, denoted by ω2a0;2ðv; uÞ, i.e.

a0ðv; uÞ ¼ a0;0ðv; uÞ þ ω2a0;2ðv; uÞ ð11Þ

Taking the real part of Eq. (10), results in

0 ¼ 2ωRe

�∂ω
∂k

�
a0;2ðu; uÞ þ a1ðu; uÞ þ 2Refkga2ðu; uÞ

þ 2Re

�
a0;0

�∂u
∂k ; u

�
þ ω2a0;2

�∂u
∂k ; u

�

þ ka1

�∂u
∂k ; u

�
þ k2a2

�∂u
∂k ; u

��
ð12Þ

Assuming ∂u=∂k ∈ V, the terms involving ∂u=∂k in Eq. (12)
vanish because u is the eigenvector satisfying Eq. (5). Then, the
group velocity in the direction d, or vg · d, is written in terms
of the eigenpair ðu; kÞ as

vg ¼ vg · d

¼ Re

�∂ω
∂k

�
¼ Re

�
− a1ðu; uÞ þ 2ka2ðu; uÞ

2ωa0;2ðu; uÞ
�

¼ − a1ðu; uÞ þ 2Refkga2ðu; uÞ
2ωa0;2ðu; uÞ

ð13Þ

Eq. (13) can be regarded as the (scalar) elastodynamic equiva-
lent of the Hellmann–Feynman theorem in quantum mechanics,
which relates the derivative of the total energy to the derivative
of the associated Hamiltonian. A similar approach for computing
the group velocity in optics is reported in Sakoda (2004).

As it can be seen from Eq. (13), the group velocity in a given
direction d is expressed explicitly in terms of the eigenvectors and
eigenvalues of the associated eigenvalue problem. Thus, engineer-
ing the dispersive properties of a unit cell to achieve a user-defined
wave control outcome is equivalent to prescribing the group

velocity along user-defined directions d. Wave-steering, lensing,
focusing, band gaps, etc., can all be cast in terms of a target group
velocity profile (along one or multiple directions). For example,
designing for a user-defined band gap requires that the target group
velocity, for a set of desired directions, vanish, i.e.

vg ¼ vg · d ¼ − a1ðu; uÞ þ 2Refkga2ðu; uÞ
2ωa0;2ðu; uÞ

¼ 0 ð14Þ

We note that the band-gap criterion D < 0 established in Goh
and Kallivokas (2019) is equivalent to prescribing a zero group
velocity (see Appendix I for proof).

We capture schematically the preceding discussion by consid-
ering the square unit cell depicted in Fig. 1, composed of two
concentric square zones of piecewise constant material properties
written in terms of nondimensionalized quantities

u� ¼ u
p
; ρ� ¼ ρ

ρavg
; μ� ¼ μ

μavg
;

x� ¼ x
p
; ω� ¼ ωp

cavg
; and k� ¼ kp ð15Þ

where p ¼ maxjpij and ðÞavg is used for area-averaged quantities.
The average wave speed cavg is computed by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μavg=ρavg

p
. Then,

Figs. 2(a and b) show the dispersion relation in terms of the com-
plex band structure. In Fig. 2(a), hollow gray circles are used
to denote the real part of the complex-valued k�, whereas black
dots are used for real-valued k�. Because of the symmetry and
periodicity of the dispersion relation, the band structure is provided
only along the high symmetry lines Γ − X, Γ −M, and X −M,
which circumscribe the irreducible Brillouin zone. The shaded zone
shown in Fig. 2(a) corresponds to an omnidirectional band gap in
the range ω� ∈ ð3.3; 3.6Þ. Fig. 2(b) shows the imaginary part of the
band structure: notice that the region corresponding to nonzero
Imfk�g represents the band gap. Similarly, Fig. 2(c) shows the
discriminant D distribution: notice that the range of ω� for which
D < 0 identifies uniquely the band gap. Lastly, Fig. 2(d) shows the
group velocity, where clearly the zone where the velocity vanishes
delineates the same band gap identified in Figs. 2(a–c): for band
gaps, all four representations shown in Fig. 2 are equivalent.

Fig. 1. Square unit cell prototype.

© ASCE 04019094-3 J. Eng. Mech.
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Group Velocity Control

In this section, we introduce the inverse problem and its solution
method for designing a unit cell of a periodic medium when a target
group velocity profile is given. We begin by defining the objective
functional and the optimality conditions, where the inverse design
problem is cast as a minimization problem. Then, we introduce a
gradient-based inversion process to iteratively update the trial de-
sign variables ρ and μ to converge to the optimum. The design var-
iables depend on the desirable parameterization of the unit cell,
e.g., they can be material properties when the topology is fixed,

or topological parameters when material properties are fixed,
etc. Herein, we choose material properties ρ and μ as design var-
iables, for a fixed unit cell topology.

