
PLATES ON BIPARAMETRIC ELASTIC FOUNDATION 
BY BDIE METHOD 

By J. T. Katsikadelis' and L. F. Kallivokas2 

ABSTRACT: An efficient boundary differential integral equation (BDIE) 
method is presented for the analysis of thin elastic plates with free 
boundaries of any shape resting on biparametric elastic foundation. The 
plate, which may have holes, is subjected to concentrated loads, line 
loads, or distributed surface loads. The solution is achieved by convert
ing the governing boundary value problem to an equivalent problem 
consisting of five coupled boundary equations, two of which are 
differential and three of which are integral. The boundary differential 
equations are derived from the boundary conditions, while the boundary 
integral equations are derived from the integral representations for the 
deflections of the plate and of the foundation region. A numerical 
technique based on the discretization of the boundary is developed for 
the solution of the boundary equations. The computational efficiency of 
the method is increased by converting the domain integrals attributable 
to loading into boundary line integrals. Numerical results for several 
plates are obtained to attest to and demonstrate the accuracy and the 
efficiency of the presented BDIE method. 

INTRODUCTION 

The Pasternak-type biparametric elastic foundation model is the most 
natural extension of the Winkler model for homogeneous soil deposit and 
the next-highest approximation to the foundation response (Kerr 1964). 
The biparametric elastic foundation models are derived either as an 
extension of the Winkler model by imposing interaction between spring 
elements (Filonenko-Bodorich 1940; Hetenyi 1946; Paternak 1954; Kerr 
1964) or by simplifying the three-dimensional continuum (Reissner 1958; 
Vlasov and Leontiev 1966). Although this foundation model can ade
quately approximate the soil-structure interaction, an analytical solution to 
the governing boundary value problem is obtained only when the plate has 
a simple geometry (e.g. circular plate or rectangular plate). Thus, the use 
of approximate or numerical methods is inevitable. To this end, the 
boundary element method can be used efficiently to obtain an accurate 
solution to the problem. Balas et al. (1984) have given a boundary integral 
formulation for the problem at hand and they have obtained results for a 
circular plate subjected to a centered concentrated force. More recently, 
Katsikadelis and Kallivokas (1986) have used the boundary element 
method for plates on a Pasternak-type elastic foundation with a clamped 
boundary and have obtained numerical results for plates with various 
shapes, including plates with composite shapes. In this investigation, the 
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plate with free edges resting on a biparametric foundation model is treated. 
In contrast to the clamped boundary, the free boundary allows interaction 
between the deflections of the foundation area under the plate and those 
outside it. Thus, the boundary value problem is much more difficult than 
that of the clamped plate. The boundary method developed herein is a new 
one, since it reduces the boundary value problem to an equivalent one 
involving five coupled boundary equations, two of which are differential 
and three of which are integral. The differential equations are solved using 
the finite difference method, while the integral equations are solved using 
the boundary element method. The presented, which in the following will 
be referred to as the boundary differential integral equation method 
(BDIEM), proves to be very efficient. It is worth mentioning that the 
present formulation avoids hypersingularities in the kernels of the bound
ary integral equations, since the line integrals are limited to single- or 
double-layer potentials. This fact facilitates the numerical solution of the 
boundary integral equations and, thus, from the computational point of 
view, the proposed method seems to have an advantage over a pure 
boundary integral equation method. Moreover, in the case of linearly 
varying loading, the efficiency of the method is improved by converting the 
domain integral into line integrals on the boundary of the plate. Numerical 
results are obtained for circular plates, annular plates, rectangular plates, 
and plates of complex shape. The accuracy of the method is attested to by 
comparing the results with those existing from analytical or other numer
ical solutions. 

FORMULATION OF THE BOUNDARY VALUE PROBLEM 

Consider a thin elastic plate of thickness h, occupying the two-dimen
sional multiply connected region R of the plate, bounded by the M + 1 
curves C0 , C, , C2, • . . , CM and resting on a Pasternak-type elastic 
foundation with subgrade reaction modulus k and shear modulus G. The 
curves C, (i = 0, 1, 2, . . . , M) may be piecewise smooth; that is, the 
boundary of the plate may have a finite number of corners (Fig. 1). 

Assuming that the plate maintains contact with the subgrade and that 
there are no friction forces at the interface, its deflection w(P) at any point 
PER satisfies the following differential equation (Kerr 1964): 

Lw = ^ - , PER (1) 

where f(P) = the transverse loading; D = Eh3/I2(l - v2) = the flexural 
rigidity of the plate; and L = an operator defined as 

L = v 4 - ^ 2 4 ; v 2 = ^ + $ ; v4=^2)2 & 
The interaction pressure ps between plate and subgrade is given as 

ps = kw~ GV2w (3) 

If the region exterior to the boundary C0 is denoted by R0 while the 
region inside the boundary curves C, (/ = 1, 2, . . . , M) are denoted by i?, 
(/ = 1, 2, . , . , M), respectively, the deflection wF of the subgrade in the 
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FIG. 1. Two-Dimensional Region of Foundation Area Occupied by Plate 

foundation regions R, (i = 0, 1, 2, . . . , M) satisfies the following 
differential equation: 

L*wp: 

G ' R, (4) 

where g(P) = the transverse loading directly applied to the foundation 
region R,, and L* = an operator defined as 

L* = ^ (5) 

The boundary conditions for the free boundaries C, of the plate are 
derived from the following physical considerations: 

1. The deflection is continuous across C,. 
2. The bending moment M„ of the plate vanishes on Q . 
3. The jump of the shear force in the shear layer on C,, which is due to 

the discontinuity of slope of the shear layer on the boundary, is equal to the 
effective shear force of the plate along C,. 

