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We discuss the inverse problem associated with the identification of the location and shape of a scat-
terer fully embedded in a homogeneous halfplane, using scant surficial measurements of its response
to probing scalar waves. The typical applications arise in soils under shear (SH) waves (antiplane
motion), or in acoustic fluids under pressure waves. Accordingly, we use measurements of either the
Dirichlet-type (displacements), or of the Neumann-type (fluid velocities), to steer the localization
and detection processes, targeting rigid and sound-hard objects, respectively. The computational
approach for localizing single targets is based on partial-differential-equation-constrained optimiza-
tion ideas, extending our recent work from the full-1 to the half-plane case. To improve on the ability
of the optimizer to converge to the true shape and location we employ an amplitude-based misfit
functional, and embed the inversion process within a frequency- and directionality-continuation
scheme, which seem to alleviate solution multiplicity. We use the apparatus of total differentia-
tion to resolve the target’s evolving shape during inversion iterations over the shape parameters, à
la.2, 3 We report numerical results betraying algorithmic robustness for both the SH and acoustic
cases, and for a variety of targets, ranging from circular and elliptical, to potato-, and kite-shaped
scatterers.

Keywords: Inverse scattering; shape detection; PDE-constrained optimization; continuation
schemes.

1. Introduction

Inverse scattering shape detection problems commonly arise in geophysical probing, in med-
ical ultrasonics, in geotechnical site investigations, and in target identification and acquisi-
tion applications. A typical setup consists of an unknown object S embedded within a host
medium Ω (Fig. 1).a The goal is to locate S and reconstruct its boundary ΓS, by exploiting
the response of the host-object system to incident interrogating waves ui. The response is

aThe inverse clutter problem, where multiple objects might be present is not addressed herein.
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Fig. 1. A model halfplane inverse scattering problem.

typically collected at a few measurement stations or receivers, which, oftentimes, circum-
scribe the obstacle, either in the near-, or the far-field. For example, in medical imaging
applications, it is common that multiple receivers and sources, situated in the near-field,
fully surround the probed target, whereas, by contrast, in underwater acoustics, it is the far-
field response that drives the detection process, whether sampled at sparsely and irregularly
spaced stations (limited aperture), or at stations loosely circumscribing the scatterer.

There is a plethora of approaches and a rich literature devoted to such inverse scat-
tering problems, marked by significant advances over the last 20 years, including classic
works by Colton, Kress, Colton et al., and Kirsch.4–6 However, solution approaches to prob-
lems of practical interest aimed at the detection of multiple, deformable, and potentially
moving obstacles, embedded within arbitrarily heterogeneous hosts, and, ideally, directly
in the time-domain, remain elusive, owing to the yet insurmountable complexity of the
underlying mathematical and computational problem. Despite notable exceptions with,
for example, background heterogeneity,7,8 it is, thus, for good reason that most published
work in inverse scattering focuses on homogeneous hosts, where gradient-based optimiza-
tion approaches often serve as the starting point. Typically, misfit functionals describing
the difference between measured responses, and those computed owing to an estimate of the
shape and location, are sought to be minimized. The process is onerous, and plagued by the
usual difficulties associated with inverse problems, namely, solution existence, multiplicity,
and ill-conditioning of the numerical processes, in addition to sensitivity with respect to
initial estimates of shape and location.

To improve on such algorithms, concurrent linear sampling methods, pioneered by
Colton and Kirsch,9 aim at offering an initial estimate close to the target, thus accelerat-
ing global optimization approaches. This is accomplished by essentially sampling the entire
domain where the scatterer may lie, via an appropriately constructed probing functional.
Closely related approaches, rooted in the topological derivative concept,10,11 offer improved
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capabilities, in that they not only allow preliminary estimates of the geometry, but also of
the material composition of the obstacle. The approach has been successfully used in infi-
nite domains involving elastic targets, with recently reported extensions to the semi-infinite
case.12

In this work, we follow an optimization-based approach, cast within the general frame-
work of partial-differential-equation (PDE)-constrained optimization,13 using integral equa-
tions and boundary elements to resolve the ensuing numerical problem. In principle, the
approach also stands to benefit from application of linear sampling or topological deriva-
tive concepts, though these are not addressed herein. Much of the foundation for this work
has been set by Bonnet,3 where an elegant framework for tackling such problems using an
adjoint formulation and integral equations in the frequency-domain has been discussed, with
applications in three dimensions. Here, of particular interest is the easier, yet untackled, two-
dimensional problem arising in a semi-infinite medium (Fig. 1), where Ω denotes the negative
halfplane, the receivers are all located on the top surface ΓH (Fig. 1), and the interrogating
waves originate from a subsurface disturbance. For this problem, cast in the frequency-
domain, we provide the framework based on PDE-constrained optimization ideas, which
yield state, adjoint, and control problems — the latter formulated for the first time. We
also attempt to improve on the optimizer’s chances to converge by implementing three
schemes: (a) an amplitude-based misfit functional that presents a less oscillatory profile
to the optimizer than typical misfits; (b) a frequency and/or directionality-continuation
scheme within which we embed the inversion process; and (c) a stepped approach to loca-
tion/shape refinement, where the shape of the initial guess remains constrained until the
target’s location is approached, at which time, the shape-constraint is released to allow
shape refinement. In this context, we discuss two different, yet closely related scalar wave
cases, namely, the antiplane shear (SH) wave, and the acoustic case, extending our earlier
work from the full-1 to the halfplane case. We consider both Dirichlet-type measurements
(e.g. displacements in the SH case) and Neumann-type data (e.g. particle velocities in the
acoustic case) in order to construct a misfit functional. The case of Neumann data is onerous
for the adjoint problem, and is seldom addressed.

2. Preliminaries

We are concerned with both the SH and the acoustic wave cases, which arise in a homoge-
neous semi-infinite host, occupied by a linear elastic solid, and an (incompressible) acoustic
fluid, respectively. In both cases the wave motions are governed, in the frequency-domain, by
Helmholtz equation, with different free surface conditions for each case; the details follow:

2.1. SH case

We consider first an immovable rigid obstacle fully buried within a linear elastic homo-
geneous solid (could be soil) characterized by wave velocity c, and illuminated by an SH
incident wave. The scattered motion is governed by the following time-harmonic boundary
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value problemb:

∆us
SH(x) + k2us

SH(x) = 0, x ∈ Ω, (1)

ut
SH(x) = us

SH(x) + ui(x) + ur
SH(x) = 0, x ∈ ΓS, (2)

∂ut
SH(x)
∂n

=
∂us

SH(x)
∂n

+
∂ui(x)

∂n
+

∂ur
SH(x)
∂n

= 0, x ∈ ΓH , (3)

lim
r→∞

√
r

(
∂us

SH

∂r
− ikus

SH

)
= 0. (4)

Here, us
SH denotes the antiplane scattered displacement fieldc; ut

SH denotes the total field;
ur

SH denotes the free-field reflected wave, that is, the field generated when ui impinges upon
the surface ΓH in the absence of any scatterer; x is a position vector; n is the outward
unit normal on ΓS and ΓH ; ∆ is the Laplace operator; k is the wavenumber (i.e. k = ω/c);
(2) is the boundary condition on the surface of the scatterer; (3) describes the traction-free
boundary condition on ΓH ; and condition (4) is the Sommerfeld radiation condition where
r denotes radial distance.