Objective Functional

We use a misfit functional to drive the inverse medium problem.
The misfit functional M is defined using the distance between
the computed group velocities of a trial unit cell and the prescribed
target group velocities at different temporal frequencies, modes,
and directions, i.e.

M½ρ;μ; uα;β;γ; kα;β;γ � ¼
XNfreq

α

XNdir

β

XNmode

γ

1

2
½ðvgÞα;γ · dβ − ðvmg Þα;β;γ�2

¼
XNfreq

α

XNdir

β

XNmode

γ

1

2

�
Re

�
− a1ðuα;β;γ; uα;β;γÞ þ 2kα;β;γa2ðuα;β;γ; uα;β;γÞ

2ωαa0;2ðuα;β;γ; uα;β;γÞ
�
− ðvmg Þα;β;γ

�
2

ð16Þ

where Nfreq, Ndir, and Nmode denote the number of frequencies, directions, and modes, respectively, over which the target group velocity
ðvmg Þα;β;γ is defined. Indices α, β, and γ, are used to denote the individual frequency, direction, and mode, respectively; to reduce notational
congestion, we henceforth omit the subscripts, i.e.

vmg ¼ ðvmg Þα;β;γ; vg ¼ ðvgÞα;γ; d ¼ dβ; u ¼ uα;β;γ; k ¼ kα;β;γ; and ω ¼ ωα ð17Þ

We note that, should a band gap be a design target, then vmg should be set to zero.
Next, we augment the misfit functional M by side-imposing the dispersion relation using Lagrangian multipliers, i.e., let

L½ρ;μ; u; k; v; ξ� ¼ M½ρ;μ; u; k� þ E½ρ;μ; u; k; v; ξ� ð18Þ

(a) (b)

(c) (d)

Fig. 2. Complex band structure, discriminant, and group velocity: an omnidirectional band gap is shown shaded in the range ω� ∈ ð3.3; 3.6Þ: (a) real
part of the band structure: real-valued k� are shown as dots, whereas hollow circles are used for complex-valued k�; (b) imaginary part of the band
structure: nonpropagating states (band gap) have nonzero imaginary part; (c) discriminant D distribution: nonpropagating states (band gap) corre-
spond to negative D values; and (d) group velocity: nonpropagating states (band gap) correspond to zero vg.

© ASCE 04019094-4 J. Eng. Mech.
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where L denotes the unit cell’s Lagrangian, and E is the associated
eigenvalue problem constraint defined as

E½ρ;μ; u; k; v; ξ� ¼
XNfreq

α

XNdir

β

XNmode

γ

RefPðkÞðv; uÞg

þ
XNfreq

α

XNdir

β

XNmode

γ

ξ
2
½a2ðu; uÞ − 1� ð19Þ

In Eq. (19), the first term is the eigenvalue problem, whereas the
second term is the side-imposition of the orthonormality condition
that ensures a unique set of eigenvectors; v and ξ are the adjoint
variables corresponding to u and k, respectively, where the indices
α, β, and γ have been again omitted. The unknown design variables
μ and ρ are scalar quantities. Therefore, the inverse metamaterial
design problem is defined as

Given vmg , find ρ and μ such that

minL½ρ;μ; u; k; v; ξ� ð20Þ

Various algorithms can be used to solve the minimization prob-
lem Eq. (20). For a differentiable L, gradient-based algorithms are,
in general, computationally efficient when compared to gradient-
free algorithms. We discuss next the optimality conditions, and
a gradient-based approach to resolve the unit cell’s properties.

Optimality Conditions and Adjoint Sensitivity Analysis

We seek a stationary point for L (20). Equivalently, we seek to
satisfy the first-order optimality conditions, which read

0 ¼ δvL½ : : : �ð ~vÞ ∀ ~v ∈ V; 0 ¼ δξL½ : : : �ð~ξÞ ∀ ~ξ ∈ R

ð21aÞ

0 ¼ δuL½ : : : �ð ~uÞ ∀ ~u ∈ V; 0 ¼ δkL½ : : : �ð ~kÞ ∀ ~k ∈ C; and

ð21bÞ

0 ¼ δρL½ : : : �ð ~ρÞ ∀ ~ρ ∈ W; 0 ¼ δμL½ : : : �ð ~μÞ ∀ ~μ ∈ W

ð21cÞ

We use ½ : : : � to abbreviate ½ρ;μ; u; k; v; ξ� and ~ð Þ to denote
the direction of the Gâteaux derivative. The function space W is
defined as