Using intrinsic coordinates (Katsikadelis 1982) the aforementioned condi
tions in terms of the deflections w of the plate and wF of the foundation 
region /?,• are expressed as 

W = Wp • (6a) 
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( d2W dw\ V ^ + ( v - l ) ^ + ^)-j 

" d , , d ( d2W 

= 0 . 

dw 
V W (V I , , , A w ; -, 

dn ds yds dn °s, 

-D V 2
W + ( V - 1 ) T T + I ( S ) T - = 0 (6*) 

D 
(dwF dw , 

-G[l?-to) ••••(6C) 

where d/dn = the directional derivative along the outward normal to the 
boundary C,- of the plate; d/ds = the derivative with respect to the arc 
length s; K(s) = the curvature of the boundary; and v is Poisson's ratio. 

INTEGRAL REPRESENTATION OF THE SOLUTION 

The integral representation of the solution can be obtained using the 
Green identity for the operator L and the fundamental solution to Eq. 1. 

The Green identity for the self-adjoint operator L is 

n f / d , dv , d . 

(vLw - wLv) dv = ( \v — Vzw - — v w ~w — vzw 
dw . G dw G dv\ 
dn D dn D dnj 

where C = uf£0 Q . Eq. 7 is readily obtained by combining the Rayleigh-
Green identity for the biharmonic operator (Katsikadelis and Armenakas 
1984b) with the classical Green identity for the harmonic operator. 

The fundamental solution to Eq. 1 is a singular particular solution of the 
following differential equation: 

= D ' ( ^ 

in which 8(Q - P) = the Dirac 8-function, Q = the field point; and P = the 
source point. The nature of the solution to Eq. 8 depends on the quantity 
|x = G2/4kD. In this investigation, only the case |x < 1 is considered, and 
it seems to be valid for usual foundation materials (Kerr 1964). For these 
values of (x the solution to Eq. 8 is given as (Vlasov and Leontiev 1966) 

v = v(P, Q) = v(Q, P) = 4 £ ) s
/

i n 2 e R e [fl^Op)] (9) 

where 

r 
1 P = 7 (10a) 

/ = v ? - - ' ••••{m 

P = cos 9 + (' sin 6 (10c) 
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26 = arctan - - 1 (lOd) 

r = IP - Q\ is the distance between the points (P, Q and Re[i^" ((3p)] 
denotes the real part of the zero order Hankel function of the first kind. 
Notice that when G approaches 0, it can be shown that v(P, Q) reduces to 
(-/2/2irD)kei(p) which is the fundamental solution to the equation govern
ing the plate resting on a Winkler-type elastic foundation (Katsikadelis and 
Armenakas 1984b). 

Applying Eq. 7 for the deflection of the plate w, and the fundamental 
solution v, which satisfy Eqs. 1 and 8, respectively, and using Eqs. 54a-c 
Appendix I, the integral representation for the deflection of the plate is 
obtained as 

w(P) = [ f v(P,Q)AQ)daQ-D f L 

3 

(P, qMq) 

— v(P, q)<Hq) - — V2v(P, qMq) + V2v(P, q)X(q) 
dn, 

G 

dn, 

G d 
- yr v(P, q)X(q) + ^ — v(P, q)il(q) 

D D dn„ 
dsn (ID 

or 

w(P) = 4̂ 26 { ™ - I [A,(p,,)nfo) + A2(pPq)X(q) 

+ Ai(pPq)<t>(q) + A ^ M * ) ] dsA . . . (12) 

where the following notation has been introduced for conciseness; 

Wq) = w(q) (13a) 

Xfo) 
dn. 

w{q) (13^) 

$(«?) = V2w(q) (13c) 

d 

dnq 
(13c0 

F(P) = 5 J \ y ^eMe) dxTQ (14) 

l 1 
(15a) AI(PP,) = h f V'(pPq) - I U'(pPq) COS <)> 
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A2(P/>„) = p U(PPg) - 3 V(pPq) . (15*) 

MPPq) = ~ j y\?Pq) COS (f> (15c) 

U?pq) = V(PPq) (I5d) 

?pq = —— • • (15e) 

4> = r ^ i • • • • • • • •• (15/) 

The functions V(p), V(p)> U(p), U'(p) are given by Eqs. 55a-d in Appendix 
I. In the aforementioned equations, points inside the region R are denoted 
by upper case letters, while points on the boundary C are denoted by lower 
case letters. Moreover, the subscripts of the elements da and ds indicate 
the point that varies during integration. Furthermore, d/dnq denotes the 
normal derivative taken with respect to point q. 

Similarly, using the Green identity for the harmonic operator, the 
following Green identity is obtained for the operator L* in the region /?,•: 

jjjwL*v-vL*W) d„ = j^v
d£-w^)ds (16) 

where d/dm = the outward normal to the boundary C,- of the region Rj; that 
is, d/dm = -d/dn (Fig. 1). 

The fundamental solution to Eq. 4 is a singular particular solution to the 
equation 

L*u = K^G (17) 

The solution to Eq. 17 (Vlasov and Leontiev 1966) is given as 

u = u(P, Q) = u(Q, P) = 2^G
 Ko{^ ( 1 8 ) 

where 

P = 5 (19«) 

J (19« 

r=\P-Q\ . (19c) 

and #o(p) = the zero-order modified Bessel function of the second kind. 
Applying Eq. 16 for the functions w = wF and v = u, which satisfy Eqs. 