The incident interrogating wavefield ui describing incoming plane waves, and the free-
field reflected wave ur

SH can be expressed asd:

ui(x, y, t) = eik(x cos α+y sinα), (5)

ur
SH(x, y, t) = eik(x cos α−y sinα), (6)

where α denotes the incidence angle, that is, the angle formed between the x-axis and the
normal to the wave propagation front. Notice that, with the definitions (5) and (6), there
holds on the traction-free surface ΓH :

∂ui

∂n
+

∂ur
SH

∂n
= 0, on ΓH , (7)

which, by virtue of (3) also implies that:

∂us
SH

∂n
= 0, on ΓH . (8)

We remark that us
SH does not vanish on the free surface ΓH ; thus, in the SH case, we measure

and use the scattered field us
SH on ΓH (Dirichlet data) to drive the detection process.

2.2. Acoustic case

We now consider Ω to be occupied by an acoustic fluid characterized by a wave velocity c;
let S denote a sound-hard scatterer. Then the associated boundary value problem can be

bSubscripts SH and AC are used to denote SH and acoustic case fields, respectively.
cWe remark that us

SH is only a part of the total scattered field; to obtain the total scattered field, ur
SH needs

to be added to us
SH.

dThroughout, we assume a common harmonic factor of e−iωt.
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similarly cast as:

∆us
AC(x) + k2us

AC(x) = 0, x ∈ Ω, (9)

∂ut
AC(x)
∂n

=
∂us

AC(x)
∂n

+
∂ui(x)

∂n
+

∂ur
AC(x)
∂n

= 0, x ∈ ΓS , (10)

ut
AC(x) = us

AC(x) + ui(x) + ur
AC(x) = 0, x ∈ ΓH , (11)

lim
r→∞

√
r

(
∂us

AC

∂r
− ikus

AC

)
= 0, (12)

where (11) is the boundary condition on the pressure-free surface. We remark that, whereas
the incident pressure field ui is still given by (5), the free-field reflected field is now
expressed by:

ur
AC(x, y, t) = −eik(x cos α−y sinα). (13)

Similarly, the following conditions, counterpart to (7) and (8), hold:

ui + ur
AC = 0, on ΓH , (14)

us
AC = 0, on ΓH . (15)

In the acoustic case, we use pressure gradients (or equivalently particle velocities), that is,
Neumann data ∂us

AC/∂n on the free surface, to drive the inversion.

3. The Forward Problems

We discuss next standard representations to the solution of the forward problems. We favor
integral equations and boundary elements, owing, on one hand, to the homogeneity of the
background host and, on the other, to the benefit of the a priori satisfaction of the radiation
condition, and the dimensionality reduction they offer. Specifically, see the following cases.

3.1. SH case

The solution to the forward problem in the SH case (1)–(4) is given by the following integral
representation:

ut
SH = DSH[ut

SH] − SSH

[
∂ut

SH

∂n

]
+ ui + ur

SH, (16)

where SSH and DSH are the single- and double-layers defined for any smooth function f , ase:

SSH[f ](x) =
∫

ΓS

f(y)GH
SH(x,y)dΓ(y), x ∈ Ω, y ∈ ΓS , (17)

DSH[f ](x) =
∫

ΓS

f(y)
∂GH

SH(x,y)
∂ny

dΓ(y), x ∈ Ω, y ∈ ΓS . (18)

eEuler script letters (e.g. DSH) are used to represent the domain layers, i.e. when x ∈ Ω, and roman letters
(e.g. DSH) are used to indicate their boundary counterparts, i.e. when x ∈ Γ.
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In the above, the halfplane Green’s function GH
SH for the SH case is given by:

GH
SH(x,y) = G(x,y) + G(x̂,y) = − i

4
(H(1)

0 (kr) + H
(1)
0 (kr̂)), (19)

where, r = |x−y|, and r̂ = |x̂−y|; x̂ denotes the mirror point of x with respect to the free
surface (x̂ lies in the positive halfplane); i is the imaginary unit; H

(1)
0 (·) is the zeroth order

Hankel function of the first kind, and G denotes the fullplane Green’s function. Moreover,
the following jump conditions hold:

lim
Ω�x→x∈ΓS

SSH[f ](x) = SSH[f ](x), or SSH[f ] = SSH[f ], (20)

lim
Ω�x→x∈ΓS

DSH[f ](x) =
1
2
f(x) + DSH[f ](x), or DSH[f ] =

1
2
f + DSH[f ], (21)

where,

SSH[f ](x) =
∫

ΓS

f(y)GH
SH(x,y)dΓ(y), x,y ∈ ΓS , (22)

DSH[f ](x) =
∫

ΓS

f(y)
∂GH

SH(x,y)
∂ny

dΓ(y), x,y ∈ ΓS . (23)

As a result of the jump conditions and the boundary condition (2) on ΓS , i.e. that ut
SH = 0,

(16) reduces to:

SSH

[
∂ut

SH

∂n

]
= ui + ur

SH, on ΓS . (24)

Boundary integral equation (24) can be used in solving the forward problem in the SH case.

3.2. Acoustic case

Similarly, the forward problem in the acoustic case, described by (9)–(12), can be solved by
using the following integral equation:

ut
AC = DAC[ut

AC] − SAC

[
∂ut

AC

∂n

]
+ ui + ur

AC, (25)

where,

SAC[f ](x) =
∫

ΓS

f(y)GH
AC(x,y)dΓS(y), x ∈ Ω,y ∈ ΓS, (26)

DAC[f ](x) =
∫

ΓS

f(y)
∂GH

AC(x,y)
∂ny

dΓS(y), x ∈ Ω,y ∈ ΓS. (27)

In the acoustic case, the halfplane Green’s function is given by:

GH
AC(x,y) = G(x,y) − G(x̂,y) = − i

4
(H(1)

0 (kr) − H
(1)
0 (kr̂)). (28)
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By virtue again of the jump conditions (20) and (21), and the Neumann condition (10),
(25) reduces to

1
2
ut

AC − DAC[ut
AC] = ui + ur

AC, on ΓS. (29)

Boundary integral equation (29) is used for the solution of the forward problem in the
acoustic case.

4. The Inverse Problems

We are interested in localizing ΓS , while also reconstructing its shape, using surficial mea-
surements that correspond to the response of the host and obstacle system to an illuminating
wave. For both the SH and acoustic cases, we use the apparatus of PDE-constrained opti-
mization. To this end, we first construct a misfit functional between measured and computed
data, and then augment it via the weak imposition of the governing PDEs, to arrive at an
unconstrained minimization problem amenable to classical optimization techniques. Below,
we sketch the technical details; we again distinguish two cases.

4.1. Misfit functional choice

Classical lines in full waveform inversion problems, suggest the construction of a misfit func-
tional as a starting point. Here, we considered two possible choices for the misfit functional,
both normalized with respect to the amplitudes of the measured response:

L(us) =
1
2

Ns∑
j=1

{|us(xj , ξ)| − |us
m(xj)|}2

|us
m(xj)|2 , (30)

Lc(us) =
1
2

Ns∑
j=1

|us(xj, ξ) − us
m(xj)|2

|us
m(xj)|2 . (31)

In the above us(xj , ξ) denotes computed response (complex), and us
m(xj) denotes measured

response (also complex), both evaluated at the jth station/receiver location. Misfit (30)
represents the real-valued difference between measured and computed amplitudes, whereas
misfit (31) is the amplitude of the difference between the complex-valued computed and
measured responses. Notice that, whereas the functional in (31) clearly accounts for both
amplitude and phase, the phase information is not entirely lost in the amplitude-based
functional (30). The misfit (31) is a typical choice in full waveform inversion; here, however,
we opt for the amplitude-based misfit (30). To illustrate the rationale for this choice we
review next a simple problem, schematically depicted in Fig. 2.

