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This paper addresses the issue of using a switching time-reversal (TR) mirror for wave energy focusing

to subsurface targets. The motivation stems from applications in geophysics, hydro-geology, environ-

mental engineering, and even in therapeutic medicine. Using TR concepts, wave-focusing is straight-

forward and efficient, but only under ideal conditions that are, typically, unattainable in practice. The

unboundedness of the subsurface that hosts the target, the TR mirror’s limited aperture, and, worse, the

practical need for a switching TR mirror, where recorded Dirichlet data are time-reversed as Neumann

data (switching mirror), all contribute to the deterioration of the focusing resolution at the target.

Herein, the development of a data filter is discussed, which is shown to be capable of overcoming the

switching mirror’s shortcoming, leading to improved focusing resolution. The filter’s effect is demon-

strated with numerical examples. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Focusing wave energy to a target location within a host

medium is of great interest in many science and engineering

fields. Applications are wide-ranging, from tumor treatment

and lithotripsy (Thomas et al., 1994), to aquifer contaminant

removal, to demining (Alam et al., 2004; Norville and Scott,

2005), tunnel collapse, fracking, enhanced-oil recovery, earth-

quake reconstruction (Larmat et al., 2010), nondestructive test

and evaluation (Anderson et al., 2019; Prada et al., 2002),

communications (Anderson et al., 2016; Shimura et al., 2012),

and others. If a probe can be first implanted at the target, then,

under appropriate conditions, a time-reversal (TR) approach

holds the best promise of refocusing energy to the target. For

example, in tumor treatment, a probe, implanted at the tumor

site, is first triggered to emit waves, whose time traces are

recorded at sensors (the TR mirror) surrounding the host.

Then, the sensor recordings are subsequently time-reversed

and amplified, resulting in energy focusing at the probe’s loca-

tion in the tumor site. As is well known, the refocusing is

owed to the invariance of the associated (lossless) wave equa-

tion to changes of the time line traversal direction.

Since the original experiment of Parvulescu and Clay

(1965) that demonstrated the time reversibility of sound

waves in the ocean (see also Clay and Anderson, 2011 for a

historical account), there have been many applications of the

TR concept (see, for example, Draeger et al., 1997; Fink,

2008; Fink et al., 1989; Prada et al., 1991). In parallel, sev-

eral studies have been conducted on the effects various TR

mirror parameters (mirror density, aperture, complete versus

incomplete Cauchy data, etc.) have on the quality of the

refocusing. The ideal scenario that guarantees perfect refo-

cusing requires populating the mirror with a large number of

receivers/transmitters, which, during the transmission step,

would time-reverse the complete Cauchy data, while a sink

need also be present at the original source location. Most of

the requirements to achieve the perfect refocusing are infea-

sible in practice: relaxing any single one of the ideal require-

ments would entail a degradation in the quality of the

refocus (Koo, 2017).

From a focusing perspective, planar TR mirrors of finite

extent, embedded in a fullspace, present more challenges than

the case of mirrors deployed in a closed cavity. Focusing is

similarly challenged when the TR mirror is placed on the sur-

face of a halfspace. The planar mirrors were considered first in

Fink et al. (1989), and several particular cases were subse-

quently discussed in detail in Cassereau and Fink (1993). In

general, the sharpness and intensity of the focusing depend on

the aperture and density of the TR mirror (Fink, 1992).

Here, we are interested in such a less-than-ideal—from

a TR perspective—application, where the target is in the

subsurface, embedded within a semi-infinite host. The need

arises mostly in geophysical and related applications. Many

of the difficulties in focusing energy to the target stem from

the unboundedness of the host: for example, the time-

reversed field propagates out to infinity, without the benefit

of multiple reflections off of edge boundaries that tend to

strengthen the refocusing, as in the case of a finite domain

setting (this is especially challenging in homogeneous

media, as heterogeneity is, in general, beneficial). Moreover,

the deployment of receivers/transmitters (the TR mirror) is

limited to the surface of the halfspace, and, for practicala)Electronic mail: loukas@mail.utexas.edu
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applications, the aperture would also be limited. Adding to the

limitations imposed by the physical reality is a constraint

imposed by the nature of the equipment used in the TR mirror

in geophysical applications: whereas, typically, the sensors

record Dirichlet data (e.g., displacements), during the transmis-

sion step the only feasible way of time-reversing the data is in

the form of Neumann data (applied surface tractions, i.e.,

applied forces per unit area). Thus, recorded Dirichlet data

must be time-reversed as Neumann data at the mirror, by con-

trast to the most typical case where the time-reversed data are

of the same character as the recorded; we term the mirror

where the character of the data is flipped in the described man-

ner a switching mirror (a similar case was first discussed in

Cassereau and Fink, 1993, as case IV therein). The equivalent

case in the context of acoustics applications is when the switch-

ing mirror records pressures (the Dirichlet datum), and time-

reverses them as particle velocities (the Neumann datum).