4 and 17, respectively, and using the boundary condition of Eq. 6a, the 
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following integral representation for the deflection WpQP), P ERj(i = 0, 1, 
2, . . . , M) of the subgrade is obtained: 

wF{P) = f f K(PPQMQ) d<jQ + f «(p>«)®(<?) 

d 
— uCpp^Mq) dmq 

dsq (20) 

or 

wF{P) = ^ \H{P) + f [Aj(p/.,)0(?) + A6(ppq)a(q)] dsqj (21) 

where 

H(P) = G ( ( Ko(m)g(& d*Q (22) 

A5(PA,) = KSpq) (23a) 

MPPC) = j K\{pPq) cos ^ (236) 

e t e ) = ^ > " ^ ) • (24) 

\P-q\ 
PPq = — ] — (25a) 

4> = ftm (25b) 

m = - n (25c) 

K^p) is the first-order modified Bessel function of the second kind. 

DERIVATION OF THE BOUNDARY DIFFERENTIAL AND INTEGRAL EQUATIONS 

The loading functions/(0 and g(Q) in Eqs. 11 and 20 are given at every 
point Q in R and Q in R,(i = 0, 1,2, . . . , M), respectively. Moreover, the 
function v(P, Q) and its derivatives (Eqs. 54 and 55 of Appendix I) as well 
as the function u(P, Q) (Eq. 18) and its derivative are known. However, the 
functions ft, X, $ , ^P, ® are not known on the points of the boundary. 
These five unknown boundary functions can be established by solving a 
system of five coupled boundary equations, two of which are differential 
and three of which are integral. 

The boundary differential equations are established from the boundary 
conditions of Eqs. 6b and 6c, which, by virtue of Eqs. YSa-d and 24, are 
written as 
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$ + (v - 1)( - ^ j - + KX.J = 0 (26) 

a2x dKdti d2n\ G 
v-b-vyw-JFii;-*!?)^*** (27) 

Two boundary integral equations are derived from the integral represen
tation of Eq. 12 using the procedure presented in Katsikadelis and 
Armenakas (1984a). Thus, by letting point P in Eq. 12 approach a point p 
on C and by taking into account that in the limiting process the line integral 
with kernel d\2v/dn exhibits a discontinuity jump equal to 

lira f £ - VVP, q)il(q) dsq- f ^ - V2(p, a)fl(o) dsq = — H(p) (28) 

we obtain the first boundary integral equation as 

2 sin 20 
fl(p)+ [Ai(pM)fl(9) + A2(pM)X(?) + A3(pM)$(?) 

+ A4(Ppqmq)] dsq = F(p) (29) 

The second integral equation is obtained by applying the operator V2 on 
both sides of Eq. 12 and subsequently by letting point P approach a point 
p on the boundary C. Thus, by taking into account that V4v - (G/D)V2v = 
—{klD)v (Eq. 8) and that the line integral with kernel dV2v/dn exhibits a 
discontinuity jump as P —»p 6 C, the second boundary integral equation, 
which is independent from Eq. 29, is obtained as 

2 sin 26 *(p) + f [JV,(pM)Xlte) + N2(ppq)X(q) + JV3(pw)*(o) 1 C 

+ N4(Ppgmq)] dsq = G(p) (30) 

where 

m G(p) = n | U(PpQ)f{Q) daQ (31) 

Wi(PP?) = -p V'(ppq) cos 4 (32a) 

W2(pM) = ~ p V(p„) : . . ' . . . (32W 

1 
Wa(pp,) = - J f ( p w ) cos cj) (32c) 

N4{pM) = U(pM) (32d) 
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Finally, the third boundary integral equation is derived from Eq. 21 by 
letting point P E /?, approach a point/? on the boundary C,. Thus, taking 
into account that the line integral with kernel A6(p^) behaves like a double 
layer potential (Eq. 57 b of Appendix I), the following integral equation is 
obtained: 

vil(p) - | [As(pw)0fa) + A6(pMMq)] dsq = H(p) (33) 

Eq. 33 is valid for all boundaries C, (/ = 0, 1, 2, . . . , M). Note that Eqs. 
28 and 33 have been derived for points p where the boundary is smooth. 

NUMERICAL ANALYSIS 

The differential Eqs. 26 and 27 and the integral Eqs. 29, 30, and 33 
constitute a set of five simultaneous equations for the unknown boundary 
functions A X, $ , ^P, ©. Elimination of the boundary quantities Q, and <£ 
would yield three integrodifferential equations, which would complicate 
the numerical solution of the problem. Of course, integrodifferential 
equations can be avoided if the integral representation of the solution for 
the plate is expressed in terms of boundary quantities having direct 
physical meaning (w, dw/dn, Mn , V„) (Bezine 1979; Stern 1979; Katsikade-
lis 1982). However, this approach results in kernels with hypersingularities 
and, thus, the numerical evaluation of the singular integrals becomes 
cumbersome, especially in the present case, where the kernels are real and 
imaginary parts of the Hankel functions with complex argument. 

In this section, a straightforward numerical solution of the five coupled 
boundary equations is developed. The boundary is discretized into a finite 
number of boundary elements (Fig. 2) and, subsequently, the differential 
equations are solved using the finite difference method. The integral 
equations are then solved using the boundary element method with 
constant element. 

