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Abstract: The need to estimate the properties of layered elastic or viscoelastic media arises commonly in various engineering applications,
including geotechnical site characterization and pavement condition assessment. The layered medium is usually probed with small-amplitude
waves, and the medium’s response is used to drive an inverse medium problem leading to the identification of the properties. The property
estimation problem is solved by a new methodology that seeks to minimize the misfit between measured and computed responses, con-
strained by the dispersion relation of the layered medium, the latter expressed in terms of the forward eigenvalue problem and the associated
orthonormality condition. The medium’s properties are recovered upon satisfaction of the first-order optimality conditions of the system’s
Lagrangian. The reported numerical results are based on synthetic records illustrating the methodology in the frequency domain, and
demonstrating reconstruction of the medium’s material properties and geometric characteristics. DOI: 10.1061/(ASCE)EM.1943-
7889.0001527. © 2018 American Society of Civil Engineers.

Introduction

In many engineering applications, it is desirable or required to char-
acterize the mechanical properties of a semi-infinite medium by
means of nondestructive tests. These applications may pertain to
deep earth structures, as in exploration geophysics (Mora 1987),
or to the near-surface layers, as in the condition evaluation of
pavements (Foinquinos 1995; Hadidi and Gucunski 2010) or in
geotechnical site characterization (Kallivokas et al. 2013). In non-
destructive tests for such applications, the medium is probed with
waves (elastic, acoustic, or electromagnetic), the response is re-
corded, and the distribution of material properties (e.g., shear
modulus) is determined by an inversion procedure (Kang and
Kallivokas 2011).

For near-surface problems, of interest in this article, the appli-
cations that drive most developments to date originate from infra-
structure assessment needs. For example, one of the most widely
used nondestructive tests for pavement condition assessment is the
falling weight deflectometer (FWD) test in which the medium is
probed using an impulse load and the response is measured at a
number of sensor locations (Fig. 1). Several attempts have been
made toward interpretation of FWD test results and extraction
of the desired properties of the layered medium. In the context
of pavement condition assessment, the property extraction proce-
dures are usually referred to as back-calculations of the relevant
properties. In general, back-calculation procedures can be catego-
rized into static and dynamic, on the basis of whether the theoretical
response at sensor locations is computed by static analysis or the
true dynamic nature of the test is considered. In the static approach,

the maximum displacements of the medium at sensor locations are
calculated by static elasticity and matched to maximum displace-
ments recorded by sensors. This approach is widely used because
of its simplicity and speed, but several studies have shown that
static back-calculation results are not reliable (Foinquinos et al.
1995; Maina et al. 2013; Mamlouk 1987; Uzan 1994). In the
dynamic approach, the response is calculated via an appropriate
forward elastodynamic analysis, and the results are matched to
measured displacements. The dynamic forward problem is imple-
mented either in the time (Liu et al. 2007; Loizos and Scarpas 2005)
or frequency (Haskell 1953; Thomson 1950) domains. Most
frequency-domain procedures (Grenier and Konrad 2009; Yi and
Mun 2009; Zhao et al. 2015) are built on the stiffness-matrix for-
mulation introduced by Kausel and Roësset (1981), with further
developments by Doyle (1997) and Al-Khoury et al. (2001).

Various techniques have been implemented for the back-
calculation of properties (Hadidi and Gucunski 2010). They can be
categorized as: (1) closed-form solutions (US Federal Aviation
Administration 2004; Hall and Mohseni 1991; Scrivner et al.
1973); (2) database searches (Anderson 1989; Chou and Lytton
1991); (3) optimization techniques (Bush and Alexander 1985;
Harichandran et al. 1993; Sivaneswaran et al. 1991); (4) regression
analysis (Ali and Khosla 1987; Mahoney et al. 1993; Roque et al.
1998); and (5) neural nets or evolutionary algorithms (Fileccia
Scimemi et al. 2016; Meier and Rix 1994, 1995; Rakesh et al.
2006; Saltan et al. 2013; Sharma and Das 2008). Most of the re-
ported techniques are either of an ad hoc nature or resort to sim-
plifying assumptions that are inconsistent with the underlying
physical problem (e.g., static versus dynamic).

While progress in the imaging of the near-surface layered media
is ongoing, a robust solution remains elusive, possibly because the
developed methodologies have not benefited, or have not sought to
benefit, from recent advances in related fields. The near-surface im-
aging problem belongs to a broader class of wave-driven inverse
medium problems, where, for example, “back-calculation” refers to,
and/or is replaced by, “inversion” (another term that is often used
is parameter identification). The tackling of such inverse medium
problems is often cast in the context of a partial-differential-
equation-constrained optimization framework, whereby a suitably
chosen and application-specific objective functional is sought to be
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minimized, constrained by the underlying physics, with the latter
expressed in terms of the governing differential equations
(Akçelik et al. 2006; Bui-Thanh and Ghattas 2014; Fathi et al.
2015; Kang and Kallivokas 2011; Na and Kallivokas 2008).
The technical apparatus for casting and resolving the optimization
problem is rooted in the early work of Lions (1971). Such
problems, including the one of interest herein, are ill-posed, and
typically admit multiple solutions, some physical and some non-
physical. To further narrow the range of possible solutions for the
distribution of the properties, several schemes may be used, aimed
either at the regularization of the solution, a process that may filter
out nonphysical solutions (via, e.g., Tikhonov regularization), or
aimed at improving the optimizer’s ability to converge to the
true (and unique) solution via, possibly physics-based, numerical
schemes.

This paper borrows from, and improves upon, recent develop-
ments in wave-driven inverse medium problems. Specifically, this
article focuses on the problem of a horizontally layered medium
subjected to a surface disc load (Fig. 1), and seeks to reconstruct
the properties of the layers using the recorded surface displace-
ments. The inverse medium problem is cast as a constrained opti-
mization problem, but instead of using differential equations to
describe the underlying physics constraint, the associated eigen-
value problem is used. In principle, any form encompassing the
physics of the problem could serve as a constraint (e.g., differential
or integral equations). Here, using differential equations as a con-
straint would result in a two-dimensional problem in either the time
or the frequency domain, even under the present conditions of ax-
isymmetry. The motivation for using the eigenvalue problem as a
constraint stems from the fact that by using expansions of the

displacement in the horizontal directions, which, in turn, give rise
to an eigenvalue problem, the spatial dimensionality of the problem
is reduced to one, entailing computational gains. Thus, using the
eigenvalue problem, i.e., the dispersion relation, appears to be an
optimal choice for the problem at hand. In the context of the inverse
medium problem of interest herein, using the dispersion relation as
a constraint is new; one notable exception where the eigenvalue
problem was used as a constraint for shape optimization purposes
is the work in Akçelik et al. (2005).