W ¼
�
u ∈ H0ðΩcellÞjuðxÞ ¼ u

�
xþ

XNd

i¼1

mipi

�
∀ x ∈ ∂Ωcell

�

ð22Þ
We use an adjoint method to bypass a direct sensitivity analysis,

which is, typically, required of any gradient-based algorithm.
Accordingly, the first two optimality conditions of Eqs. (21a)
and (21b) are first enforced for trial ρ and μ, and then the third
optimality condition of Eq. (21c) is used to define the Fréchet deriv-
atives of L with respect to ρ and μ, denoted by gρ and gμ, respec-
tively. We note that Eq. (21c) will be satisfied only at the optimum.
The detailed expression of the Gâteaux derivatives implicated in
the optimality conditions of Eq. (21) are given in Appendix II.
Enforcing Eq. (21a) yields the state eigenvalue problem.

Given ρ ∈ W, μ ∈ W, and ω ∈ R, find k ∈ C and u ∈ V \ f0g
such that

0 ¼ PðkÞð ~v; uÞ ∀ ~v ∈ V and ð23aÞ

0 ¼
~ξ
2
½a2ðu; uÞ − 1� ∀ ~ξ ∈ R ð23bÞ

The enforcement of Eq. (21b) yields the adjoint eigenvalue
problem.

Given ρ ∈ W, μ ∈ W, ω ∈ R, k ∈ C, and u ∈ V \ f0g, find ξ ∈ R and v ∈ V such that

0 ¼ PðkÞðv; ~uÞ þ ξa2ðu; ~uÞ − a1ðu; ~uÞ þ 2Refkga2ðu; ~uÞ
ωa0;2ðu; uÞ

ðvg − vmg Þ

þ a1ðu; uÞ þ 2Refkga2ðu; uÞ
ω½a0;2ðu; uÞ�2

a0;2ðu; ~uÞðvg − vmg Þ ∀ ~u ∈ V and ð24aÞ

0 ¼ ~ka1ðv; uÞ þ 2~kka2ðv; uÞ −
~ka2ðu; uÞ
ωa0;2ðu; uÞ

ðvg − vmg Þ ∀ ~k ∈ C ð24bÞ

Lastly, given ρ ∈ W, μ ∈ W, ω ∈ R, the solution of the state eigenvalue problem of Eq. (23) ðu; kÞ, and the solution of the adjoint
eigenvalue problem of Eq. (24) ðv; ξÞ, find gρ ∈ W and gμ ∈ W such that (Appendix II)

Z
Ωcell

~ρgρdΩ ¼
XNfreq

α

XNdir

β

XNmode

γ

Re

�
−
Z
Ωcell

v̄ω2 ~ρudΩ
�

þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�
−
�R

Ωcell
iðgradū · μdu − dū · μgraduÞdΩ

2ωðRΩcell
ūρudΩÞ2 þ 2k

R
Ωcell

ūμudΩ
2ωðRΩcell

ūρudΩÞ2
�

×

�Z
Ωcell

ū ~ρ udΩ
�
ðvg − vmg Þ

�
∀ ~ρ ∈ W and ð25aÞ
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Z
Ωcell

~μgμdΩ ¼
XNfreq

α

XNdir

β

XNmode

γ

Re

�
k
Z
Ωcell

iðgradv̄ · ~μdu − dv̄ · ~μgraduÞdΩ
�

þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�Z
Ωcell

gradv̄ · ~μgradudΩ
�

þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�
k2

Z
Ωcell

v̄ ~μ udΩ
�
þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�
ξ
2

Z
Ωcell

ū ~μ udΩ
�

þ
XNfreq

α

XNdir

β

XNmode

γ

Re

��R
Ωcell

iðgradū · ~μdu − dū · ~μgraduÞdΩ
2ω

R
Ωcell

ūρudΩ
þ 2k

R
Ωcell

ū ~μ udΩ
2ω

R
Ωcell

ūρudΩ

�
ðvg − vmg Þ

�
∀ ~μ ∈ W ð25bÞ

Next, armed with the gradients in Eq. (25), we use a conjugate
gradient scheme to update the unit cell’s properties per the details
given in the next session.