Thus, approximating the derivatives by unevenly spaced central finite 
differences involving the nodal values of Eqs. 26, 27, 29, 30, and 33 are 
written for the typical point / as 

(An),y_ A - 1 + (An)/,A + (An);,,-+ A +1 + (AnhXj 

+ (Al3),-A = 0 (34a) 

(A2,)w _ A,- -1 + (A2i)i, A + (A2i)i,i + A,- +1 + (A22)i,i - iX, _ i 

+ (A22)/,;X,- + (A22)u+lXi+l + (A24)u% + (A25)(y®; = 0 04b) 

2 [(A3i)frA + (AJMJ + (A33)c*/ + G W y ] =F, (34c) 
7 = 1 

2 [(AM + (A42)tfXy + (A43)iPj + (A44),jVj) = G, (34J) 
y = i 
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(En) 

FIG. 2. Discretization of Boundary of Plate 

X t(A5,)(lO, + (A 5 3 ) e 0 ; ]=^ . (34e) 

where / = 1, 2, . . . , N; N = the number of boundary elements; and 

(An),-,,--1 = eiSj (35a) 

(An);,; = - et{Si + J/_ i) . (356) 

(An);,;+ i = etSi^ , . (35c) 

(A,2);,; = 0.5K, (35d) 

0.5 
(A,3);,; = ( v - 1 ) 

(A2i);,;-i = 

(A2i);,; = 

(A2i);,;+i = 

fdK 
eist 

2^ ;+( S ; -5 ;_ i ) ( — e;fe + S;-l) 

2#; + ,?,•_] 
dK 
Is CiSi - i 

(A22);,; - 1 = - 2e;i; 

(35*) 

(35/) 

(35?) 

(35/J) 

(350 
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(A22)i,i = 2ei(si + Sj -1)-
D(v - 1) 

(A22)i,i+ i = -2e;Si-i 

1 
(A24)/,/ = (v-1) 

(A25)/,,' = -
G 

D(v - 1) 

• (35/) 

. (35&) 

• (35/) 

(35m) 

in which e, = l/[^,_i (st + J/_i)]; *,_I and .?,• are the distances along the 
boundary between the nodal points / - 1, / and /, / + 1, respectively (Fig. 
2). K,, (dKlds)j are the values of the curvature and its derivative at point;'. 

2 sin 26 
d»>q + — p — 8y (36a) (A3i)//= I \pPic,V'(piq)--pPiqU'(Pil 

(A32)y= I \jlV(piq)~^V(piq) dsq 

(A33)/,' = - I P,«V'(P/g) d(x>q 

{A^)tj = I V(piq) dsq 

{M\)ij = I p P,^'(P;g) <K (36e) 

(442)</= - f p * W dsq . (36/) 

(36*) 

(36ft) 

(36c) 

(36d) 

(A43)y = - I PiqU'ipui) duq + 2 sin 26 8ff 

GWy = I t/(Pl9) * 9 . . . . . . (36/0 

(A5I),y=? - I ptgKi(.piq)-da, 

(AS5)V ~ - J #o(p/«) C 

,?+'ir8j,. (360 

(367) 
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Ptq ~ \Pi ~ Q\IU Pia = \Pi - q\l~U Pi is a nodal point, q G ./-element, u , = x", 
vq and 8,7 is the Kronecker-delta. The symbol /,• indicates integration over 
the/-element. Notice that in Eqs. 36a, c, e, g, and / the relation cost^a* = 
rdu> has been used (Katsikadelis and Armenakas 1984a). Moreover 

F; = Z> [ f v(P'eWfi) d°Q ^^ 

Gi = 3 \ \ ^P'e^C) daQ (37fo) 

H, = ^ f f KfadgiQ) daQ (37c) 

In matrix form Eqs . 34a-e are written as 

An A12 A,3 0 0 " 
A2i A22 0 A24 A25 

A31 A3 2 A3 3 A3 4 0 

A41 A42 A43 A44 0 

AJI 0 0 0 A55 

ft 
X 
* 
•\p 

| _ 0 

= 

0 
0 
F 
G 
H 

(38) 

where the elements of the matrices Ay (i,j = 1, 2, 3, 4, 5) are given by Eqs. 
35, 36 and 

n r = I M ^ - nNi x r = [x,x2x3 - xNy, * r = r * , * ^ - **] 
* r = [ ¥ , ¥ 2 ¥ 3 - ¥ „ ] ; &T= [0,0,03 - . ©„]; F T = [F,F2F3 - FN] 

G r = [G,G2G3 - GA,]; H r = [H^H, ••• / /„] . .".' (39) 

Notice that at corner points the quantity X = dw/dn is discontinuous and 
actually the derivative d2X/ds2 cannot be approximated using a central 
difference scheme. This problem may be treated using backward or 
forward differences for nodal points before or after the corner, respec
tively, to approximate the second derivative along the boundary. How
ever, good results have been obtained by ignoring the discontinuity and 
using small boundary elements near the corners. 

Evaluation of Line Integrals in Eqs. 36 
When i + j , the arguments p, p do not vanish and these integrals can be 

evaluated using any of the known numerical techniques for the evaluation 
of line integrals. In this investigation, the curved boundary element is 
approximated by a parabolic arc passing through its nodal and extreme 
points and its value is computed using eight-point Gaussian quadrature. 
When i = j , the arguments of p, p vanish for q = pt. From Eqs. 56a, e,f, 
and 57c of Appendix I, it is seen that the line integrals with kernels V(p), 
pV(p), pU'(p), pATi(p) are not singular and consequently they are evaluated 
as in the case i =£ j . However, as it is seen from Eqs. 56c and 57a of 
Appendix I, the line integrals with kernels U(p) and K0(p) have a logarith-
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mic singularity and they are evaluated using the technique presented by 
Katsikadelis and Armenakas (1985). 

Evaluation of Double Integrals in Eqs. 37 
We may distinguish the following four cases: 

1. The plate is subjected to a concentrated load P at a point Q0 . In this 
case, the loading function f(Q) can be represented as 

AQ)=Pm-Q0) 
Using Eq. 40 the values of the integrals 37a-ft are 

(40) 

Fi=DV{9^' (41a) 

Gi = 3U{9iQ) (41ft) 

where piQo = \Pi - Q0\/l. 
2. The plate is subjected to a line load q(s) distributed along a curve S*. 