To obtain the associated eigenvalue problem of a semi-infinite
layered medium, the forward full-waveform problem is described
in the frequency domain, based on the thin-layer method (Kausel
1981): the displacement components in the layered medium are
computed using a semidiscrete approach, analytical in all horizon-
tal directions but discrete (numerical) in the medium’s depth direc-
tion (semi-infinite). To find the property distribution, i.e., to invert
or back-calculate, a stationary point is sought to the problem’s
Lagrangian, where the latter consists of the misfit between com-
puted and measured responses at various sensor locations, aug-
mented by the imposition of the dispersion relation (eigenvalue
problem) and the mode-shape orthonormality conditions. The
medium’s properties are extracted by enforcing the first-order op-
timality conditions of the system’s Lagrangian. A similar physical
problem was considered by Astaneh and Guddati (2016), where the
inversion was driven by the misfit between computed and exper-
imentally obtained phase velocities. It is worth noting that the de-
velopment in Astaneh and Guddati (2016) is intended for inversion
on the basis of tests in which surface waves are generated and
observed in the far field, while the methodology herein employs
arbitrary near-field as well as far-field measurements. The reported
numerical results are based on synthetic records, attesting to the
effectiveness of the current approach.

Problem Definition

To highlight the dispersion-constrained inversion approach, this
article focuses on the simplest possible identification problem,
typically associated with the condition assessment of pavements.
Accordingly, a horizontally layered medium is considered, com-
prising n elastic or viscoelastic layers, subjected to a dynamic load
applied vertically on the surface of the medium [Fig. 2(a)]. For sim-
plicity, but without loss of generality in the methodology discussed
herein, the medium is assumed to be fixed at the bottom. In general,
each ith layer is characterized by the shear modulus Gi, Poisson’s

P = P e0
i t

sensors

r

z

R
r1 r2 r3 r i

deflection bowl

Fig. 1. Schematic drawing of FWD field test: dynamic load, sensor
locations, and induced surface deflection bowl.

(a) (b)

Fig. 2. Layered media subjected to a stationary dynamic load: (a) in three dimensions; and (b) in two dimensions (axisymmetric case).
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ratio νi, mass density ρi, thickness hi, and material damping βi.
The load is applied normal to the surface at the disc’s center: the
load is assumed to be harmonic at an operating frequency ω,
i.e., P ¼ P0eiωt, where P0 is the amplitude of the applied load.
Given the symmetry of the problem about the vertical load axis,
the problem can be formally reduced to an axisymmetric problem
cast in the ðr; zÞ system, as shown in Fig. 2(b), where the origin
coincides with the disc’s center, r denotes radial distance from
the origin, and z denotes depth, measured from the surface.

For the purpose of the ensuing discussion, it is assumed that all
layer parameters are a priori known, except for the shear moduli
and the layer thicknesses, even though, in typical field operations,
the layer thicknesses can be obtained by ground penetrating radar
(GPR) imaging. Therefore, although the inversion framework can
be used to invert for any layer parameters, here, for the sake of
simplicity, it is assumed that the density, Poisson’s ratio, and damp-
ing can be estimated reasonably well from other information,
e.g., clayey versus sandy layer, prior to shear-modulus inversion.
It should be noted that there is no need to a priori know the number
of layers: if the number of layers is known, the inversion process
can be further constrained to advantage. However, in the general
case, when the number of layers is not known, the number is
recovered indirectly, once the shear modulus distribution is
obtained. Also, it should be noted that the inverse methodology
discussed herein can accommodate additional unknown parameters
(e.g., damping), at the expense of increased complexity and com-
putational cost, but without any substantive modification to the
inversion framework/algorithm.

Thus, the goal is to recover the shear moduli Gi for all n layers
ði ¼ 1 : : : nÞ, when given the response of the medium to a known
excitation, the latter measured at one or multiple surface sensors.
The dispersion-constrained approach discussed herein requires
that the misfit between the measured displacement and the com-
puted displacement, where the latter corresponds to a trial guess
of the layered medium’s properties, be minimized. In addition, it
is required that the physics of the underlying problem be satis-
fied: the physics of the problem are expressed in terms of the
associated eigenvalue problem, which is used as a minimization
constraint—thence the dispersion-constrained terminology. The
inversion is carried out exclusively in the frequency domain;
however, time-domain records can also be used if first processed
via Fourier transforms.

Forward Eigenvalue Problem

To set the stage for the dispersion-constrained inversion, first the
forward eigenvalue problem should be reviewed; most of the tech-
nical details can be found in Kausel (1981). The key steps from
Kausel (1981) are reported for completeness.

For any layer i [Fig. 2(b)], the equilibrium equations in cylin-
drical coordinates and in the frequency domain can be written as
(an eiωt harmonic term has been assumed throughout):

∂ ~σr

∂r þ ~σr − ~σθ

r
þ ∂ ~τ rz

∂z ¼ −ρiω2 ~u ð1aÞ

∂ ~τ rz
∂r þ ~τ rz

r
þ ∂ ~σz

∂z ¼ −ρiω2 ~w ð1bÞ

where at the top surface (z ¼ 0):

~σz ¼
�
q; 0 ≤ r ≤ R

0; R ≤ r
ð2Þ

In Eq. (2), q ¼ ðP0=πR2Þ is the stress amplitude on the surface
when a harmonic load P0eiωt is applied on the disc of radius R. Due
to the axisymmetric character of the problem, the dependence on
the polar angle has been dropped, and consequently, the radial com-
ponent of the displacement ~u≡ ~uðr; zÞ, and the vertical component
of the displacement ~w≡ ~wðr; zÞ. Customary notation has been
adopted for the Fourier-transformed normal and shear stress com-
ponents ~σr, ~σθ, ~σz, ~τ rz. Similarly, combining the constitutive law
for a linear elastic material, and the small-strain kinematic condi-
tions, leads to the equations of motion for the ith layer:

ðλi þ 2GiÞ
�∂2 ~u
∂r2 þ

1

r
∂ ~u
∂r −

~u
r2

�
þGi

∂2 ~u
∂z2

þ ðλi þ GiÞ
∂2 ~w
∂r∂zþ ρiω2 ~u ¼ 0 ð3aÞ

ðλi þ 2GiÞ
∂2 ~w
∂z2 þGi

�∂2 ~w
∂r2 þ 1

r
∂ ~w
∂r

�

þ ðλi þGiÞ
�
1

r
∂ ~u
∂z þ

∂2 ~u
∂r∂z

�
þ ρiω2 ~w ¼ 0 ð3bÞ

where λi is the first Lamé constant of the ith layer. Using separation
of variables and the eigenfunctions, the displacement components
can be written as