Inversion Process

The stationary point of the Lagrangian is reached only when all of
the optimality conditions (21) are satisfied for some distributions of
ρ and μ. Otherwise, the properties ρ and μ must be updated at each
inversion iteration; the updates can be cast as

ρðkþ1Þ ¼ ρðkÞ þ αðkÞ
ρ dðkÞρ and ð26aÞ

μðkþ1Þ ¼ μðkÞ þ αðkÞ
μ dðkÞμ ð26bÞ

where ρðkþ1Þ, μðkþ1Þ, ρðkÞ, and μðkÞ denote properties at the

ðkþ 1Þ-th and kth iterations, respectively; dðkÞρ and dðkÞμ are

the search directions, and αðkÞ
ρ and αðkÞ

μ are search lengths at the

kth iteration. We use a conjugate gradient method (Fletcher and
Reeves 1964; Quarteroni et al. 2010), where

dðkÞρ ¼

8>>><
>>>:

−gðkÞρ ; k ¼ 0

− gðkÞρ · gðkÞρ

gðk−1Þρ · gðk−1Þρ

gðkÞρ ; k > 0
and

dðkÞμ ¼

8>>><
>>>:

−gðkÞμ ; k ¼ 0

− gðkÞμ · gðkÞμ

gðk−1Þμ · gðk−1Þμ

gðkÞμ ; k > 0
ð27Þ

The search lengths are obtained using the backtracking algo-
rithm (Quarteroni et al. 2010). The updates of Eq. (26) are repeated
until trials ρ and μ converge. To make the inversion process robust,
we also use a frequency continuation scheme, discussed in the
numerical results section. We summarize the inversion process in
Algorithm 1.

Algorithm 1. Inversion process
1: Sample the target group velocity vmg (vmg ¼ 0 for band gaps) at discrete frequencies
2: Define the geometry of the unit cell (e.g., periodicity, number of distinct material elements, etc.)
3: Set the error tolerance ε.
4: Initialize the iteration counter l←0
5: Set the initial search length
6: Set initial guesses for the material properties ρ0 and μ0

7: for kMlþ1 −Mlk > εkMlk do
8: Solve the state eigenvalue problem and evaluate Ml ⊳ Eqs. (16) and (23)
9: Solve the adjoint eigenvalue problem ⊳ Eq. (24)

10: Compute the gradient of L ⊳ Eq. (25)
11: Obtain the search direction (e.g., conjugate gradient method)
12: Update the material properties ρlþ1 and μlþ1 using backtracking algorithm; stop if sufficient-decrease condition is violated
13: Set l←lþ 1
14: end for

Numerical Results

The proposed inverse metamaterial design algorithm was imple-
mented using finite elements in a parallel C code with the aid
of PETSc (Balay et al. 2016) and SLEPc (Roman et al. 2016).
We describe next one- and two-dimensional examples that help
demonstrate the capability and performance of the methodology.

Unit Cell Design in 1D

We consider first the case of a 3-material unit cell, whose target
group velocity profile is given. The unit cell’s topology is fixed,
consisting of 3 equal size homogeneous sections with properties
ðρ�1;μ�

1Þ, ðρ�2;μ�
2Þ, and ðρ�3;μ�

3Þ [Fig. 3(a)]. We seek the properties
that will result in the given target group velocity profile shown in

© ASCE 04019094-6 J. Eng. Mech.
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Fig. 3(b). The group velocity profile is sampled at 21 points,
marked with crosses in Fig. 3(b); notice that the given profile in-
cludes a band gap between ω� ¼ 1.8 and ω� ¼ 4.4. The inversion
process was initiated using near homogeneous properties ρ�1 ¼
μ�
1 ¼ ρ�3 ¼ μ�

3 ¼ 1 and ρ�2 ¼ μ�
2 ¼ 0.9.

The optimizer resulted in the material distribution shown in
Fig. 4(a); Fig. 4(b) depicts the group velocity and band structure
of the unit cell using the converged material parameters. As it
can be seen, the inversely designed unit cell’s velocity profile
matches well the target profile.

Using the same 3-material unit cell topology, we target next a
design that ought to exhibit two band gaps, one in the (2, 3) range,
and a second one in the (4.5, 5.5) range. We used 22 frequency
points to populate the target velocity profile. We start the inversion
process with ρ�1 ¼ μ�

1 ¼ ρ�3 ¼ μ�
3 ¼ 1 and ρ�2 ¼ μ�

2 ¼ 0.9. Fig. 5(a)
shows the properties of the converged unit cell, characterized by

(a) (b)

Fig. 4. (a) Inverted properties; and (b) inverted group velocity profile and associated band structure exhibiting a single band gap.