In this case the double integrals of Eqs. 37a-b are evaluated using Eqs. 
41a-ft from the following line integrals along the curve S*: 

Js* 

q(Q)V(PiQ) dsQ . . . . . , (42a) 

q(Q)U(PiQ) dsQ (42ft) 

where piQ = \p, - QUI, Q G S*. 
3. The plate is subjected to a uniform or a linearly varying l o a d / ( 0 

distributed over an area R* CR of the plate bounded by a curve C*. In this 
case, the double integrals of Eqs. 37a-ft are converted into the following 
line integrals on the closed curve C* (Katsikadelis and Kallivokas 1986): 

Fj = - cos 26 G,-
I2 sin 26 

D sfiPi) + I Piql'iPiq. 
Jc* 

)Aq) do>q 

Jc* 

PiqV'(piq)f{q) duq f V(Plq. 
Jc* 

(43a) 

(43ft) 

where piq = lp,- - q)\ll, q e C*;I(p) = im[H$\fip)]; e = - 4 whenp,- is inside 
R*, e = - 2 when p, is on C*, and e = 0 when pt is outside C*. 
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The substitution of the domain integrals by line integrals reduces 
drastically the required computer time. The line integrals of Eqs. 43a-b, as 
well as the line integrals of Eqs. 42a-b, are evaluated numerically 
employing the technique presented by Katsikadelis and Armenakas (1985). 
Thus, the curve C* or S* is approximated by a finite number of parabolic 
elements. On each element the line integral is computed and the resulting 
partial values are summed. 

4. In the general case where f(Q) is an arbitrary function, the domain 
integrals of Eq. 37 can be evaluated using the method presented in 
(Katsikadelis 1987). Moreover, equations similar to Eqs. 41-43 can also be 
developed for the numerical evaluation of the double integral in Eq. 37c. 

EVALUATION OF THE DEFLECTIONS, STRESS RESULTANTS, AND SUBGRADE 
REACTIONS 

When the matrices A,-,- (i,j = 1, 2, 3, 4, 5), F, G, H are established, the 
system of simultaneous algebraic Eqs. 38 is solved and the values O,, X,, 
$ , , %, ®j of the boundary functions Cl(s), X(s), $(s), V(s), ®(s) at the 
nodal points are obtained. These values can be used to obtain the 
deflection, the stress resultants and the subgrade reaction at any point P in 
the interior of the plate, as well as the deflection of the subgrade outside 
the plate. Thus, the deflection w(P) is obtained from its integral represen
tation, Eq. 12, while the subgrade reaction is obtained from Eq. 3. For the 
computation of the double integrals F{P) and G(P) we distinguish again 
four cases as for the integrals F,- and G, in previous section. Moreover, the 
deflection of the subgrade Wf(P), in the region Rt outside the plate, is 
evaluated from its integral representation, Eq. 21. 

The bending moments Mx, My the twisting moment Mxy and the shear 
forces Qx and Qy at any point of the plate are given in terms of the 
deflection (Timoshenko and Woinowsky-Krieger 1959) as 

/d2w d2w\ 
M^-D{l7 + VW) • • •< 4 4 f l ) 

Qx= -D-^V2w (44b) 

/d2w d2w\ 
M>=-D{w+vJ7) •• «*> 
Qy = - D — V2w (44d) 

d2w 
Mxy =-Myx = D{\ - v) — (44*) 

The second and third order derivatives of the deflections in Eqs. 44a-<? 
may be evaluated from the computed values of the deflections with 
sufficient accuracy using numerical differentiation. However, the accuracy 
is increased and the computer time is considerably reduced when they are 
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evaluated by direct differentiation of Eq. 12 using the following combina
tions of derivatives: 

di = 4-^0 N5 f [ B^du + I \ D'<P)ft ds + \ \ £'(P)X ds 

+ 7 I /,(p)<I> ds - f 5 K P ) * * , ( i= 1,2, 3, 4, 5) 

where 

32w 32w 

s2w a2w 

< / . = • 

rf2 = 3x dy 

A = 2 
B2w 

dx dy 

d 
d4= -l — Vlw 

dx 

d5= - / — V2w 
dy 

• (45) 

(46a) 

(46ft) 

(46c) 

(46<0 

(46e) 

B,(p) = t/(P) . (47a) 

B2(p) = C(p) cos 2w (47ft) 

B3(p) = C(p) sin 2w (47c) 

B4(p) = U'(p) cos to (47d) 

£5(p) = C/'(p) sin a) (47e) 

Di(p) = - V'(p) cos 4, (48a) 

D2(p) = - V(p) + -p U'(p).+ ^ cos 26 V'(p) cos (2co — <))) 

V'(p) cos 2w cos ()> , 

"2 
V(p) + ^ U'(p) + -p cos 26 V'(p) D3(p) = 

- V (p) sin 2a> cos cj> 

sin (2a> — «)>) 

^4(p) = _ U(p) cos a) cos <j> + - V'(p) cos (w - (J>) 

(48ft) 

(48c) 

(4Sd) 
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£>5(p) = - U(p) sin co cos <|> + - V'(p) sin (co - 4>) (48e) 

E1(p) = V(p) : (49a) 

E2(p) = 

£3(p) = 

2 4 
V(p) + - U'{p) + - cos 26 V'(p) 

2 4 
y(P)+-c/'(p) + -cos2ey'(p) 

cos 2w (496) 

sin 2co (49c) 

£i(p) = V'(p) cos <o (49d) 

£s(p) = ^'(p) sin co (49e) 

Ji(p) = C/'(p) cos cj> (50a) 

J2(p) = U'(p) cos ()> cos 2co — C(p) cos (2co - cj>) (506) 

/3(p) = tV'(p) cos <() sin 2(o - - C(p) sin (2co - 4>) (50c) 