�
~uðr; zÞ
~wðr; zÞ

�
¼

"
Hð2Þ

1 ðkrÞ 0

0 Hð2Þ
0 ðkrÞ

#�
uðzÞ
wðzÞ

�
ð4Þ

where k is the wavenumber, uðzÞ and wðzÞ are the radial and ver-

tical displacement components, and Hð2Þ
0 ðkrÞ and Hð2Þ

1 ðkrÞ denote
the zero and first order Hankel functions of the second kind, respec-
tively. Introducing Eq. (4) into Eq. (3), results in

−k2ðλi þ 2GiÞuþGi
d2u
dz2

− kðλi þGiÞ
dw
dz

þ ρiω2u ¼ 0 ð5aÞ

−k2Giwþ ðλi þ 2GiÞ
d2w
dz2

þ kðλi þ GiÞ
du
dz

þ ρiω2w ¼ 0 ð5bÞ

The strong form of the forward problem can be cast as follows:
find the displacement components ðu;wÞ for each layer i, subject to
fixed conditions ðu ¼ w ¼ 0Þ at zn [Fig. 2(b)], to the continuity of
displacements and tractions along the layer interfaces, zi−1 and zi
for all i, and to traction-free conditions ð ~σz ¼ ~τ rz ¼ 0Þ everywhere
along the surface z0ðz ¼ 0Þ, except under the load. Next, following
a standard Galerkin approach, the weak form for the ith layer, with
z ∈ ðzi−1; ziÞ, becomes

k2ðλi þ 2GiÞ
Z

zi

zi−1
uu

̬
dzþ kλi

Z
zi

zi−1

dw
dz

u
̬
dz

− Gi

Z
zi

zi−1

d
dz

�
du
dz

− kw

�
uu

̬
dz − ρiω2

Z
zi

zi−1
uu

̬
dz ¼ 0 ð6aÞ

k2Gi

Z
zi

zi−1
ww

̬
dz − kGi

Z
zi

zi−1

du
dz

w
̬
dz

−
Z

zi

zi−1

d
dz

�
ðλi þ 2GiÞ

dw
dz

þ kλiu

�
w
̬
dz − ρiω2

Z
zi

zi−1
ww

̬
dz ¼ 0

ð6bÞ

where u
̬ ðzÞ and w̬ ðzÞ are admissible test functions. After integration

by parts, and collecting like terms, the following result:
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k2ðλi þ 2GiÞ
Z

zi

zi−1
uu

̬
dzþ k

�
λi

Z
zi

zi−1

dw
dz

u
̬
dz − Gi

Z
zi

zi−1
w
du

̬

dz
dz

�

þ Gi

Z
zi

zi−1

du
dz

du
̬

dz
dz − ρiω2

Z
zi

zi−1
uu

̬
dz

¼ Gi

�
du
dz

− kw

�
u
̬ jzizi−1 ¼ τ̂ rzu

̬ jzizi−1 ð7aÞ

k2Gi

Z
zi

zi−1
ww

̬
dz − k

�
Gi

Z
zi

zi−1

du
dz

w
̬
dz − λi

Z
zi

zi−1
u
dw

̬

dz
dz

�

þ ðλi þ 2GiÞ
Z

zi

zi−1

dw
dz

dw
̬

dz
dz − ρiω2

Z
zi

zi−1
ww

̬
dz

¼
�
ðλi þ 2GiÞ

dw
dz

þ kλiu

�
w
̬ jzizi−1 ¼ σ̂zw

̬ jzizi−1 ð7bÞ

where τ̂ rz ¼ ~τ rz=H
ð2Þ
1 ðkrÞ and σ̂z ¼ ~σz=H

ð2Þ
0 ðkrÞ. Upon assembly

of all the layers, the right-hand sides of Eq. (7) will sum up to zero,
due to the continuity and boundary conditions. Next, each layer i is
discretized into ei elements (Fig. 3). The displacement components
of the trial pair ðu;wÞ and of the test pair ðu̬ ;w̬ Þ are approximated
within each element using standard Lagrange shape functions.
Accordingly, within each layer i

uðzÞ ¼ ϕTðzÞu; wðzÞ ¼ ϕTðzÞw ð8Þ

where u and w are vectors of the nodal values of the radial and
vertical displacement components, respectively, and ϕðzÞ are

vectors of shape functions within each layer. For example, if the
element shape functions are of polynomial degree d, then the vector
ϕðzÞ has dimension eidþ 1. There results the following quadratic
eigenvalue problem in terms of the wavenumber k and the eigen-
vectors U:

ðk2Aþ kBþG − ω2MÞU ¼ 0; U ¼
�
u

w

�
ð9Þ

A, B, G and M are global matrices assembled using the indi-
vidual layer matrices, i.e.

A ¼ ∪n
i¼1

Ai; B ¼ ∪n
i¼1

Bi; G ¼ ∪n
i¼1

Gi; M ¼ ∪n
i¼1

Mi

ð10Þ

where the ith layer matrices Ai, Bi, Gi and Mi are defined as

Ai ¼
2
4 ðλi þ 2GiÞ

R
zi
zi−1 ϕϕ

Tdz 0

0 Gi

R
zi
zi−1 ϕϕ

Tdz

3
5;

Bi ¼
2
4 0 λi

R
zi
zi−1 ϕϕ

0Tdz − Gi

R
zi
zi−1 ϕ

0ϕTdz

λi

R
zi
zi−1 ϕ

0ϕTdz − Gi

R
zi
zi−1 ϕϕ

0Tdz 0

3
5;

Gi ¼
2
4Gi

R
zi
zi−1 ϕ

0ϕ 0Tdz 0

0 ðλi þ 2GiÞ
R
zi
zi−1 ϕ

0ϕ 0Tdz

3
5;

Mi ¼ ρi

2
4
R
zi
zi−1 ϕϕ

Tdz 0

0
R
zi
zi−1 ϕϕ

Tdz

3
5 ð11Þ

Each of the preceding layer matrices has dimension
½2ðeidþ 1Þ� × ½2ðeidþ 1Þ�. The discrete quadratic eigenvalue
problem in Eq. (9) admits 2N eigenvalues (the wavenumbers k)
and 2N eigenvectors (modes), where N is the total number of
degrees of freedom, defined as