(a)

(b)

Fig. 3. (a) Topology; and (b) target group velocity profile of 1D unit
cell design exhibiting a single band gap: solid line shows the synthetic
group velocity profile, with crosses (×) marking the sampling points.

(a)

(b)

Fig. 5. (a) Inverted properties; and (b) inverted group velocity profile
and associated band structure exhibiting two band gaps.

© ASCE 04019094-7 J. Eng. Mech.
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ρ�1 ¼ ρ�3 ¼ 1.29, μ�
1 ¼ μ�

3 ¼ 0.92, ρ�2 ¼ 0.68, and μ�
2 ¼ 0.36, while

Fig. 5(b) depicts the group velocity profile and associated band
structure, where the target band gaps have been very clearly
realized.

Unit Cell Design in 2D

To demonstrate the agility of the method, we consider next the
design of a unit cell in two dimensions, where the design goal
is for the metamaterial to exhibit an omnidirectional band gap at
a prescribed frequency range. Consider the 3-material, 4-m-wide
square unit cell depicted in Fig. 6(a); the Brillouin zone is shown
in Fig. 6(b). The target band gap is set at f ∈ ð4.77; 10.25Þ Hz.
The initial guesses are ρ1 ¼ 8,250 kg=m3, μ1 ¼ 31.99 MPa, ρ2 ¼
8,071 kg=m3, μ2 ¼ 19.72MPa, ρ3 ¼ 7,919 kg=m3, μ3 ¼ 3.06MPa;

(a) (b)

Fig. 6. 2D design problem: (a) square unit cell; p ¼ 4 m; and
(b) corresponding Brillouin zone and high symmetry lines Γ −M,
Γ − X, and X −M.

(a) (b)

Fig. 7. 2D design example of an omnidirectional band gap: (a) misfit functional progression under a 7-stage continuation scheme; and (b) inverted
unit cell material profile.

(a) (b)

(c) (d)

Fig. 8. 2D omnidirectional design example: (a) real part of the band structure; (b) imaginary part of the band structure; (c) discriminant; and (d) group
velocity, at the end of the first inversion stage.

© ASCE 04019094-8 J. Eng. Mech.
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the initial guesses are informed by a one-dimensional design
problem targeting a similar band gap. We use 70 frequency points
to mark the band gap (Nfreq ¼ 70); 2 directions (Ndir ¼ 2,
d1 ¼ ð1; 0Þ and d2 ¼ ð1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p Þ); and 3 modes (Nmode ¼ 3).

Moreover, we use a staggered process, akin to frequency continu-
ation, where we invert for the cell’s properties by first driving the
inversion with a portion of the target band gap at (4.77, 5.57) Hz.
We then feed the converged material properties as initial guesses for

(a) (b)

(c) (d)

Fig. 9. 2D omnidirectional design example: (a) real part of the band structure; (b) imaginary part of the band structure; (c) discriminant; and (d) group
velocity, at the end of the third inversion stage.

(a) (b)

(c) (d)

Fig. 10. 2D omnidirectional design example: (a) real part of the band structure; (b) imaginary part of the band structure; (c) discriminant;
and (d) group velocity, at the end of the final inversion stage.

© ASCE 04019094-9 J. Eng. Mech.
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a second stage, where the band gap is now defined between
(4.77, 6.37) Hz. We proceed similarly for a total of seven stages
by increasing the target range by 0.8 Hz at each stage, until the
target band gap is completely covered.

Fig. 7(a) shows the progression of the misfit functional M
with the number of inversion iterations: notice that the end of each
stage is marked by a 7-order of magnitude reduction in the misfit.
Fig. 7(b) shows the unit cell’s inverted properties, while Fig. 8
shows the associated band structure, discriminant, and group veloc-
ity at the end of the first stage: a narrow band gap can be observed
at the target range of the first stage, i.e., at (4.77, 5.57) Hz. Fig. 9
shows the band structure, discriminant, and the group velocity

at the end of the third stage: notice that, now, a wider band
gap is achieved at the target range of the third stage, i.e., at
f ∈ ð4.77; 7.16Þ Hz, as intended. The band gap after the final
stage is completed, is shown in Fig. 10: as it can be seen the target
omnidirectional band gap has been successfully attained at
f ∈ ð4.77; 10.35Þ Hz.

Time-Domain Analyses

The 2D unit cell constructed in the preceding section’s numerical
experiment will perform as theoretically expected under ideal con-
ditions of periodicity. However, in practice, a metamaterial can be

Fig. 11. Computational domain for time-domain analyses; the metablock is placed in the shaded region.