/4(P) = -
1 

U'(p) cos (to — 4>) + V(p) cos co cos <j> 

+ 2 cos 28 C/(p) cos co cos 4> (50J) 

•/s(p) = - - (7'(p) sin (co - cf>) + V(p) sin co cos 4> 

+ 2 cos 20 L/(p) sin co cos cj) (50e) 

C(p) = t/(p) - - V ' (P) (51) 

For an arbitrary loading function/(Q) the double integrals in Eq. 45 may be 
evaluated using the technique presented in (Katsikadelis 1987). When the 
loading is due to a concentrated force P at some point Q0 the double 
integrals in Eq. 45 can be directly evaluated from equations analogous to 
Eq. 41. Moreover, when the loading is due to a line load along a curve S*, 
the double integrals in Eq. 45 are reduced to line integrals on the curve 5* 
and they are computed from equations analogous to Eq. 42. Finally •, when 
the plate is loaded by a uniform or a linearly varying load distributed over 
a region R* C R bounded by a curve C* the double integrals in Eq. 45 are 
converted into the following line integrals (Katsikadelis and Kallivokas 
1986). 
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TABLE 2. Influence Coefficients for Deflections, Stress Resultants, and Subgrade 
Reaction of Circular Plate (v = 0.3) Resting on Biparametric Elastic Foundation (X 
= 5, s = 7) 

Load 
position 

9 

(1) 

0 

Deflec

tion 

(2) 

w 

Ps 

(a) Influence coefficients for w and ps at r 

r 
- = 0 
a 

(3) 

0.32073E-02 

r 
- = 0.2 
a 

(4) 

0.19332E-02 

0.21563E+01 

r 
- = 0.4 
a 

(5) 

0.89935E-03 

0.35526E+00 

= 0, 9 = 0 

r 
- = 0.6 
a 

(6) 

0.38850E-03 

0.380I0E-01 

r 
- = 0.8 
a 

(7) 

0.16034E-03 

-0.10929E-01 

9 

0 

ir/4 

TT/2 

3TT/4 

Deflec
tion 

VI' 

Wf 

H' 

we 

w 

WF 

w 

WF 

w 

~WF 

(b) Influence coefficients for ii1 

r 
' - = 0 

a 

0.49027E-04 

0.22014E-04 

0.49027E-04 

0.22014E-04 

0.49027E-04 

0.22014E-04 

0.49027E-04 

0.22014E-04 

0.49027E-04 

0.220I4E-04 

r 
- = 0.2 
a 

0.12782E-03 

0.56138E-04 

0.91342E-04 

0.40942E-04 

0.44517E-04 

0.20398E-04 

0.23755E-04 

0.10886E-04 

0.18671E-04 

0.85230E-05 

at r = a, 9 = 0 anc 

r 
- = 0.4 
a 

0.33O62E-O3 

0.14068E-03 

0.14636E-03 

0.67892E-04 

0.33703E-04 

0.16335E-04 

0.10762E-04 

0.50744E-05 

0.70755E-05 

0.32721E-05 

wF a t r = 1, 2a, 9 

r 
- = 0.6 
a 

0.84935E-03 

0.34389E-03 

0.19038E-03 

0.96783E-04 

0.21910E-04 

0.11498E-04 

0.46701E-05 

0.22725E-05 

0.26788E-05 

0.12521E-05 

= 0 

r 
- = 0.8 
a 

0.2I930E-02 

0.80943E-03 

0.I9231E-03 

0.10951E-03 

0.12369E-04 

0.7I797E-05 

0.19309E-05 

0.97040E-06 

0.99849E-06 

0.47073E-06 

(c) Influence coefficients for "Mn S?9, Qn Q^ at r = 0, e = 0 

9 

0 

ir/4 

Stress 
resultant 

Mr 

H„ 

Qr 

5, 
B,= 

Qr = 

a. 

r 
- = 0 
0 

oo 
(X) 

CO 

CO 

CO 

CO 

r 
- = 0.2 
0 

-0.42820E-02 
0.29433E-01 

0.31443E+O0 
0.0 

0.I2575E-01 

0.22233E-00 

r 
- = 0.4 
a 

-0.10623E-0I 
0.51356E-02 

0.21092E-01 
0.0 

-0.27438E-02 

0.14914E-01 

r 
- = 0.6 
a 

-0.61353E-02 
0.70174E-03 

-0.97923E-02 
0.0 

-0.27168E-02 

-0.69242E-02 

- = 0.8 
a 

-0.29011E-02 
-0.47609E-04 

-0.81229E-02 
0.0 

-0.14743E-02 

-0.57438E-02 

IL 
-L 

dx By' 

df 

Jc* 
V(p) du = -j j /V'(p) cos (2co + c(>) ds 

V(p)ds 
df 

cos (co + cp) - — sin (co + d>) (52a) 

dx dy u. V(p) da = j j fV'(p) sin co cos (co + c))) ds 
'c* 
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TABLE 3. Deflections of Rectangular Plate Resting on Elastic Foundation (\ = 5, 
s = 6) 

xla 
0) 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
0.0 
0.0 
0.0 
0.0 
0.0 

ylb 
(2) 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

Boundary differential 
integral equation 
method (BDIEM) 

68 B.E. 
(3) 

0.159E-02 
0.158E-02 
0.154E-02 
0.143E-02 
0.120E-02 
0.837E-03 
0.159E-02 
0.159E-02 
0.157E-02 
0.142E-02 
0.834E-03 

Galerkin's 
method 
16 terms 

(4) 
0.162E-02 
0.160E-02 
0.154E-02 
0.141E-02 
0.112E-02 
0.670E-03 
0.158E-02 
0.157E-02 
0.161E-02 
0.137E-02 
0.687E-03 

-L 
J JR* 

•JJL 
J JR* 

V(p) sin (w + <f>) ds {52b) 

/ - V M P ) ^ = ~*L fU(p) cos (w + 4>) ds 

V'ifi) cos <() ds (52c) 

/ - V2V(P) da 
Jc* 

fU(p) sin (co + <$>) ds 

+ at 
dr\ 

V'(p) cos 4> ds (52c/) 

where x, y G R and £, -c\ G C*. 