We first measure (compute) the response of the depicted system at the receiver locations
situated at (−7, 0), (0, 0), and (7, 0), for an incoming plane wave (at three different frequen-
cies), and for the true location of a circular scatterer of unit radius whose center coordinates
(x0, y0) are (0,−10). Then we vary the center coordinates of a guessed circular scatterer of



August 19, 2009 13:33 WSPC/130-JCA 00396

284 C. Jeong, S.-W. Na & L. F. Kallivokas

Fig. 2. A scattering problem to highlight misfit functional preference. The misfits are computed for varying
positions of a unit radius circular scatterer within the dotted rectangle; the true target is located at (0,−10).
The receivers are placed at (−7, 0), (0, 0), (7, 0).

a unit radius within the dotted rectangle shown in Fig. 2: for each scatterer location, we
record the misfits computed using both (30) and (31). Figure 3 depicts the variation of the
misfits for the possible scatterer locations. Therein, it appears that the amplitude-based
misfit functional (30) appears less oscillatory than misfit (31). Based on this observation
and on prior experience with similar problems in the fullplane case,1 we favor the use of the
amplitude-based misfit (30).

4.2. SH case

With the choice of (30), seeking the location and the shape of the scatterer is tantamount
to a governing PDE-constrained minimization problem, whereby one tries to minimize the
misfit subject to the physics of the problem, as the latter are described by the governing
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Fig. 3. Misfit behavior as a function of the scatterer’s location.
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Fig. 3. (Continued)

PDEs. A key step of the methodology followed herein is the casting of the constrained
optimization problem as an unconstrained one via the weak imposition of the PDEs. To
this end, we construct next an augmented functional — augmented via the side imposition
of the forward problem, (1)–(4). There results:

ASH(us
SH, λ, ξ) =

1
2

Ns∑
j=1

{|us
SH(xj, ξ)| − |us

m(xj)|}2

|us
m(xj)|2

+�e

{∫
Ωξ

λ(xξ, ξ)[∆us
SH(xξ, ξ) + k2us

SH(xξ, ξ)]dΩξ

−
∫

Γξ

λD(xξ, ξ)[us
SH(xξ, ξ) + ui(xξ) + ur

SH(xξ)]dΓξ
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−
∫

ΓH

λ(xξ, ξ)
[
∂us

SH

∂n
(xξ, ξ) +

∂ui

∂n
(xξ) +

∂ur
SH

∂n
(xξ)

]
dΓH

−
∫

Γ∞
λ(xξ, ξ)

[
∂us

SH

∂r
(xξ, ξ) − ikus

SH(xξ, ξ)
]

dΓ∞
}

. (32)

In (32), λ denotes Lagrange multiplier; λD also denotes a Lagrange multiplier used to enforce
weakly the essential boundary condition (2) (λ and λD have different physical dimensions).
Notice that only the real part of the weak imposition of the strong form appears in (32), since
this is sufficient for ensuring that the strong form is satisfied, while conveniently allowing for
a real-valued functional, which greatly facilitates the associated numerical process. Notice
further that, in (32), various quantities depend on the scalar parameter ξ: during the search
for the optimum of ASH, the location and boundary description of the scatterer changes, that
is, the boundary evolves and the parameter ξ is used as a metric to describe the scatterer’s
boundary evolution during the search iterations. In particular, in the above Γξ represents
one possible instantiation of ΓS . Furthermore, since, when the boundary Γξ changes, the
surrounding domain changes as well, and thus Ω too depends on ξ; we use Ωξ to denote this
dependence.

4.2.1. Evolving boundary shape treatment

To describe shape evolution between successive updates of the boundary parameterization
during the search for the target, we adopt the concept of a moving boundary.2,3 We assume
that the boundary evolution is driven by a transformational velocity field v (Fig. 4). In
general, this velocity field can be described in terms of two components, one along the
normal and one along the tangential to the boundary directions. We shall henceforth assume
that the boundary evolves due only to the normal velocity component vn; for small shape
perturbations, this is a nonrestrictive assumption.14 Let x be a point on the boundary Γ
(Fig. 4).f Then, driven by the velocity vn, Γ evolves to Γξ, and x becomes such that:

Γ � x → x + ξvn(x)n(x) ≡ xξ ∈ Γξ, (33)

Fig. 4. Boundary shape evolution under a transformational velocity field.

fHere, we treat Γ as the boundary corresponding to the previous iteration; upon convergence, Γ ≡ ΓS .
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where n is the normal to the boundary, and, when vn is known, the scalar parameter ξ is
all that is needed to characterize the evolving shape.

In establishing the first-order optimality conditions associated with the augmented func-
tional (32), there is a need to express the derivatives of a scalar function, and of line and
domain integrals defined over Γξ and Ωξ, with respect to ξ (such derivatives are referred to
in the literature as total, or Eulerian, or material, or shape derivatives). Accordingly, let
f(xξ, ξ) denote a scalar function defined over Ωξ. Then14:[

Df(xξ, ξ)
Dξ

]
ξ=0

=
[
ḟ + vn

∂f

∂n

]
, (34)

[
D

Dξ

∫
Γξ

f(xξ, ξ)dΓξ

]
ξ=0

=
∫

Γ

[
ḟ + vn

∂f

∂n
− κfvn

]
dΓ, (35)

[
D

Dξ

∫
Ωξ

f(xξ, ξ)dΩξ

]
ξ=0

=
∫

Ω
ḟdΩ +

∫
Γ

fvndΓ, (36)

where ḟ = ∂f/∂ξ; D/Dξ denotes total derivative; and κ denotes the curvature of the
boundary Γ.

4.2.2. The first-order optimality conditions

To arrive at the first-order optimality conditions, we require that variations of the augmented
functional ASH with respect to the Lagrange multipliers λ (henceforth referred to as the
adjoint variables), the state variable us

SH, and the boundary metric ξ,1 vanish. We remark
that the variation with respect to ξ above is equivalent to the variation with respect to the
shape perturbation parameters that represent the control variables in this inverse problem.
Accordingly: 



δλASH

δλD
ASH

δus
SH
ASH

δξASH




= 0. (37)

Upon discretization, (37) will lead to a classic Karush–Kuhn–Tucker (KKT) system.15,16

Next, we expand (37); variations of ASH with respect to the adjoint variables λ and λD,
yield:

δλASH = �e

{∫
Ωξ

δλ(∆us
SH + k2us

SH)dΩξ −
∫

ΓH

δλ

(
∂us

SH

∂n
+

∂ui

∂n
+

∂ur
SH

∂n

)
dΓH

−
∫

Γ∞
δλ

(
∂us

SH

∂r
− ikus

SH

)
dΓ∞

}
= 0, (38)

δλD
ASH = �e

{
−
∫

Γξ

δλD(us
SH + ui + ur

SH)dΓξ

}
= 0. (39)
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Clearly, for arbitrary δλ and δλD, the vanishing of the variations in (38) and (39) recovers
the forward (or state) problem (1)–(4) for any instantiation of Γξ and Ωξ. Accordingly:

State problem:

∆us
SH(x) + k2us

SH(x) = 0, x ∈ Ωξ,

us
SH(x) + ui(x) + ur

SH(x) = 0, x ∈ Γξ,

∂us
SH

∂n
(x) +

∂ui

∂n
(x) +

∂ur
SH

∂n
(x) = 0, x ∈ ΓH ,

lim
r→∞

√
r

(
∂us

SH

∂r
− ikus

SH

)
= 0.