Fig. 12. Snapshots at t ¼ 4 s of a wavefield induced by monochromatic and dichromatic sources: (a) monochromatic source at f1 ¼ 2.5 Hz without
metablock; (b) monochromatic source at f1 ¼ 2.5 Hz with metablock; (c) monochromatic source at f2 ¼ 8 Hz without metablock; (d) monochro-
matic source at f2 ¼ 8 Hz with metablock; (e) dichromatic source with f1 ¼ 2.5 Hz and f2 ¼ 8 Hz without metablock; and (f) dichromatic source
with f1 ¼ 2.5 Hz and f2 ¼ 8 Hz with metablock.

© ASCE 04019094-10 J. Eng. Mech.
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realized only by stacking together a finite number of cells, thereby
weakening periodicity. It is then of interest to assess a finite meta-
material block’s (henceforth referred to as metablock) performance,
especially in the time domain, which is typically the case with the
strongest practical interest.

We use the unit cell depicted in Fig. 7(b) to create a metablock
that is only two unit cells wide. The metablock occupies Ωm and is
embedded within a homogeneous domain Ω, as shown in Fig. 11.

With the insertion of Ωm, the homogeneous domain is partitioned
into two parts, Ω1 and Ω2, such that Ω ¼ Ω1 ∪ Ω2 ∪ Ωm. More-
over, the physical domain Ω is surrounded by a buffer of perfectly
matched layers (PMLs) ΩPML to simulate wave propagation in an
unbounded domain. Then, the computational domain becomes
Ω ∪ ΩPML. The material properties of the homogeneous domain
Ω1 ∪ Ω2 are ρ ¼ 2,000 kg=m3 and μ ¼ 80 MPa; the correspond-
ing wave speed is 200 m=s.

Fig. 13. Various snapshots of a wavefield induced by a Ricker pulse with a central frequency of fr ¼ 6 Hz: (a) homogeneous domain; (b) with a 2
unit-cell-wide metablock at x ∈ ð−40; −32Þm; and (c) with a 4 unit-cell-wide metablock at x ∈ ð−40; −24Þm.

© ASCE 04019094-11 J. Eng. Mech.
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To examine whether an only two-cell-wide metablock is still
capable of exhibiting an omnidirectional band gap, we center the
8-m-wide metablock at ðx; yÞ ¼ ð−36; 0Þ m. A point source is
placed at ðx; yÞ ¼ ð−50; 0Þ m, and two observation stations are
set at ðx; yÞ ¼ ð−22; 0Þm and ð−22; 12Þm, respectively. Two types
of sources are used: monochromatic and a narrow-band Ricker
pulse. To numerically simulate wave propagation within the hetero-
geneous metablock Ωm, its homogeneous host Ω1 ∪ Ω2, and the
surrounding buffer ΩPML, we use a symmetric mixed-field PML
formulation, serendipity isoparametric finite elements, and a
Newmark method for time integration; the details can be found
in Kucukcoban and Kallivokas (2013).

Monochromatic Sources
To demonstrate the band-gap behavior of the metablock, we con-
sider first two monochromatic sources: p1

t and p2
t driven at f1 ¼

2.5 Hz and f2 ¼ 8 Hz, respectively, where

pi
t ¼ sinð2πfitÞ; i ¼ 1 or 2 ð28Þ

Recall that the frequency f1 ¼ 2.5 Hz is below the design band
gap, while f2 ¼ 8 Hz is within the design band gap (Fig. 10). The
first column of Fig. 12 shows snapshots, taken at t ¼ 4 s, of

the wavefields resulting from p1
t for a homogeneous medium,

i.e., in the absence of the metablock, whereas the second column
of Fig. 12 depicts the wavefields generated in the presence of
the metablock. As designed, and despite the small number of
cells, the metablock allows the propagation of the 2.5-Hz wave
[Figs. 12(a and b)], while arresting the propagation of the 8 Hz
wave [Figs. 12(c and d)]. The third row of Fig. 12 shows the effect
of the metablock on a dichromatic source driven by both frequen-
cies (it is, effectively, the superposition of the two individual wave-
fields). It is noteworthy that the metablock’s width (8 m) is smaller
than one-third of the shortest wavelength (25 m), which alludes to
the metablock’s subwavelength performance.