NUMERICAL RESULTS 

A computer program has been written for the numerical evaluation of 
the response of plates with free edges resting on a biparametric elastic 
foundation by integrating the coupled boundary differential and integral 
Eqs. 26, 27, 29, 30, and 33 using the numerical technique developed in 
previous sections. Numerical results have been obtained for circular plates 
with or without holes, rectangular plates, and plates with complicated 
shapes subjected to concentrated or uniformly distributed loads. The 
results are in excellent agreement with those obtained from analytical or 
other numerical solutions. Notice that for G = 0 the solution for the plate 
resting on a Winkler-type elastic foundation is obtained. 
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—-=n(5inTC 

FIG. 3(a). Circular Plate (v = 0.30) Resting on Elastic Foundation (X = 8, s = 10); 
Curves a, b, c, d for P = 1, 0.1, 0.01, 0 irqa2; Deflection w = wl(qa4ID) 

FIG. 3(b). Bending Moment Mr = MJqa2 

M, cp 

I220E-1 
FIG. 3(c). Bending Moment M9 = MJqa2 

For the presentation of the numerical results, the following dimension-
less parameters are used (Katsikadelis and Kallivokas 1986): 

ID 
IG 

x = - (53) 
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L734E+1 

FIG. 3(d). Subgrade Reaction P, = Pjq 

wrfffTTV 

Qr 

(.481E0 

FIG. 3(e). Shear Force Qr = QJqa 

where a = a characteristic length of the plate (e.g. the radius of a circular 
plate, the length of one side of a rectangular plate, etc.). The shear 
modulus G may vary from 0-40 MN/m, while the subgrade reaction 
modulus k may vary from 0-200 MN/m3. Thus, for usual engineering 
applications it is 0 < s < 30 and 0 < X < 20. 

To check the accuracy of the proposed BDIE method, a circular and an 
annular plate have been analyzed. The numerical results are in excellent 
agreement with those obtained from analytical solutions (Selvadurai 1979). 
The deflections w = w/(qa4/D), wF = wFl(qa4ID), the stress resultants M,. = 
MJqa2, Mv = Mjqa2 , Qr = QJqa and the subgrade reaction ps = pjq for 
the annular plate (v = 0.3) with radii a and 3a, subjected to a uniform load 
q and resting on a biparametric elastic foundation (A. = 4, s = 5) are 
presented in Table 1. The results have been obtained using 48 boundary 
elements (32 for the external and 16 for the internal boundary). It is 
apparent that relatively few boundary elements are sufficient to obtain 
accurate results. 
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a/2 a/4 ! a/4 , 

694E-2 

a/2 

DEFLECTIONS. 

W(x10"5) 

FIG. 4. Plate of Composite Shape on Elastic Foundation (X = 12, s = 10) 

In Table 2, the influence coefficients for the deflection w = w/{Pa2/D), 
the stress resultants Mr = MJP, Mv = MJP, Qr = Qra/P, Qv = Q^alP and 
the subgrade reaction ps = psa

2/P at point r = 0, 9 = 0 as well as for the 
deflection wF = wFl(Pa ID) at point r = 1.2a, 0 = 0 of a circular plate with 
free edge for various positions of the concentrated load P are presented (X 
= 5 , J = 7 , V = 0.3). The results have been obtained using 32 boundary 
elements. 

In Table 3 numerical results for a rectangular plate (v = 0.3,2a x 2b, b/a 
= 2) resting on an elastic foundation (X = 5, * = 6) and subjected to a 
uniform load q are presented as compared with those obtained using the 
approximate Galerkin method was sixteen terms (Vlasov and Leontiev 
1966). 

In Figs. 3(a)-3(e) the influence of a concentrated load, applied at a point 
outside a circular plate (v = 0.3, K = 8, s = 10), on the deflections, stress 
resultants, and subgrade reactions along the diameter through the load P is 
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FIG. 5. Contour Plot of Bending Moment Mx - MJqa2 (Magnification Factor 104) 

10 4 -2 
T22 

„ 0 2 J 4 2jik6\ 
-2-12-20 

FIG. 6. Contour Plot of Shearing Forces Qx = QJqa (Magnification Factor 103) 

presented. The plate is subjected to a uniform load. The results have been 
obtained using 32 boundary elements. 

Finally, a plate of composite shape (v = 0.30) with free boundaries 
resting on an elastic foundation (X. = 12, s = 10) and subjected to a uniform 
load q has been analyzed. The results obtained on the basis of BDIEM 
using 68 boundary elements are presented in Figs. 4-7 More specifically, in 
Fig. 4 the distributions of the boundary reaction Vn = VJqa and bending 
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moments M, = MJqa2, My = MJqa1 as well as the distributions and 
contour plots of the deflection w = wl{qaAID) and subgrade reaction ps = 
pjq are presented. In Figs. 5 and 6 the contour plots of the bending 
moment Mx = MJqa2 and shearing force Qx = Qjqa of the plate are 
shown. These results are considered accurate because they differ negligi
bly from those obtained using twice as many boundary elements. 