N ¼
Xn
i¼1

2eid ð12Þ

For each wavenumber k, −k is also an eigenvalue; thus, the 2N
wavenumbers are arranged in N pairs of the form ðk;−kÞ. Since the
wavenumbers with positive imaginary part correspond to propagat-
ing modes that grow away from the origin, only half of the wave-
numbers are physically acceptable, i.e., from each pair ðk;−kÞ,

only the wavenumber with negative imaginary part will be retained.
For the N surviving modes, a normalization of the eigenvectors
was chosen, similar to the one used by Kausel (1981) and Waas
(1972):

1

2
UT

s ð2ksAþ BÞUs ¼ ks; s ¼ 1; 2; : : : ;N ð13Þ

Then, as shown in Kausel (1981), the radial and vertical
displacement components within each layer i are given as

~uðr; zaÞ ¼ qR
XN
s¼1

Us;lUs;N
2
þ1I2sðrÞ=ks ð14aÞ

i-th layer
e elementsi

za

za

za

z

Fig. 3. ith layer discretization into ei elements.
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~wðr; zaÞ ¼ qR
XN
s¼1

Us;mUs;N
2
þ1I1sðrÞ ð14bÞ

where s is the eigenmode/eigenvalue index. Within every layer i,
the elements are numbered from the top of the layer, with za de-
noting the z coordinate at the beginning of the jth element, with
j ¼ 1; : : : ; ei (Fig. 3). That is

za ¼ zi−1 þ ðj − 1Þ zi − zi−1
ei

; j ¼ 1; : : : ; ei ð15Þ

Thus, in Eq. (14) Us;l and Us;m denote the lth and mth compo-
nents of the Us eigenvector, respectively. The Us eigenvector’s
components are arranged such that all the N=2 radial components
are first, followed by the N=2 vertical components

l ¼ 1þ dðj − 1Þ; m ¼ N
2
þ 1þ dðj − 1Þ if i ¼ 1 ð16aÞ

l ¼ 1þ dðj − 1Þ þ
Xi−1
p¼1

epd;

m ¼ N
2
þ 1þ dðj − 1Þ þ

Xi−1
p¼1

epd if i ≠ 1 ð16bÞ

Furthermore, I1sðrÞ and I2sðrÞ in Eq. (14) are defined as

I1sðrÞ ¼

8>><
>>:

π
2iks

J0ðksrÞHð2Þ
1 ðksRÞ − 1

Rk2s
; 0 ≤ r ≤ R

π
2iks

J1ðksRÞHð2Þ
0 ðksrÞ; R ≤ r

ð17aÞ

I2sðrÞ ¼

8>><
>>:

π
2i
J1ðksrÞHð2Þ

1 ðksRÞ; 0 ≤ r ≤ R

π
2i
J1ðksRÞHð2Þ

1 ðksrÞ; R ≤ r
ð17bÞ

When the vertical displacements are measured on the surface
(za ¼ 0 or z ¼ 0), at a distance r from the load, Eq. (14b) reduces to

~wðr; 0Þ ¼ qR
XN
s¼1

ðUs;N
2
þ1Þ2I1sðrÞ ð18Þ

Eq. (18) is used to define the misfit between measured and com-
puted displacements (vertical component only). In summary, it
should be noted that the eigenvalue problem in Eq. (9) and the or-
thonormality condition in Eq. (13) embody the physics of the prob-
lem and constitute the forward or state problem: both Eqs. (9)
and (13) must be satisfied, as the misfit is minimized. The inversion
process is outlined in the next section.

Inverse Problem

Here, the goal is to find the along-the-depth distribution of the
shear modulus of the probed layered medium, when the medium
is subjected to a known surface disc load. As discussed earlier,
it is assumed that the density, Poisson’s ratio, and damping are
known. Thus, the first Lamé constant, is expressed as a func-
tion of the shear modulus G, i.e., λ ¼ ½2Gν=ð1 − 2νÞ�. Similarly,
for viscoelastic layers, G is replaced by its complex counterpart
Gð1þ 2iβÞ.

A usual starting point in inverse-medium problems is the con-
struction of a misfit functional defined most often as the difference,
in the least-squares sense, between the measured response and a
computed response. The computed response corresponds to a
medium described by a set of assumed material properties, which
can then be determined via an iterative process whose goal is to
minimize the misfit. Accordingly, letF denote the misfit functional
defined as

F ≔
1

2

XNs

i¼1

XMω

j¼1

j ~wðjÞðri; 0Þ − ~wðjÞ
m ðri; 0Þj2 ð19Þ

where Ns is the number of sensors, Mω is the number of discrete
frequencies at which sensor measurements are taken, ~wðjÞðri; 0Þ
denotes the computed displacement of the layered medium at
the jth frequency on the surface and at distance ri from the origin,

and ~wðjÞ
m ðri; 0Þ denotes the measured displacement at the same point

and the same frequency. As cast, the functional in Eq. (19) is the
amplitude of the complex-valued misfit, and it is a reasonable
choice, since it accounts for both the real and imaginary parts,
or equivalently, it includes both amplitude and phase information.
Eq. (19) is capable of accounting for recorded data along the
deflection bowl induced by the load and over a wide range of ex-
citation frequencies.

To ensure that the physics of the underlying problem is always
satisfied during the material inversion iterations, the misfit func-
tional is augmented by the side imposition of the physics to produce
the problem’s Lagrangian. In general, the side imposition of the
physics can be done in a variety of ways: for example, the strong,
or a weak, form of the forward problem cast in terms of the gov-
erning differential equations, can be side-imposed via Lagrange
multipliers. This, in fact, has been a commonly used strategy in
partial-differential-equation-constrained optimization approaches
for tackling inverse medium problems (Fathi et al. 2015; Kallivokas
et al. 2013; Lions 1971). It can be argued that, in principle, any
form, continuous or discrete, that faithfully captures the physics of
the forward problem, can be used in the Lagrangian. Here, the dis-
crete eigenvalue problem in Eq. (9), accompanied by the orthonor-
mality condition in Eq. (13), is the choice for describing the physics
of the problem. Accordingly, Eqs. (9) and (13) are side-imposed,
via Lagrange multipliers to the misfit functional, effectively con-
straining the misfit minimization by the dispersion relation. Thus