(40)

The state problem is readily solved using the boundary integral equation (24). Once
∂ut

SH/∂n has been obtained on Γξ, then the domain integral equation (16) can be used
to recover ut

SH (or us
SH) anywhere within Ωξ (recall, ut

SH = 0 on Γξ).
Next, we take the variation of ASH with respect to us

SH. Using the divergence theorem
and integration by parts, there results:

δus
SH
ASH = �e



∫

Ωξ

Ns∑
j=1

δus ūs
SH

|us
m|2
(

1 − |us
m|

|us
SH|
)

∆D dΩξ +
∫

Ωξ

δus(∆λ + k2λ)dΩξ

−
∫

Γξ

δus

(
∂λ

∂n
+ λD

)
dΓξ −

∫
ΓH

δus ∂λ

∂n
dΓH +

∫
Γξ

λ
∂δus

∂n
dΓξ

−
∫

Γ∞
δus

(
∂λ

∂r
− ikλ

)
dΓ∞


 = 0, (41)

where an overbar (ūs
SH) denotes complex conjugate of the subjugated quantity, and ∆D ≡

∆D(x− xj) denotes the two-dimensional Dirac function. For arbitrary δus, Eq. (41) yields
the strong form of the adjoint problem:

Adjoint problem:

∆λ(x) + k2λ(x) = −
Ns∑
j=1

ūs(x)
|us

m(xj)|2
(

1 − |us
m(xj)|

|us
SH(x)|

)
∆D(x − xj), x ∈ Ωξ,

λ(x) = 0, λD(x) = −∂λ

∂n
, x ∈ Γξ,

∂λ

∂n
(x) = 0, x ∈ ΓH ,

lim
r→∞

√
r

(
∂λ

∂r
− ikλ

)
= 0.

(42)

Notice that the governing operators of the state and adjoint problems are identical, and
therefore one can use the same Green’s function for both problems. Thus, borrowing from
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the state problem, the boundary integral equation for the adjoint problem becomes:

S

[
∂λ

∂n

]
(x) = −

Ns∑
j=1

GH
SH(x,xj)

ūs
SH(xj)

|us
m(xj)|2

(
1 − |us

m(xj)|
|us

SH(xj)|
)

, x ∈ Γξ. (43)

Next, we take the variation of ASH with respect to the parameter ξ, and make use of
the total differentiation expressions derived earlier. Accordingly:

δξASH =
D

Dξ


1

2

Ns∑
j=1

{|us
SH(xj , ξ)| − |us

m(xj)|}2

|us
m(xj)|2

+ �e

{∫
Ωξ

λ(∆us
SH + k2us

SH)dΩξ

−
∫

Γξ

λD(us
SH + ui + ur

SH)dΓξ −
∫

ΓH

λ

(
∂us

SH

∂n
+

∂ui

∂n
+

∂ur
SH

∂n

)
dΓH

−
∫

Γ∞
λ

(
∂us

SH

∂n
− ikus

SH

)
dΓ∞

}
ξ=0

. (44)

Using the total derivative of a scalar field (34), and the fact that the normal component of
the transformation velocity vn vanishes at the Ns stations, since ΓH does not change when
Γξ evolves, there results:


 D

Dξ


1

2

Ns∑
j=1

{|us
SH(xj , ξ)| − |us

m(xj)|}2

|us
m(xj)|2






ξ=0

= �e




Ns∑
j=1

u̇s
SH(xj)

ūs
SH(xj)

|us
m(xj)|2

(
1 − |us

m(xj)|
|us

SH(xj)|
)
 . (45)

Using (45), the divergence theorem, integration by parts, and the identity λ∆us
SH − ∇ ·

(λ∇us
SH) = −∇λ · ∇us

SH, (44) can be rewritten as:

δξASH = �e




Ns∑
j=1

u̇s
SH(xj)

ūs
SH(xj)

|us
m(xj)|2

(
1 − |us

m(xj)|
|us

SH(xj)|
)


+
D

Dξ

[
�e

{∫
Ωξ

(−∇λ · ∇us
SH + k2λus

SH)dΩξ +
∫

Γξ

λ
∂us

SH

∂n
dΓξ

−
∫

Γξ

λD(us
SH + ui + ur

SH)dΓξ −
∫

ΓH

λ

(
∂ui

∂n
+

∂ur
SH

∂n

)
dΓH

+
∫

Γ∞
λik us

SHdΓ∞
}]

ξ=0

. (46)
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Next, using (35), the total derivative of the line integrals over Γξ in (46) can be
expressed as:

D

Dξ

[
�e

∫
Γξ

λ
∂us

SH

∂n
dΓξ

]
ξ=0

= �e

∫
ΓS

[
λ̇

∂us
SH

∂n
+ vn

∂λ

∂n

∂us
SH

∂n

]
dΓ, (47)

D

Dξ

[
�e

∫
Γξ

λD(us
SH + ui + ur

SH)dΓξ

]
ξ=0

= �e

∫
ΓS

[
λDu̇t

SH + vnλD
∂ut

SH

∂n

]
dΓ, (48)

where it should be noted that λ̇ and ∂λ/∂n in (47), and u̇t
SH and ∂ut

SH/∂n in (48) do
not vanish even though λ and ut

SH vanish on ΓS. We remark that the boundary segments
Γ∞ and ΓH do not change by the evolution of Γξ, that is, vn vanishes on Γ∞ and ΓH . In
addition, ui and ur

SH on ΓH are independent of ξ so that (∂u̇i/∂n) + (∂u̇r
SH/∂n) vanishes

on ΓH . Therefore, the total derivative of the line integrals on ΓH and Γ∞ are:

D

Dξ

[
�e

∫
ΓH

λ

(
∂ui

∂n
+

∂ur
SH

∂n

)
dΓH

]
ξ=0

= �e

∫
ΓH

[
λ̇

(
∂ui

∂n
+

∂ur
SH

∂n

)]
dΓH = 0, (49)

D

Dξ

[
�e

∫
Γ∞

λikus
SHdΓ∞

]
ξ=0

= �e

∫
Γ∞

ik(λu̇s
SH)dΓ∞, (50)

where the boundary condition (7) was also used. Next, using (36), there results:

D

Dξ
�e

[{∫
Ωξ

(−∇λ · ∇us
SH + k2λus

SH)dΩξ

}]
ξ=0

= �e

{∫
Ω
(−∇λ̇ · ∇us

SH −∇λ · ∇u̇s
SH + k2λ̇us

SH + k2λu̇s
SH)dΩ

+
∫

ΓS

(−∇λ · ∇us
SH)vndΓ

}
. (51)

By virtue of (47)–(51), (46) can now be cast as:

δξASH = �e




Ns∑
j=1

u̇s
SH(xj)

ūs
SH(xj)

|us
m(xj)|2

(
1 − |us

m(xj)|
|us

SH(xj)|
)