CONCLUDING REMARKS 

In this investigation, a boundary equation method is developed to 
analyze plates with free edges resting on a Pasternak-type biparametric 
elastic foundation and subjected to any kind of loading. The worked-out 
examples show that the presented method is efficient in treating plates with 
complicated shape, also including holes. The interaction between the plate 
and the loading in the foundation area outside the plate is also encoun
tered. The method is well-suited for computer-aided analysis. The com
putation of the line integrals is simplified, since the present formulation 
avoids hypersingular kernels, Moreover, the conversion of the domain 
integrals into line integrals reduces the computation time considerably. 
The present approach renders the boundary equation method a powerful 
tool to solve difficult plate problems involving complicated boundary 
conditions. 
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APPENDIX I. FUNCTIONS V(p), V'(p), U(p), AND U'(p) 

In this Appendix certain functions are introduced which are useful for 
the evaluation of the derivatives of the fundamental solutions of Eqs. 9 and 
18. 

From Eq. 9 we obtain 

dv I 

Tn = W^T* V'(P) C0S * • (54a) 

^ = ^ 2 6 ^ i54b) 

£ ^ - 5 0 ^ ™ ™ * •• <**> 
in which ( )' denotes differentiation with respect to the argument p; 4> = 
the angle between r and n (Fig. 1); and 

V(p) = Re t ^ ' O p ) ] (55«) 
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V'(p) = Re [ - S ^ ' C P P ) ] = - cos 6 Re [fl^Op)] 

+ sin G Im [^"(pp)] (55b) 

C/(P) = Re [ - p ^ l p p ) ] = - cos 26 Re [^ (Pp) ] 

+ sin 26 Im DHft'Op)] (55c) 

U'(p) = Re [ p ^ ' t P p ) ] = cos 36 Re [ ^ " ( P P ) ] 

- sin 36 Im [fl^Op)] (55d) 

The real valued functions Re[flS" (pp)], ImEflfc" (PP)], Re[H\l) (pp)] I m ^ 1 ' 
(Pp)] involved in the aforegoing relations denote the real and imaginary 
part of the Hankel functions .IT^ (Pp), Hf) (Pp) and they are evaluated 
from their series expressions which are given by Zinke (1959). 

From the series expressions of the functions V(p), V'(p), U(p) and U'(p) 
we find that 

26 
lim V(p) = 1 (56a) 

TT 
p-*0 

lim V'(p) = 0 (56b) 
p-^0 

lim C/(p) ~ Inp (56c) 

lim C/'(p) ~ - • (56d) 

lim [pV'(p)] = 0 (56e) 

. r , _ 2 sin 26 
lim [PC/'(p ] = — — - (56/) 

TT 
p->0 

Moreover, for the modified Bessel functions K0(p) and K^p) it is valid 
(Abramowitz and Stegun 1972): 

lim K0(p) ~lnp (57a) 
p^O 

lim Ki(p) ~ r : (57b) 
p^O 

lim p\K:,(p) = 1 (57c) 
p^O 
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APPENDIX III. NOTATION 

The following symbols are used in this paper: 

C0 = external boundary of plate (Fig. 1); 
C i , . . . , CM = internal boundaries of plate (Fig. 1); 
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D = Eh3/12(l - v2) = flexural rigidity of plate; 
E = modulus of elasticity of plate; 

f(P) = loading function of plate; 
F(P) = function defined by Eq. 14; 
g(P) ~ loading function of foundation region; 

G = foundation shear modulus; 
G{P) = function defined by Eq. 31; 

h = thickness of plate; 
H(P) = function defined by Eq. 22; 

I(p), J'(p) = kernel functions defined in Appendix I; 
k = foundation reaction modulus; 

K(s) = curvature of boundary; 
/ = parameter having dimensions of length defined 

by Eq. (10b); 
I = parameter having dimensions of length defined 

by Eq. (19b); 
L = differential operator defined by Eq. 2; 

L* = differential operator defined by Eq. 5; 
n = direction vector of outward normal to bound

ary of plate; 
p, q = points on boundary of plate; 
P, Q = points inside region R of plate; 
P, Q = points in foundation region outside plate; 

ps = interaction pressure between plate and sub-
grade; 

r = distance between any two points of plate; 
r = distance between any two points in foundation 

region outside plate; 
R = region occupied by plate (Fig. 1); 

R0 = foundation region outside C0 (Fig. 1); 
Rt, . . . , RM = foundation regions inside boundary curves Ct, 

• • • , CM ( F i g . 1 ) ; 

j = dimensionless parameter defined by Eq. 53; 
u(P, Q) = fundamental solution to Eq. 18; 

U(p), U'(p) = kernel functions defined in Appendix I; 
v(P, Q) = fundamental solution to Eq. 9; 

V(p), V'(p) = kernel functions defined in Appendix I; 
w = deflection of plate; 

wF = deflection of subgrade in foundation area out
side plate; 

= complex parameter defined by Eq. 10c; 
= angle defined by Eq. lOd; 
= value of dwp/dm on ;'-th boundary element; 
= dimensionless parameter defined by Eq. 53; 
= kernel functions defined by Eqs. 15 and 23; 
= G2/4kD parameter characterizing behavior of 

fundamental solution; 
v = Poisson's ratio; 

Nj(p) = kernel functions defined by Eqs. 32; 
p = /•// = dimensionless distance between any two points 

of plate; 

\ 
A,(P) 
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p = r/l = dimensionless distance between any two points 
in foundation region outside plate; 

<p = angle shown in Fig. 1; 
<p = angle shown in Fig. 1; 

$,• = value of V2w on r'-th boundary element; 
X; = value of dw/dn on i-th boundary element; 
SP,- = value of 3(V2w)/3« on i-th boundary element; 
a) = angle between directions x and r (Fig. 1); and 

ft,- = value of w on /-th boundary element. 
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