Ricker Pulse—Metablock Width Effect
Next, the same domain is excited using a source with a con-
tinuous narrow-band spectrum; specifically, we use a Ricker pulse
with a central frequency of fr ¼ 6 Hz, or ωr ¼ 2π · 6 rad=s,
defined as

pr
t ¼

ð0.25q2 − 0.5Þe0.25q2 − 13e−13.5
0.5þ 13e−13.5

; 0 ≤ t ≤ 6
ffiffiffi
6

p

ωr
ð29Þ

where q ¼ ωrt − 3
ffiffiffi
6

p
. Fig. 13(a) shows the time evolution of the

wavefield in a homogeneous domain (no metablock), for reference.

(a) (b)

(c) (d)

Fig. 14. Time traces at two observation stations and corresponding DFTs due to a Ricker pulse with fr ¼ 6 Hz; the target band gap is shaded in gray:
(a) time trace at station 1 ð−22; 0Þ m; (b) time trace at station 2 ð−22; 12Þ m; (c) DFT at station 1 ð−22; 0Þ m; and (d) DFT at station 2 ð−22; 12Þ m.
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First, we compare the response when using metablocks of different
widths: a 2-unit-cell-wide and a 4-unit-cell-wide metablock.
Figs. 13(b and c) shows snapshots of the associated wavefields.
Visually, it can be verified that low frequencies (below the band
gap) pass undisturbed through the metablock in both cases. For
a more detailed analysis, we use the time-domain response at
the two observations stations.

Specifically, Figs. 14(a and b) compare the time traces with
and without the metablocks: clearly, the 4-unit-cell-wide meta-
block’s response shows a smoother response. The DFTs shown
in Figs. 14(c and d) are more revealing: the presence of the design
band gap between 4.77 and 10.35 Hz is evident at both stations,
suggesting also the omnidirectionality feature of the metablock.
Notice also that there is amplification (compared to the homo-
geneous case) at frequencies at the edges of the band gap, with
stronger amplification at frequencies to the left than to the right
of the band gap. If the amplification effect is undesirable, then
the insertion of small material damping in the unit cell could alle-
viate the response, without affecting the band gap (alternatively, the
damping can also become part of the inversion problem). To dem-
onstrate the effect, we introduce only in the metablock a 1%

proportional damping (Chopra 2011) at f ¼ 2.5 Hz. The resulting
effect is shown in the time traces and the associated DFTof Fig. 15,
where the amplification below the band gap has been reduced, with
no appreciable effect on the band gap itself.

Conclusions

We proposed a systematic and general framework to design a unit
cell of a periodic medium when given a user-defined target group
velocity profile. The method can readily accommodate designing
unit cells exhibiting one or more target band gaps. The inverse
design metamaterial problem was cast as a dispersion-constrained
optimization problem, which was then solved by enlisting an ad-
joint approach. We demonstrated the method with numerical results
in one and two dimensions, including a problem involving the
design of a two-dimensional unit cell exhibiting an omnidirec-
tional band gap. We also demonstrated the performance of the
inversely designed metamaterials with numerical simulations in
the time domain. The methodology is general and can be extended
to three dimensions as well as to the case of vector waves.

(b)

(c) (d)

(a)

Fig. 15. Time traces at two observation stations and corresponding DFTs due to a Ricker pulse with fr ¼ 6 Hz; comparison of a lossless and lossy
(1%) metablock; target band gap is shaded in gray: (a) time trace at station 1 ð−22; 0Þ m; (b) time trace at station 2 ð−22; 12Þ m; (c) DFT at station 1
ð−22; 0Þ m; and (d) DFT at station 2 ð−22; 12Þ m.
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Appendix I. Group Velocity and Band Gap

We show that the vanishing of the group velocity at band gaps, i.e., that vg · d ¼ 0 is equivalent to the negativity of the discriminant D < 0
defined in Eq. (8). Taking the imaginary part of Eq. (5), when v is replaced by u, results in

0 ¼ ImfPðkÞðu; uÞg ¼ Imfkga1ðu; uÞ þ 2RefkgImfkga2ðu; uÞ ¼ Imfkg½a1ðu; uÞ þ 2Refkga2ðu; uÞ� ð30Þ

When D < 0, then and only then is Imfkg ≠ 0, and from the foregoing equation it must then also hold that

0 ¼ a1ðu; uÞ þ 2Refkga2ðu; uÞ ð31Þ
which is the numerator of the group velocity in the direction d in Eq. (13); qed.