+�e

[∫
Ω
(−∇λ̇ · ∇us

SH −∇λ · ∇u̇s
SH + k2λ̇us

SH + k2λu̇s
SH)dΩ

+
∫

ΓS

(−∇λ · ∇us
SH)vndΓ +

∫
ΓS

λ̇
∂us

SH

∂n
dΓ +

∫
ΓS

vn
∂λ

∂n

∂us
SH

∂n
dΓ

−
∫

ΓS

λDu̇t
SHdΓ −

∫
ΓS

vnλD
∂ut

SH

∂n
dΓ +

∫
Γ∞

ik(λu̇s
SH)dΓ

]
. (52)
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The following relationships can be used to simplify (52):∫
Ω
(−∇λ̇ · ∇us

SH + λ̇k2us
SH)dΩ +

∫
ΓS

λ̇
∂us

SH

∂n
dΓ +

∫
Γ∞

ikλ̇us
SHdΓ∞ = 0, (53)

∫
Ω
(−∇u̇s

SH · ∇λ + u̇s
SHk2λ)dΩ +

Ns∑
j=1

u̇s
SH(xj)

ūs
SH(xj)

|us
m(xj)|2

(
1 − |us

m(xj)|
|us

SH(xj)|
)

+
∫

Γ∞
iku̇s

SHλdΓ∞ +
∫

ΓS

u̇s
SH

∂λ

∂n
dΓ = 0, (54)

where (53) and (54) are the weak forms of the state and adjoint problems, with u̇s
SH and λ̇

acting as weight functions, respectively. Thus, (52) is reduced to:

δξASH = �e

[∫
ΓS

(−∇λ · ∇us
SH)vndΓ −

∫
ΓS

u̇s
SH

∂λ

∂n
dΓ −

∫
ΓS

λDu̇t
SHdΓ

+
∫

ΓS

vn
∂λ

∂n

∂us
SH

∂n
dΓ −

∫
ΓS

vnλD
∂ut

SH

∂n
dΓ
]

. (55)

Next using the decomposition of a gradient into its tangential and normal components, the
following holds:

−∇λ · ∇us
SH = −

(
∂λ

∂s
t +

∂λ

∂n
n
)
·
(

∂us
SH

∂s
t +

∂us
SH

∂n
n
)

on ΓS, (56)

where t denotes the unit tangential vector on ΓS , and s denotes arc-length. Since ∂λ/∂s

vanishes on ΓS (λ = 0 on ΓS, per (42)), and n · t = 0, (56) becomes:

−∇λ · ∇us
SH = −∂λ

∂n

∂us
SH

∂n
on ΓS . (57)

With the aid of (57) and the fact that u̇i and u̇r
SH vanish, (55) reduces to:

δξASH = �e

[∫
ΓS

vn
∂λ

∂n

∂ut
SH

∂n
dΓ
]

. (58)

Requiring (58) to vanish yields the control problem.

Control problem:

δξASH = �e

[∫
ΓS

vn
∂λ

∂n

∂ut
SH

∂n
dΓ
]

= 0. (59)

In (59), ∂ut
SH/∂n and ∂λ/∂n are, respectively, the solutions of (24) and (43). The state

problem (40), the adjoint problem (42), and the control problem (59) constitute the back-
bone of the inverse problem. The iterative solution of all three problems allows for the
determination of the location and the shape of the sought scatterer.
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4.3. Acoustic case

4.3.1. Augmented misfit functional

In the acoustic case, the misfit is defined based on the difference of the absolute values of
Neumann data, i.e. |∂us

AC/∂n| and |∂us
m/∂n| on the free surface. The augmented functional,

resulting from the side imposition of (9)–(12), is:

AAC(us
AC, λ, ξ) =

1
2

Ns∑
j=1

{∣∣∣∣∂us
AC

∂n
(xj, ξ)

∣∣∣∣ −
∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
}2

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣
2

+�e

{∫
Ωξ

λ(xξ, ξ)[∆us
AC(xξ, ξ) + k2us

AC(xξ, ξ)]dΩξ

−
∫

Γξ

λ(xξ, ξ)
[
∂us

AC

∂n
(xξ, ξ) +

∂ui

∂n
(xξ) +

∂ur
AC

∂n
(xξ)

]
dΓξ

−
∫

ΓH

λD(xξ, ξ)[us
AC(xξ, ξ) + ui(xξ) + ur

AC(xξ)]dΓH

−
∫

Γ∞
λ(xξ, ξ)

[
∂us

AC

∂r
(xξ, ξ) − ikus

AC(xξ, ξ)
]

dΓ∞
}

. (60)

4.3.2. The first-order optimality conditions

We impose stationarity of the augmented functional (60) by requiring that its first variation
vanish. Similarly to the SH case, the vanishing of the variations of AAC with respect to the
adjoint variables λ and λD for arbitrary δλ and δλD recovers the strong form of the state
problem given by (9)–(12). We use the boundary integral equation (29) to solve for the state
variables ut

AC. Once ut
AC has been obtained on Γξ, then the domain integral equation (25)

can be used to recover ut
AC anywhere within Ωξ.

The second optimality condition is obtained by requiring that the variation of the aug-
mented functional AAC with respect to the state variable us

AC vanish. There results:

δus
AC

AAC = �e



∫

Ωξ

Ns∑
j=1

∂δus

∂n

∂us
AC

∂n∣∣∣∣∂us
m

∂n

∣∣∣∣
2


1 −

∣∣∣∣∂us
m

∂n

∣∣∣∣∣∣∣∣∂us
AC

∂n

∣∣∣∣


∆D dΩξ

+
∫

Ωξ

δus(∆λ + k2λ)dΩξ −
∫

ΓH

δus

(
∂λ

∂n
+ λD

)
dΓH −

∫
Γξ

δus ∂λ

∂n
dΓξ

+
∫

ΓH

λ
∂δus

∂n
dΓH −

∫
Γ∞

δus

(
∂λ

∂n
− ikλ

)
dΓ∞


 = 0. (61)
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For arbitrary ∂δus/∂n on ΓH , and arbitrary δus, from (61) we obtain:

Adjoint problem:

∆λ(x) + k2λ(x) = 0, x ∈ Ωξ,

λ(x) = −
Ns∑
j=1

∂us
AC

∂n
(x)∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
2


1 −

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣∣∣∣∣∂us
AC

∂n
(x)
∣∣∣∣


∆D(x− xj), λD(x) = −∂λ

∂n
(x), x ∈ ΓH ,

∂λ

∂n
(x) = 0, x ∈ Γξ,

lim
r→∞

√
r

(
∂λ

∂r
− ikλ

)
= 0.