L ¼ 1

2

XNs

i¼1

XMω

j¼1

j ~wðjÞðri; 0Þ − ~wðjÞ
m ðri; 0Þj2 þ C ð20Þ

where C is the dispersion constraint defined as

C ¼ Re

(XMω

j¼1

XN
s¼1

λðjÞTs ðAkðjÞ2s þ BkðjÞs þG − ω2
jMÞUðjÞ

s

þ
XMω

j¼1

XN
s¼1

ξðjÞs

�
1

2
UðjÞT

s ð2AkðjÞs þ BÞUðjÞ
s − kðjÞs

�)
ð21Þ

and λðjÞs is a vector of Lagrange multipliers used to side-impose the

eigenvalue problem, and ξðjÞs is a scalar Lagrange multiplier used
for the side-imposition of the orthonormality condition. Since the
matrices and eigenvalue parameters are complex, it is sufficient
to side-impose only the real part of the product of the complex
Lagrange multipliers by the eigenvalue problem and of the ortho-
normality condition. Next, introducing Eqs. (17) and (18) in the
Lagrangian, Eq. (20) becomes

© ASCE 04018099-5 J. Eng. Mech.
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L ¼ 1

2

XNs

i¼1

XMω

j¼1

����qRXN
s¼1

h�
UðjÞ

s;N
2
þ1

	
2
IðjÞ1s ðriÞ

i
− ~wðjÞ

m ðri; 0Þ
����
2

þ C ð22Þ

or, equivalently

L ¼

8>>>>><
>>>>>:

1

2

XMω

j¼1

XNs

i¼1

����qRXN
s¼1

��
UðjÞ

s;N
2
þ1

	
2 π

2ikðjÞs

J0ðkðjÞs riÞHð2Þ
1 ðkðjÞs RÞ − 1

RkðjÞ2s

�
− ~wðjÞ

m ðri; 0Þ
����
2

þ C; 0 ≤ ri ≤ R

1

2

XMω

j¼1

XNs

i¼1

����qRXN
s¼1

��
UðjÞ

s;N
2
þ1

	
2 π

2ikðjÞs

J1ðkðjÞs RÞHð2Þ
0 ðkðjÞs riÞ

�
− ~wðjÞ

m ðri; 0Þ
����
2

þ C; R ≤ ri

ð23Þ

Definitions in Eqs. (22) and (23) of the Lagrangian are of the form

L≡ LðλðjÞs ; ξðjÞs ;UðjÞ
s ; kðjÞs ;GcÞ ð24Þ

i.e., the Lagrangian functional is a function of the Lagrange multipliers λðjÞs and ξðjÞs , the state variables UðjÞ
s and kðjÞs , and the material param-

eters Gc. The latter are the shear moduli of all the elements in the discretization, assumed constant over each element.

Optimality Conditions

Next, a stationary point for L is sought by requiring that the first variations of L vanish

∇L ¼

2
664
δ
λðjÞs ;ξðjÞs

L

δ
UðjÞ

s ;kðjÞs
L

δGc
L

3
775 ¼ 0 ð25Þ

State Problem
Taking variations of the Lagrangian functional L with respect to the Lagrange multipliers (or adjoint variables) λðjÞs and ξðjÞs and setting them
equal to zero, recovers the forward eigenvalue problem, i.e., Eqs. (9) and (13)

δ
λðjÞs

L ¼ 0 ⇒ ðAjk
ðjÞ2
s þ BkðjÞs þGj − ω2

jMjÞUðjÞ
s ¼ 0 ð26aÞ

δ
ξðjÞs

L ¼ 0 ⇒
1

2
UðjÞT

s ð2Ajk
ðjÞ
s þ BÞUðjÞ

s ¼ kðjÞs ð26bÞ

Adjoint Problem
Similarly, the vanishing of the variation of L with respect to the state variables (the wavenumbers kðjÞs , and the eigenvectors UðjÞ

s ) is enforced.
This results in

δ
UðjÞ

s
L ¼ Re

(
2qRUðjÞ

s;N
2
þ1

XNs

i¼1

IðjÞ1s ðriÞð ~wðjÞðri; 0Þ − ~wðjÞ
m ðri; 0ÞÞWT

I δU
ðjÞ
s

)

þRe
n
λðjÞTs ðAkðjÞ2s þBkðjÞs þG − ω2

jMÞδUðjÞ
s þ ξðjÞs UðjÞT

s ð2AkðjÞs þBÞTδUðjÞ
s

o
¼ 0 ð27Þ

or

ðAkðjÞ2s þBkðjÞs þG − ω2
jMÞTλðjÞs þ ð2AkðjÞs þ BÞUðjÞ

s ξðjÞs ¼ −2qRUðjÞ
s;N

2
þ1

XNs

i¼1

IðjÞ1s ðriÞð ~wðjÞðri; 0Þ − ~wðjÞ
m ðri; 0ÞÞWI ð28Þ

and

δ
kðjÞs

L ¼ Re

(
qRðUðjÞ

s;N
2
þ1
Þ2
XNs

i¼1

ÎðjÞ1s ðriÞð ~wðjÞðri; 0Þ − ~wðjÞ
m ðri; 0ÞÞδkðjÞs

)
þRe

n
λðjÞTs ð2AkðjÞs þBÞUðjÞ

s δkðjÞs þ ξðjÞs ðUðjÞT
s AUðjÞ

s − 1ÞδkðjÞs

o
¼ 0

ð29Þ

or

UðjÞT
s ð2AkðjÞs þ BÞTλðjÞs þ ðUðjÞT

s AUðjÞ
s − 1ÞξðjÞs ¼ −qR

�
UðjÞ

s;N
2
þ1

	
2 XNs

i¼1

ÎðjÞ1s ðriÞð ~wðjÞðri; 0Þ − ~wðjÞ
m ðri; 0ÞÞ ð30Þ

© ASCE 04018099-6 J. Eng. Mech.
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In the above, WI ¼ ½0; : : : 0; 1; 0; : : : 0�T , and

ÎðjÞ1s ðrÞ ¼

8>>><
>>>:

πi

2kðjÞs

½RJ0ðkðjÞs rÞHð2Þ
2 ðkðjÞs RÞ þ rJ1ðkðjÞs rÞHð2Þ

1 ðkðjÞs RÞ� þ 2

RkðjÞ3s

; 0 ≤ r ≤ R

πi

2kðjÞs

½RJ2ðkðjÞs RÞHð2Þ
0 ðkðjÞs rÞ þ rJ1ðkðjÞs RÞHð2Þ

1 ðkðjÞs rÞ�; R ≤ r
ð31Þ

Eqs. (28) and (30) constitute the adjoint problem, which is a symmetric system of N þ 1 linear equations, per

2
4 ðAkðjÞ2s þBkðjÞs þG − ω2

jMÞT ð2AkðjÞs þ BÞUðjÞ
s

UðjÞT
s ð2AkðjÞs þ BÞT ðUðjÞT

s AUðjÞ
s − 1Þ

3
5
2
4 λðjÞs

ξðjÞs

3
5 ¼

2
664
−2qRUðjÞ

s;N
2
þ1

�PNs
i¼1 I

ðjÞ
1s ðriÞð ~wðjÞðri; 0Þ − ~wðjÞ

m ðri; 0ÞÞ
	
WI

−qR
�
UðjÞ

s;N
2
þ1

	
2
�PNs

i¼1 Î
ðjÞ
1s ðriÞð ~wðjÞðri; 0Þ − ~wðjÞ

m ðri; 0ÞÞ
	
3
775 ð32Þ

Thus, the Lagrange multipliers, or adjoint variables, λðjÞs and ξðjÞs are obtained as a solution of the linear system in Eq. (32), which is driven
by the (conjugated) misfit, as it can be seen from the right-hand side of Eq. (32).