Appendix II. Gâteaux Derivatives of L

The Fréchet derivative gu, or the gradient of L, is defined as (Stone and Goldbart 2009)
Z
Ωcell

~ugudΩ ¼ δuL½u�ð ~uÞ ð32Þ

where the Gâteaux derivative δuL is defined as

δuL½u�ð ~uÞ ¼
d
dε

				
ε¼0

L½uþ ε ~u� ð33Þ

The Gâteaux derivatives with respect to the adjoint variables are

δvL½ : : : �ð ~vÞ ¼ RefPðkÞð ~v; uÞg and ð34aÞ

δξL½ : : : �ð ~ξÞ ¼
~ξ
2
½a2ðu; uÞ − 1� ¼ Re

�
~ξ
2
½a2ðu; uÞ − 1�

�
ð34bÞ

The Gâteaux derivatives with respect to the state variables are

δuL½ : : : �ð ~uÞ ¼ δuM½ : : : �ð ~uÞ þ δuE½ : : : �ð ~uÞ and ð35aÞ

δkL½ : : : �ð ~kÞ ¼ δkM½ : : : �ð ~kÞ þ δkE½ : : : �ð ~kÞ ð35bÞ
where

δuM½ : : : �ð ~uÞ ¼ Re

�
−Refa1ðu; ~uÞg þ 2kRefa2ðu; ~uÞg

ωa0;2ðu; uÞ
�
ðvg − vmg Þ þ Re

�
a1ðu; uÞ þ 2ka2ðu; uÞ

ω½a0;2ðu; uÞ�2
Refa0;2ðu; ~uÞg

�
ðvg − vmg Þ

¼ Re

�
− a1ðu; ~uÞ þ 2Refkga2ðu; ~uÞ

ωa0;2ðu; uÞ
ðvg − vmg Þ

�
þ Re

�
a1ðu; uÞ þ 2Refkga2ðu; uÞ

ω½a0;2ðu; uÞ�2
a0;2ðu; ~uÞðvg − vmg Þ

�
ð36aÞ

δkM½ : : : �ð ~kÞ ¼ Re

�
− ~ka2ðu; uÞ
ωa0;2ðu; uÞ

�
ðvg − vmg Þ ¼ Re

�
− ~ka2ðu; uÞ
ωa0;2ðu; uÞ

ðvg − vmg Þ
�

ð36bÞ

δuE½ : : : �ð ~uÞ ¼ RefPðkÞðv; ~uÞg þ Refξa2ðu; ~uÞg; and ð36cÞ

δkE½ : : : �ð ~kÞ ¼ Ref ~ka1ðv; uÞ þ 2k ~ka2ðv; uÞg ð36dÞ

The Gâteaux derivatives with respect to the design variables are

δρL½ : : : �ð ~ρÞ ¼ δρM½ : : : �ð ~ρÞ þ δρE½ : : : �ð ~ρÞ and ð37aÞ

δμL½ : : : �ð ~μÞ ¼ δμM½ : : : �ð ~μÞ þ δμE½ : : : �ð ~μÞ ð37bÞ

where

δρM½ : : : �ð ~ρÞ ¼
XNfreq

α

XNdir

β

XNmode

γ

Re

�
−
�R

Ωcell
iðgradū · μdu − dū · μgraduÞdΩ

2ωðRΩcell
ūρudΩÞ2 þ 2k

R
Ωcell

ūμudΩ
2ωðRΩcell

ūρudΩÞ2
��Z

Ωcell

ū ~ρ udΩ
�
ðvg − vmg Þ

�
ð38aÞ
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δμM½ : : : �ð ~μÞ ¼
XNfreq

α

XNdir

β

XNmode

γ

Re

��R
Ωcell

iðgradū · ~μdu − dū · ~μgraduÞdΩ
2ω

R
Ωcell

ūρudΩ
þ 2k

R
Ωcell

ū ~μ udΩ
2ω

R
Ωcell

ūρudΩ

�
ðvg − vmg Þ

�
ð38bÞ

δρE½ : : : �ð ~ρÞ ¼
XNfreq

α

XNdir

β

XNmode

γ

Re

�
−
Z
Ωcell

v̄ω2 ~ρudΩ
�
; and ð38cÞ

δμE½ : : : �ð ~μÞ ¼
XNfreq

α

XNdir

β

XNmode

γ

Re

�
k
Z
Ωcell

iðgradv̄ · ~μdu − dv̄ · ~μgraduÞdΩ
�
þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�Z
Ωcell

gradv̄ · ~μgradudΩ
�

þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�
k2

Z
Ωcell

v̄ ~μ udΩ
�
þ
XNfreq

α

XNdir

β

XNmode

γ

Re

�
ξ
2

Z
Ωcell

ū ~μ udΩ
�

ð38dÞ
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