(62)

Since the adjoint problem is also governed by the Helmholtz operator, the problem can
also be solved numerically using the following boundary integral equation:

1
2
λ(x) − D[λ](x) = −

Ns∑
j=1

∂us
AC

∂n
(xj)∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
2


1 −

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣∣∣∣∣∂us
AC

∂n
(xj)

∣∣∣∣


 ∂GH

AC(x,xj)
∂nxj

, x ∈ Γξ. (63)

Lastly, the third optimality condition results from the variations of the augmented func-
tional with respect to ξ; there results:

δξAAC =
D

Dξ


1

2

Ns∑
j=1

{∣∣∣∣∂us
AC

∂n
(xj, ξ)

∣∣∣∣−
∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
}2

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣
2

+�e

{∫
Ωξ

λ(∆us
AC + k2us

AC)dΩξ −
∫

Γξ

λ

(
∂us

AC

∂n
+

∂ui

∂n
+

∂ur
AC

∂n

)
dΓξ

−
∫

ΓH

λD(us
AC + ui + ur

AC)dΓH −
∫

Γ∞
λ

(
∂us

AC

∂n
− ikus

AC

)
dΓ
}

ξ=0

. (64)

The first term in (64) can be further simplified by using the total derivative of a scalar field;
accordingly: 

 D

Dξ




1
2

Ns∑
j=1

{∣∣∣∣∂us
AC

∂n
(xj, ξ)

∣∣∣∣ −
∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
}2

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣
2







ξ=0
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= �e




Ns∑
j=1

∂u̇s
AC

∂n
(xj)

∂us
AC

∂n
(xj)∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
2


1 −

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣∣∣∣∣∂us
AC

∂n
(xj)

∣∣∣∣






. (65)

By virtue of (65), the divergence theorem, and integration by parts, (64) yields:

δξAAC = �e




Ns∑
j=1

∂u̇s
AC

∂n
(xj)

∂us
AC

∂n
(xj)∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
2


1 −

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣∣∣∣∣∂us
AC

∂n
(xj)

∣∣∣∣






+
D

Dξ

[
�e

{∫
Ωξ

(−∇λ · ∇us
AC + k2λus

AC)dΩξ

−
∫

Γξ

λ

(
∂ui

∂n
+

∂ur
AC

∂n

)
dΓξ −

∫
ΓH

λD

(
us

AC + ui + ur
AC

)
dΓH

+
∫

ΓH

λ
∂us

AC

∂n
dΓH +

∫
Γ∞

λikus
ACdΓ∞

}]
ξ=0

. (66)

It can also be shown that1:

∂

∂ξ

(
∂ui

∂n

)
= −∂ui

∂s

∂vn

∂s
+ vn

∂ui

∂s
div t on ΓS. (67)

Equation (67) holds also if ui were to be replaced by ur
AC. Moreover, the Helmholtz equation

can be expressed in terms of ui or ur
AC in a tangential-normal coordinate system, per:

∂2ui

∂n2
− κ

∂ui

∂n
+

∂2ui

∂s2
+ k2ui = 0,

∂2ur
AC

∂n2
− κ

∂ur
AC

∂n
+

∂2ur
AC

∂s2
+ k2ur

AC = 0.

(68)

Thus, by using (35), (67), and (68), the total derivative of the line integral over Γξ is derived
as follows:

D

Dξ

[
�e

∫
Γξ

λ

(
∂ui

∂n
+

∂ur
AC

∂n

)
dΓξ

]
ξ=0

= �e

∫
ΓS

[
−λ̇

∂us
AC

∂n
− λvn

∂2(ui + ur
AC)

∂s2
− k2λvn(ui + ur

AC)

−λ
∂vn

∂s

(
∂ui

∂s
+

∂ur
AC

∂s

)
+ λvn

(
∂ui

∂s
+

∂ur
AC

∂s

)
div t

]
dΓ. (69)
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The total derivative of the line integral over ΓH is:

D

Dξ

[
�e

∫
ΓH

λD(us
AC + ui + ur

AC)dΓH

]
ξ=0

= −�e

∫
ΓH

∂λ

∂n
u̇s

ACdΓH , (70)

D

Dξ

[
�e

∫
ΓH

λ
∂us

AC

∂n
dΓH

]
ξ=0

= �e

∫
ΓH

[
λ̇

∂us
AC

∂n
+ λ

∂u̇s
AC

∂n

]
dΓH . (71)

The total derivative of the line integral over Γ∞ is:

D

Dξ

[
�e

∫
Γ∞

ikλus
ACdΓ∞

]
ξ=0

= �e

∫
Γ∞

ik(λ̇us
AC + λu̇s

AC)dΓ∞. (72)

Based on (36), the total derivative of the domain integral over Ωξ becomes:

D

Dξ
�e

{∫
Ωξ

(−∇λ · ∇us
AC + k2λus

AC)dΩξ

}

= �e

{∫
Ω
(−∇λ̇ · ∇us

AC −∇λ · ∇u̇s
AC + k2λ̇us

AC + k2λu̇s
AC)dΩ

+
∫

ΓS

(−∇λ · ∇us
AC + k2λus

AC)vndΓ
}

. (73)

Using next the boundary condition on ΓH of the adjoint problem (see (62), the following
holds:

∫
ΓH

λ
∂u̇s

∂n
dΓ = −

Ns∑
j=1

∂u̇s
AC

∂n
(xj)

∂us
AC

∂n
(xj)∣∣∣∣∂us

m

∂n
(xj)

∣∣∣∣
2


1 −

∣∣∣∣∂us
m

∂n
(xj)

∣∣∣∣∣∣∣∣∂us
AC

∂n
(xj)

∣∣∣∣


 . (74)

By substituting the above total derivatives of the line and domain integrals (69)–(74) into
(66), and with the aid of appropriate weak forms of the state and adjoint problems (using
λ̇ and u̇s

AC as weight functions, respectively), (66) reduces to:

δξAAC = �e

[∫
ΓS

{
(−∇λ · ∇us

AC + k2λut
AC)vn + λvn

∂2(ui + ur
AC)

∂s2

+λ
∂vn

∂s

(
∂ui

∂s
+

∂ur
AC

∂s

)
− λvn

(
∂ui

∂s
+

∂ur
AC

∂s

)
div t

}
dΓ
]

. (75)

Using the decomposition of a gradient, there holds:

−∇λ · ∇us
AC = −∂λ

∂s

∂us
AC

∂s
on ΓS . (76)
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Therefore, (75) becomes:

δξAAC = �e

∫
ΓS

[
vn

{
−∂λ

∂s

∂us
AC

∂s
+ λ

∂2(ui + ur
AC)

∂s2
+ k2λut

AC

}

+ λ
∂vn

∂s

(
∂ui

∂s
+

∂ur
AC

∂s

)
− λvn

(
∂ui

∂s
+

∂ur
AC

∂s

)
div t

]
dΓ. (77)

Using integration by parts, there holds:∫
Γ

{
vnλ

∂2(ui + ur
AC)

∂s2

}
dΓ =

[
vnλ

∂(ui + ur
AC)

∂s

]
ΓS

−
∫

ΓS

{
∂

∂s
(vnλ)

∂(ui + ur
AC)

∂s

}
dΓ

= −
∫

ΓS

{(
∂vn

∂s
λ +

∂λ

∂s
vn

)
∂(ui + ur

AC)
∂s

}
dΓ. (78)

Using the above, the vanishing of (77) gives rise to the control problem.

Control problem:

δξAAC = �e

∫
ΓS

vn

{
−∂λ

∂s

∂ut
AC

∂s
+ k2λut

AC − λ
∂(ui + ur

AC)
∂s

div t
}

dΓ = 0. (79)

We note that the tangential derivatives terms appearing in the control problem (79) are
implemented, upon discretization, by using the first derivative of the shape functions with
respect to arc-length.