Control Problem
Lastly, the variation of L with respect to the element shear moduli Gc yields

δGc
L ¼ Re

(XMω

j¼1

XN
s¼1

λðjÞTs

� ∂A
∂Gc

kðjÞ2s þ ∂B
∂Gc

kðjÞs þ ∂G
∂Gc

�
UðjÞ

s þ
XMω

j¼1

XN
s¼1

ξðjÞs

�
1

2
UðjÞT

s

�
2
∂A
∂Gc

kðjÞs þ ∂B
∂Gc

�
UðjÞ

s

�)
δGc ð33Þ

Clearly, the true/target profile would enforce the vanishing of the control equation, Eq. (33). The right-hand side of Eq. (33), modulo the
variation δGc, represents the reduced gradient of the Lagrangian, since at any given inversion iteration, the state and adjoint problems are
satisfied. Thus, from (25), it follows that, at any inversion iteration, there holds

∇L ¼

2
64

0

0

∇Gc
L

3
75 ð34Þ

where

∇Gc
L ¼ Re

(XMω

j¼1

XN
s¼1

λðjÞTs

� ∂A
∂Gc

kðjÞ2s þ ∂B
∂Gc

kðjÞs þ ∂G
∂Gc

�
UðjÞ

s þ
XMω

j¼1

XN
s¼1

ξðjÞs

�
1

2
UðjÞT

s

�
2
∂A
∂Gc

kðjÞs þ ∂B
∂Gc

�
UðjÞ

s

�)
ð35Þ

The reduced gradient ∇Gc
L, as outlined below, is used to update the shear moduli during the inversion iterations.

Inversion Process

To update/determine the shear moduli Gc, a gradient-based mini-
mization scheme is used. Starting with an assumed initial distribu-
tion for the moduli Gc, and a set of Mω frequencies, solve the state

problem in Eqs. (9) and (13), to obtain kðjÞs andUðjÞ
s . Next, using the

wavenumbers kðjÞs and the eigenvectors UðjÞ
s , compute the vertical

displacement ~wðjÞ via Eq. (18), which, in turn, allows the compu-

tation of the misfit ~wðjÞ − ~wðjÞ
m for every sensor for which measure-

ments have been collected. Armed with the misfit and the state

variables ðkðjÞs ;UðjÞ
s Þ, then solve the adjoint problem Eq. (32) for

each frequency set to obtain the adjoint variables λðjÞs and ξðjÞs .
To update the moduli Gc, use a conjugate gradient approach
(Nocedal and Wright 2006), and to ensure sufficient decrease of
the objective functional at each inversion iteration, employ an
Armijo backtracking line search. Accordingly, let Gk denote the
vector of all element moduli Gc and let gk ¼ ð∇GLÞk denote the
reduced gradient in eq. (35) of the Lagrangian at the kth inversion
iteration. Then, the update Gkþ1 to Gk is constructed via

Gkþ1 ¼ Gk þ αkSk ð36Þ

where αk is a step length, and Sk denotes search direction,
defined as

Sk ¼
8<
:

−gk; for k ¼ 1

−gk þ gk · gk
gk−1 · gk−1

Sk−1; for k > 1
ð37Þ

The entire inversion process is summarized in Algorithm 1.

Frequency-Continuation Scheme

As discussed in the Introduction, regularization is often used in
inverse medium problems to filter out nonphysical property distri-
butions. In addition to regularizations, other optimizer-assisting
schemes are also enlisted; here, one such scheme is chosen, over
regularization. Specifically, a frequency-continuation scheme is
used, which is consistent with field-deployable equipment capabil-

ities. Accordingly, one can probe the medium at a first set of Mð1Þ
ω

frequencies, whose range is between ω0 and ω1, and invert for the
properties using Algorithm 1. Once the inversion is concluded,

drive the inversion anew using a second set Mð2Þ
ω of frequencies

within, now, the range (ω0, ω2) with ω2 > ω1, while using the pre-
viously converged profile as initial guess. Note that: (a) the initial
range (ω0, ω1) is a low-frequency range, aimed at recovering ap-
proximately the property profile, since probing with high-frequency
content would lead to solutions diverging from the target, as is

typically the case with this class of problems; (b) the next set Mð2Þ
ω

© ASCE 04018099-7 J. Eng. Mech.
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contains a few frequencies from Mð1Þ
ω , but also includes higher

frequencies, thus allowing refinement of the property profile and
the potential discovery of small defects. A small number (5–10)
of randomly selected frequencies in each of the probing Mω sets
is sufficient for convergence.

Algorithm 1. Shear moduli inversion scheme
1: Set iteration counter k← 1
2: Set initial guess for shear moduli G
3: Compute misfit F⊳ Eq. (19)
4: Set convergence tolerance tol
5: Set maximum number of iterations maxiter
6: while F > tol and k < maxiter do
7: Solve the state problem for kðjÞs and UðjÞ

s ⊳ Eqs. (9) and (13)
8: Solve the adjoint problem for λðjÞs and ξðjÞs ⊳ Eq. (32)
9: Compute the discrete reduced gradient gk⊳ Eq. (35)
10: Compute search direction Sk⊳ Eq. (37)
11: Choose step length αk
12: Update material properties and compute Gkþ1⊳ Eq. (36)
13: Compute misfit F⊳ Eq. (19)
14: k← kþ 1
15: end while

Numerical Results

To highlight the dispersion-constrained inversion outlined in the
previous section, four cases of varying complexity are discussed
here, all based on synthetic data. Eq. (23) is used with one sensor
for the first 3 cases, with the sensor placed at the center of the disc
(r ¼ 0), and then Eq. (23) is used with 3 equally spaced sensors for
the last case study to demonstrate the capabilities of the process.
The first case (Case A) involves a typical heterogeneous layered
soil medium with shear moduli monotonically increasing with
depth. The second case (Case B) pertains to a layered stratum with
an interspersing soft layer between stiffer layers; and for the third
case (Case C), a mixed target profile is considered with a stiff but
fairly thin layer at the top, which is the typical case for pavements.
For the fourth numerical example, Case A is revisited using a
3-sensor array. Finally, to study the performance of the proposed
inversion process in the presence of noisy data, Cases A and D are
revisited while introducing 5% Gaussian noise to the sensor data. In
all cases, to quantify the fitness of the inverted profile with respect
to the target, the following normalized L2 metric is defined:

E ¼
�R zn

0 ðGe − GcÞ2dzR zn
0 G2

edz

�
0.5

ð38Þ

where Ge denotes the exact shear modulus profile. In all cases, the
misfit tolerance tol in Algorithm 1 was set to 10−10 and the number
of maximum inversion iterations maxiter was set to 2,000.