5. Numerical Experiments

For both the SH and the acoustic cases, satisfaction of the KKT system resulting from the
discretization of the state, adjoint, and control problems, will ensure the stationarity of
the augmented functionals ASH and AAC, respectively. This, in turn, leads (hopefully) to
the localization and shape reconstruction of the target. To resolve the triad of the state,
adjoint, and control problems, one could simultaneously solve for the state variables, the
adjoint variables, and the shape parameters embedded in the control problem, by using a
full-space solution approach. Here, however, we opt for a reduced-space approach, whereby
the state and adjoint variables are projected to the space of the shape parameters. In brief,
first the state problem is solved using the discrete counterpart of integral equation (24) or
(29), thus yielding the state variables us

SH or us
AC, respectively. Then, the adjoint problem

is solved, using the misfit as a driver, and integral equations (43) or (63), respectively, thus
yielding the adjoint variables λ. Finally, we use the control problem ((59) or (79)) to drive
the shape iterations, until convergence. We remark that every component of the gradient
of the misfit functional with respect to a shape parameter is equal to the variation of the
misfit functional with respect to the shape metric. That is:

δpiA = ∇piL, (80)
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where pi denotes the ith model parameter (unknown). For example, for the SH case, (80)
implies that (using also (59)):

δpiA = �e

[∫
ΓS

vi
n

∂λ

∂n

∂ut
SH

∂n
dΓ
]

. (81)

Similarly, for the acoustic case, (80) implies that (using also (79)):

δpiA = �e

[∫
ΓS

vi
n

{
−∂λ

∂s

∂ut
AC

∂s
+ k2λut

AC − λ
∂(ui + ur

AC)
∂s

div t
}

dΓ
]

, (82)

where vi
n denotes the normal transformation velocity corresponding to the ith model param-

eter. Therefore, if we now seek to minimize the misfit L, using any gradient-based scheme
(e.g. conjugate-gradient), the components of the gradient of the misfit are readily given
by (81) and (82), for the SH and acoustic cases, respectively, while at the same time
both the state and adjoint problems have been satisfied. All that remains is to define the
components of the transformation velocity vi

n. To this end, let Ψ(p) denote the (vector)
function describing the parameterization of the unknown boundary, in terms of a finite
set of unknown parameters p. Then, the transformation velocity at a point x ∈ ΓS is
defined as:

vi
n(x) =

∂Ψ(p)
∂pi

∣∣∣∣
atx

· n(x) =
∂Ψx

∂pi
nx +

∂Ψy

∂pi
ny, (83)

where Ψx and Ψy are the cartesian components of the parameterization function Ψ, and
nx, ny are similarly the cartesian components of the normal vector.

Although the described process will ensure the stationarity of the augmented functionals,
and thus the simultaneous satisfaction of the PDEs and the minimization of the misfit,
there is no guarantee that the process will converge, or that it will converge to the true
target. Typically, in full waveform-based inversion, regularization terms are added to the
augmented functional in an attempt to narrow the solution feasibility space. Here, in lieu
of regularization, we embed the inversion process within a frequency and directionality
continuation scheme.17 Specifically, we solve, a sequence of, seemingly, uncoupled problems
corresponding to different probing frequencies and/or directions. For example: the inversion
algorithm is initiated using, for example, a low probing frequency, and is let to converge (at
whichever location/shape the optimizer drives the solution), before the converged solution is
fed as initial guess to the next probing frequency. The process is repeated until all problems
converge under the same set of shape parameters. The continuation scheme may be applied
over frequencies, wave incidence directions, or both. It is typically sufficient to use only a
few frequencies and/or directions for convergence.

From a practical perspective, it appears that low probing frequencies are typically
capable of resolving location, whereas higher frequencies are needed to refine the shape.
Motivated by the latter observation and to further aid the reconstruction process, we also
implemented a scheme according to which the shape remains simple and constrained (e.g.
circular) until there is no significant movement, and then the constraint is released to allow
for shape refinement.
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Γtrue

Aguessed

Atrue

(a) Case 1: Shape estimate does not overlap with the true
target

Γguessed

Γtrue

Ashaded

(b) Case 2: Shape estimate
partially overlaps with
the true target

Fig. 5. Solution-fitness ef definitions.

We discuss next numerical results of detecting the shape and location of a circular,
elliptical, potato-shaped, and kite-shaped scatterers. In all example problems, the measured
data are synthesized numerically by solving the forward problem using the boundary element
method with a mesh different from the one we use in the inversion process in order to
avoid committing a classical inverse crime. We show the convergence path of the shapes
with respect to the number of inversion iterations, and measure also the solution-fitness
ef by computing the normalized area-difference delineated by the mismatch between the
boundaries of the guessed scatterer and the true target. We define ef as:

ef =
Aguessed + Atrue

Atrue
, (84)

when the estimated shape does not overlap with the true shape (Fig. 5(a)), and as:

ef =
Ashaded

Atrue
, (85)

when the estimated shape partially overlaps with the true shape (Fig. 5(b)):

5.1. Circular scatterer (acoustic case)

We discuss first a simple problem in acoustic scattering based on a priori information that
the target shape is circular, and, consequently, the unknowns are the scatterer’s center
coordinates and its radius. The shape parameter function Ψ for such a circular scatterer is
defined as:

Ψ(p) =

{
x0 + R cos θ

y0 + R sin θ

}
, (86)

where θ ranges from 0 to 2π; p = [x0, y0, R] denotes the vector of the unknown shape
parameters, with x0 and y0 the cartesian coordinates of the scatterer’s center, and R its
radius. We use a plane wave with a single incident angle α = 45◦, and a single probing
frequency of k = 0.1. The true (target) scatterer is centered at (3,−10) and has a unit
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radius, i.e. ptarget = [3,−10, 1]. The inversion is initiated with a circular scatterer with
radius 1.5, situated at (−5,−5), that is, p0 = [−5,−5, 1.5]. The response is sampled at
three stations located at (−7, 0), (0, 0), and (7, 0) on the free surface; Fig. 6 depicts the
problem configuration. Figure 7 shows the convergence path, from the initial guess to the
final estimate using the algorithms described herein. We obtained the final estimates as
pfinal = [2.977,−9.986, 0.999]: they are quite close to the target values. In addition, the
convergence pattern of the fitness metric ef is shown in Fig. 8: at the last iteration the
fitness metric is approximately equal to 0.5%.

Fig. 6. Problem configuration; circular scatterer (acoustic case).
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Fig. 7. Convergence path; circular scatterer (acoustic case).
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Fig. 8. Solution-fitness; circular scatterer (acoustic case).

5.2. Elliptical scatterer (SH case)

For the SH case, we consider an elliptically shaped scatterer with a 4 to 1 ratio of major to
minor semi-axes. Accordingly, the unknowns are the scatterer’s center coordinates and its
semi-axes. The shape parameter function Ψ is thus defined as:

Ψ(p) =

{
x0 + a cos θ

y0 + b sin θ

}
, (87)

where θ ranges from 0 to 2π, and p = [x0, y0, a, b]; (x0, y0) are the center coordinates of
the ellipse; a, b are the major and minor semi-axes, respectively. The target values are
ptarget = [3.0,−3.0, 2.0, 0.5]. Our initial guess is a circular scatterer of unit radius with
p0 = [−5,−10, 1, 1]. We use probing waves at a single incidence angle of α = 45◦, and the
surficial responses are sampled at three stations situated at (−7, 0), (0, 0), and (7, 0). We use
the frequency continuation scheme with probing frequencies set at k = 0.1, 0.5, and 1.0. The
problem configuration is shown in Fig. 9, and the convergence path is depicted in Fig. 10. In
addition, the estimated parameters are summarized in Table 1, and the convergence pattern
of the solution-fitness is depicted in Fig. 11.