Inversion with Noise-Free Data

Case A: Layered Stratum with Monotonically Increasing
Moduli
Consider a target layered medium comprising three layers with an
overall depth of 2.5 m, where each layer has larger shear modulus
than the overlaying layer. The mass density ρ for all layers is set
to 1,800 kg=m3. Poisson’s ratio ν is 0.25 for all layers and, a
very small damping β ¼ 0.001 is used. The disc radius is set to
R ¼ 15 cm. The target shear modulus, and the corresponding shear
velocity cs, profiles are

G ¼

8>><
>>:

150 MPa 0 ≤ z ≤ 1 m

250 MPa 1 ≤ z ≤ 1.7 m

350 MPa 1.7 ≤ z ≤ 2.5 m

cs ≈

8>><
>>:

289 m=s 0 ≤ z ≤ 1 m

373 m=s 1 ≤ z ≤ 1.7 m

441 m=s 1.7 ≤ z ≤ 2.5 m

A total of 25 quadratic elements are used to discretize the stra-
tum’s depth when inverting for the properties. To create the syn-
thetic data, 52 quadratic elements are used. Note that the mesh
used to generate the synthetic data conforms to the physical layer
interfaces and consists of elements, which, for any given layer, must
and do have identical properties. By contrast, the mesh used for the
inversion consists of a different number of elements than those used
for the synthetic data. Moreover, these elements do not necessarily
conform to the physical layer interfaces, while the individual ele-
ment properties are set to vary freely. The described meshing differ-
ences eliminate any potential biasing of the inversion.

Following the frequency-continuation scheme described earlier,
four sets of 10 randomly distributed frequencies are used within
each set; the sets are [0, 25] Hz, [0, 50] Hz, [0, 100] Hz, and [0,
150] Hz. One can start the inversion with a homogeneous initial
guess of 100 MPa. Fig. 4 shows the inverted profile at the end of
the inversion process for each Mω set. Note that the first set, which
has a lower frequency content, constructs an approximate profile
starting from a homogeneous initial guess, while the subsequent
sets refine the profile as convergence to the target profile is at-
tained. Fig. 5 shows the reduction of misfit across all four fre-
quency sets. For the first frequency set, a drop of about six orders
of magnitude in the misfit is seen, seven orders of magnitude for
the second frequency set, three orders of magnitude for the third
set, and about two orders of magnitude reduction in the fourth fre-
quency set. As shown in Fig. 5, each inversion process consists of
2,000 iterations. The fitness metric after each frequency set is
indicative of the progress toward convergence. Overall, the three
layers and their interfaces have been satisfactorily recovered, and
the final profile is quite close to the target ðE ¼ 6%Þ.

Case B: Layered Stratum with a Soft Layer Trapped
between Stiffer Layers
Next, consider a three-layer stratum with ρ¼ 1,800 kg=m3, ν ¼
0.25, β ¼ 0.001, of an overall depth of 2.5 m, and the following
shear modulus target profile and corresponding shear velocity cs
profile:

G ¼

8>><
>>:

200 MPa 0 ≤ z ≤ 1 m

150 MPa 1 ≤ z ≤ 1.5 m

250 MPa 1.5 ≤ z ≤ 2.5 m

cs ≈

8>><
>>:

333 m=s 0 ≤ z ≤ 1 m

289 m=s 1 ≤ z ≤ 1.5 m

373 m=s 1.5 ≤ z ≤ 2.5 m

Again, 52 quadratic elements are used for the synthetic data,
and 25 quadratic elements for the inversion, and the same fre-
quency continuation scheme as in Case A. Note that there is a
thin layer at 1 ≤ z ≤ 1.5 m, which has a smaller shear modulus
in comparison with the adjacent layers. Fig. 6 shows the inverted
profile at the end of the inversion process for eachMω set. Note that
the reconstruction is quite satisfactory even in this case where the

© ASCE 04018099-8 J. Eng. Mech.
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presence of the soft layer tends to mask the deeper stratum structure,
due to its trapped energy potential. The associated fitness metric
was E ¼ 4.8%.

Case C: Thin Top Layer: Typical Pavement Structure
Next, a medium comprising four layers is considered, where the
top layer is rather thin and stiff (a reasonable approximation for
pavements). The target profile is

G ¼

8>>>><
>>>>:

1,000 MPa 0 ≤ z ≤ 0.2 m

400 MPa 0.2 ≤ z ≤ 0.6 m

300 MPa 0.6 ≤ z ≤ 1 m

500 MPa 1 ≤ z ≤ 2 m

cs ≈

8>>>><
>>>>:

745 m=s 0 ≤ z ≤ 0.2 m

471 m=s 0.2 ≤ z ≤ 0.6 m

408 m=s 0.6 ≤ z ≤ 1 m

527 m=s 1 ≤ z ≤ 2 m
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Fig. 4. Case A: target and inverted shear modulus profiles shown at the end of the inversion process for each frequency setMω, with fitness metric E:

(a) Mð1Þ
ω , E ¼ 35%; (b) Mð2Þ

ω , E ¼ 8.5%; (c) Mð3Þ
ω , E ¼ 7.1%; and (d) Mð4Þ

ω , E ¼ 6%.
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Fig. 5. Case A—Misfit reduction for all frequency sets Mω.
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Again, 52 quadratic elements are used for the synthetic data, and
25 quadratic elements for inversion. The same frequency continu-
ation scheme is used as in the preceding cases. The inverted profiles
for each frequency set are shown in Fig. 7.

Despite the thinness of the top layer and the sharp contrast
(jump) in the shear moduli between the top and second layers,
the inversion process has again quite satisfactorily recovered the
target, with a fitness of E ¼ 6.2%.