As it can be seen in Fig. 10 and Table 1, probing at a low frequency is sufficient to
move the estimate close to the target location; when the two higher frequencies of the
continuation scheme are used, both the shape and location are fine-tuned (the final fitness
metric is 1.7%).

5.3. Potato-shaped scatterer (acoustic case)

Next, we consider a potato-(or kidney-)shaped scatterer whose boundary comprises both
a concave and a convex part. In this case, we assume that the scatterer is embedded in a
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Fig. 9. Problem configuration; elliptical scatterer (SH case).
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Fig. 10. Convergence path; elliptical scatterer (SH case).

acoustic host medium and the boundary is parameterized as:

Ψ(p) =




a1 +

[
a3 +

3∑
i=1

{a2i+2 cos(iθ) + a2i+3 sin(iθ)}
]

cos(θ)

a2 +

[
a3 +

3∑
i=1

{a2i+2 cos(iθ) + a2i+3 sin(iθ)}
]

sin(θ)




, (88)
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Fig. 11. Solution-fitness ef ; elliptical scatterer (SH case).

Table 1. Final estimated parameters for all probing frequencies;
elliptical scatterer (SH case).

Iteration x0 y0 a b ef

initial 3.000 −10.000 1.000 1.000 2.000
220th (k = 0.1) 3.047 −2.775 1.503 1.172 1.097
496th (k = 0.5) 2.957 −3.361 1.867 0.904 0.905
830th (k = 1.0) 3.000 −3.004 −1.978 0.498 0.017

Target 3.000 −3.000 2.000 0.500 —

where θ ranges from 0 to 2π and p = [a1, . . . , a9]. The target parameter vector is ptarget =
[2.0,−10.0, 1.0, 0.2,−0.3, 0.125, 0.125,−0.05,−0.05]. We initiate the search with a circular
scatterer described by the parameter vector p0 = [5,−5, 1.5, 0, 0, 0, 0, 0, 0]. We use incident
waves at two angles of 45◦ and 135◦, respectively, and sample the response at 15 receivers
located on the surface between (−35, 0) and (35, 0) at a spacing of 5.0 length units. The
problem configuration is depicted in Fig. 12. At the first stage of the inversion process, we
set the probing frequency at k = 0.15. In addition, we force the assumed shape to remain
circular during the first probing frequency in order to prevent the shape from changing
in nonphysical ways (e.g. self-intersection), while allowing the assumed shape to approach
the vicinity of the true scatterer (Fig. 13). After the target location is roughly recovered
during the initial probing, we use four more frequencies set at k = 0.30, 0.45, 0.75, 1.05
while simultaneously lifting the shape-constraints. In Fig. 14, the final estimates at every
probing frequency are shown and the convergence pattern of the solution-fitness is depicted
in Fig. 15. As shown in Fig. 14(b), the finally converged estimates are quite close to the
target (pfinal = [1.88,−10.31, 1.03, 0.28, 0.01, 0.23, 0.14,−0.013, 0.034, 0]), whereas the final
solution-fitness is 4.7%.
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Fig. 12. Problem configuration; potato-shaped scatterer (acoustic case).
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Fig. 13. Convergence path with probing frequency at k = 0.15 and circular shape-constraints; potato-shaped
scatterer (acoustic case).

5.4. Kite-shaped scatterer: SH case

Lastly, we consider a kite-shaped scatterer whose boundary also comprises both convex and
concave parts, exposed to SH illumination. The target’s shape is defined as:

x(θ) = cos θ + 0.65(cos 2θ − 1), (89)

y(θ) = 1.5 sin θ − 10, (90)
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Fig. 14. Final estimates at k = 0.30, 0.45, 0.75, 1.05; potato-shaped scatterer (acoustic case).

where θ ranges from 0 to 2π. To approximate the kite’s shape, the following boundary
parameterization function is used:

Ψ(p) =




a1 +

[
a3 +

8∑
i=1

{a2i+2 cos(iθ) + a2i+3 sin(iθ)}
]

cos(θ)

a2 +

[
a3 +

8∑
i=1

{a2i+2 cos(iθ) + a2i+3 sin(iθ)}
]

sin(θ)




, (91)

where again θ ranges from 0 to 2π and p = [a1, . . . , a19]. We use two incident waves at angles
of 45◦ and 135◦, respectively, and measure the surficial response at 15 stations evenly spaced
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Fig. 15. Solution-fitness; potato-shaped scatterer (acoustic case).
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Fig. 16. Problem configuration; kite-shaped scatterer (SH case).

from (−35, 0) to (35, 0) with an interval of 5.0 length units. The problem configuration is
presented in Fig. 16.

We start the initial probing with a frequency of k = 0.1 and a circular shape; the
corresponding parameter vector becomes p0 = [6,−4, 1, 0, . . . , 0]. Again, we constrain the
initial shape to a circular one until the target location is approximately found (i.e. we have
convergence of the method, while enforcing a circular shape). As depicted in Fig. 17, this
initial inversion process places the estimate in the vicinity of the target. Then, the shape-
constraint is released and the frequency continuation scheme is used over frequencies ranging
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Fig. 17. Convergence path with probing frequency at k = 0.1 and circular shape-constraints; kite-shaped
scatterer (SH case).

from k = 0.5 to 2.1. We obtain a converged shape quite close to the target, as shown in
Fig. 18. The associated solution-fitness is approximately 12%, and the final parameter vector
is pfinal = [−0.378, −9.952, 1.210, 0.116, −0.0127, −0.169, −0.0362, 0.310, 0.0390, −0.0934,
0.0160, −0.0444, −0.0241, 0.109, −0.00583, −0.0702, −0.00641, −0.0357, −0.00896]. While
the agreement is not perfect, it is deemed quite satisfactory: we remark further that the
solution can be improved by using additional interrogating waves, especially in the case of
nonconvex shapes (Fig. 19).

6. Conclusions

We discussed the inverse scattering problem of detecting the shape and location of a scatterer
fully immersed in a halfplane, when exposed to illumination by propagating plane waves. In
particular, we focused on the two very closely related frequency-domain cases of acoustic and
SH waves. We discussed a PDE-constrained optimization approach, endowed with boundary
integral equations, for treating systematically the detection problem. For each of the two
scalar wave cases, we derived the corresponding state, adjoint, and control problems that,
in turn, ensure the satisfaction of the first-order optimality conditions.

Though no direct regularization approach was used, to tackle the multiple minima
problem, we employed a three-prong strategy, based on the choice of an amplitude-based
misfit functional, a frequency- and/or directionality-continuation scheme, and an ad hoc
shape-constraining scheme that forces localization at low probing frequencies, prior to
shape refinement. We have observed robustness in the recovery of shape and location in
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Fig. 18. Final estimates at k = 0.5, 0.8, 1.0, 1.9, 2.1; kite-shaped scatterer (SH case).
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Fig. 19. Solution-fitness; kite-shaped scatterer (SH case).
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the reported numerical experiments. Our key observations suggest that low probing fre-
quencies recover the location, whereas higher probing frequencies finetune the shape. The
process is, of course, aided, whenever enriched by either additional receivers, or probing
waves/incidences, or both.
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