Case D: Case A Revisited with a 3-Sensor Array
Again Case A is considered, with the same profile and mesh prop-
erties as previously described. For the inversion process, Eq. (23) is
used with Ns ¼ 3 to solve the inverse medium problem: syntheti-
cally measured and computed displacements are recorded at three
sensor locations, namely at r ¼ 0, r ¼ 30 cm and r ¼ 60 cm. That
is, the first sensor is under the load, whereas the other two are along
the surface of the stratum. As in the preceding cases, the frequency-
continuation scheme is used to drive the inversion with the same
probing frequency sets as of Case A. Fig. 8 shows the inverted
shear modulus profile. The result shows a good match between
the inverted shear modulus profile and the target profile with the

fitness metric E ¼ 4.4%, an improvement over the single sensor
case ðE ¼ 6%Þ.

Inversion with Noisy Data

Here, a 5% Gaussian noise is applied to the synthetic sensor data
used for Cases A and D, and then inversion for the layer moduli is
attempted. In each case, to generate the noisy data, the synthetic
complex displacements over all frequency sets are treated as a
(power) signal; a 5% background noise is assumed, and the
signal-to-noise ratio ðSNR ≃ 13 dBÞ is computed. The synthetic
data and the SNR are fed to MATLAB’S awgn function (Gaussian
noise) to generate the noisy data. The resulting noisy displacement
amplitudes varied between 0.05% and 4.4% of the unperturbed
synthetic data.

Case E: Case A with Noisy Data
Case A is considered with the same profile and mesh properties
as used in Case A. The same set of frequencies and frequency-
continuation scheme are used for the inversion (Fig. 11). Similar
to Case A, the inverted shear modulus profile at the end of each
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Fig. 6. Case B: target and inverted shear modulus profiles shown at the end of the inversion process for each frequency setMω, with fitness metric E:

(a) Mð1Þ
ω , E ¼ 20%; (b) Mð2Þ

ω , E ¼ 10%; (c) Mð3Þ
ω , E ¼ 8%; and (d) Mð4Þ

ω , E ¼ 4.8%.
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frequency set and corresponding fitness metric is shown in Fig. 9.
Despite the increase in the fitness metric, the inverted profile rep-
resents the target profile satisfactorily. Three different layers are
distinguishable and the shear modulus of each layer has been re-
covered. Comparing with Case A, adding 5% noise to the data re-
sults in change of fitness metric from 6% to 9.6%. Fig. 10 shows the
reduction of the misfit through the inversion for each frequency set.
Due to the applied noise, the reduction in the order of misfit at each
frequency set is smaller than in Case A (Fig. 5). Fig. 11 shows the
noisy sensor data for all frequencies used for the inversion. More
interestingly, Fig. 11 depicts the frequency response curves one
would obtain using the target profile, the profile inverted using
noise-free data, and the profile inverted using noisy data. As can
be seen, all frequency response curves are fairly close. Note that
the frequency response curve obtained for the noisy data case de-
parts the most from the corresponding sensor data points, as also
evidenced by the relatively large misfit values.

Note that, in the absence of regularization, the inversion process
could yield nonphysical profiles that match the data (noisy or noise-
free). In Case E, though, the inversion process resulted in a profile
that matches closely the target, in the presence of noisy data and in
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Fig. 7. Case C: target and inverted shear modulus profiles shown at the end of the inversion process for each frequency setMω, with fitness metric E:

(a) Mð1Þ
ω , E ¼ 24%; (b) Mð2Þ

ω , E ¼ 15%; (c) Mð3Þ
ω , E ¼ 9.4%; and (d) Mð4Þ

ω , E ¼ 6.2%.
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Fig. 8. Case D: inverted shear modulus profile of Case A with a
3-sensor array.
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Fig. 9. Case E: target and inverted shear modulus profiles shown at the end of the inversion process for each frequency set Mω, with fitness metric

E (noisy-data): (a) Mð1Þ
ω , E ¼ 41%; (b) Mð2Þ

ω , E ¼ 17.6%; (c) Mð3Þ
ω , E ¼ 13.1%; and (d) Mð4Þ

ω , E ¼ 9.6%.
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Fig. 10. Case E—Misfit reduction for each frequency set Mω.
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the absence of regularization. Note that a frequency response curve
that would have closely matched the noisy data (with a misfit
value similar to Case A), would have had to be fairly oscillatory
in the low-frequency regime. Such a frequency response would cor-
respond to a profile that is not recoverable by the relatively coarse
mesh we are using. Thus, it can be conjectured that, in effect, the
coarseness of the mesh has, in this case, acted as a regularizer. In
general, regularization would be required to alleviate solution
multiplicity.

Case F: Case D with Noisy Data
Next, Case D is considered with the same profile and mesh proper-
ties as earlier, i.e., 25 quadratic elements are used along the depth.
Measured and computed displacements are recorded at three
sensors: r ¼ 0, r ¼ 30 cm, and r ¼ 60 cm. The synthetically mea-
sured displacements are polluted with 5% Gaussian noise and then
used for the inversion process. The inverted shear modulus profile is
shown in Fig. 12. Comparing with Case D, the fitness metric has
increased from 4.4% to 7% due to the added noise. Despite the
noise, the inverted profile matches the target reasonably well. Com-
paring with Case E, the use of three sensors, instead of one, has
resulted in an improved fitness metric of 7% versus 9.6%.

Conclusion

This paper discussed a new dispersion-constrained optimization ap-
proach for resolving the inverse medium problem associated with
the reconstruction of the material profile of a layered medium,
based on surface measurements of its response to surface excita-
tion. The methodology imposes the forward eigenvalue problem,
provided by the thin-layer method, as a side constraint to a misfit
functional to form the inversion problem’s Lagrangian. This facil-
itates the iterations toward minimization of the misfit. Other key
advantages of the methodology include: (1) use is made of the com-
plete recorded displacement waveforms, whether in the near-field
or the far-field, without need for any simplifying assumptions; and
(2) spatial discretization is needed only in one dimension. The
methodology accommodates single or multiple sensor measure-
ments, and takes advantage of the frequency agility of typical wave

generating field equipment to embed, to advantage, a frequency-
continuation scheme within the inversion problem.

The reported numerical results attest to the method’s ability to
invert for the moduli, and indirectly for the thicknesses, of a layered
medium. Apart from demonstrating successful inversions of shear-
modulus profiles using measurements from a single sensor, it was
also shown that increasing the number of sensors in the inversion
process will lead to improvements in the inverted profiles. Therefore,
the methodology is highly promising in applications to pavement
testing where data from multiple sensors are routinely recorded.
Furthermore, the computational experiments indicate that the meth-
odology is capable of recovering the material parameters satisfacto-
rily in the presence of noise in the recorded displacement data.
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