As we will show, a key consequence of the switching

mirror is resolution degradation. In this article, we analyze

the degradation that is due to switching the character of the

data and propose a filter that can be applied to the Dirichlet

recordings prior to time-reversal, thus leading to improved

resolution that rivals the resolution of the ideal Dirichlet-

recording-to-Dirichlet-transmitting case. We demonstrate

the filter’s effect with synthetic cases in both the frequency

and the time domains; it is shown that the filter improves

notably wave energy focusing to subsurface targets.

II. PRELIMINARIES

A. Time-reversal-based wave focusing in a
semi-infinite domain

We are concerned with focusing to a target embedded

within a semi-infinite host. The schematic shown in Fig. 1

captures the setting: with reference to the axes triplet shown

in Fig. 1, X ¼ ð0;1Þ � ð�1;1Þ � ð�1;1Þ is a semi-

infinite domain, bounded by a free surface CTRM. The x1-

axis points downward along the infinite depth, while axes x2

and x3 lie on the horizontal plane at the top surface (x1¼ 0).

We assume that the time-reversal mirror is mounted on the

surface where the outward normal vector is n¼ (�1, 0, 0).

The source/focal point x0 is located at x ¼ ðx0; 0; 0Þ.
To set up the problem, we consider scalar waves, which

in a geophysical setting would describe SH waves. In the fre-

quency domain, the antiplane motion is described by the sca-

lar Helmholtz operator, i.e.,

H �½ �ðxÞ ¼ divðl grad �½ �ðxÞÞ þ qx2
�½ �ðxÞ; x 2 X; (1)

where l and q denote shear modulus and density, respec-

tively, x is the circular frequency, and [�] denotes the oper-

and, which, in our context, is the displacement wavefield.

Then, the recording step is governed by

H wr½ �ðxÞ ¼ f ðxÞ ¼ dðx� x0Þ; x 2 X; (2a)

N wr½ �ðxÞ ¼ 0; x 2 CTRM; (2b)

R wr½ �ðrÞ ¼ 0; r !1; (2c)

where r denotes radial distance from the origin, N ½��
¼ ðl grad½��Þ � n; R denotes the Sommerfeld radiation con-

dition, and wr is the displacement wavefield during the

recording step. The displacement wavefield during the trans-

mitting step can be obtained by the solution of a similar

boundary-value problem (BVP) governed by the Helmholtz

operator Eq. (1). To highlight the differences between a con-

ventional mirror and the switching mirror, we consider sepa-

rately Dirichlet-driven and Neumann-driven problems for

the transmitting step. Accordingly, the BVP that is driven by

surface Dirichlet data becomes

H utr½ �ðxÞ ¼ 0; x 2 X; (3a)

utrðxÞ ¼ P; x 2 CTRM; (3b)

R utr½ �ðrÞ ¼ 0; r !1; (3c)

whereas the BVP that is driven by surface Neumann data is

H vtr½ �ðxÞ ¼ 0; x 2 X; (4a)

N vtr½ �ðxÞ ¼ Q; x 2 CTRM; (4b)

R vtr½ �ðrÞ ¼ 0; r !1; (4c)

where P denotes Dirichlet data, and Q denotes Neumann

data.

B. The transmitted wavefields

To obtain solutions to either of the BVPs in Eqs. (3) or

(4), we enlist boundary integral equations. As shown in Eqs.

(3) and (4), we denote with utr the transmitted displacement

field when the mirror on CTRM is driven by the Dirichlet data

P, and with vtr the transmitted displacement field when the

mirror is driven by the Neumann data Q. Accordingly, it can

be shown that the two wavefield solutions can be written as

utr ¼
ð

CTRM

ðN gDÞP dCTRM; and (5)

vtr ¼ �
ð

CTRM

gNQ dCTRM; (6)

where gD and gN denote the halfspace Green’s functions for

the Dirichlet-driven and Neumann-driven problems, respec-

tively. If g denotes the fullspace Green’s function, then

(Greenberg, 2015)
FIG. 1. Problem setting: subsurface semi-infinite host X, target at (x0, 0, 0),

and TR mirror on CTRM.
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gDðn; xÞ ¼ gðn; xÞ � gðn; RxÞ; (7a)

gNðn; xÞ ¼ gðn; xÞ þ gðn; RxÞ; (7b)

where the diagonal matrix R¼ diag(�1, 1, 1) is a reflector

that maps a point in X to its image point in the negative

(upper) halfspace.

Since the domain is semi-infinite, application of the spatial

Fourier transform with respect to x2 and x3 reduces to one spa-

tial dimension the dependence of the transmitted wavefields

from Eqs. (5) and (6) (Cassereau and Fink, 1993). Accordingly

ûtr x1ð Þ ¼ �
@

@n1

ĝD n1; x1ð ÞP̂
����
n1¼0

(8)

and

v̂trðx1Þ ¼ �ĝNðn1; x1ÞQ̂jn1¼0; (9)

where a caret ð̂ Þ is used to denote the double Fourier trans-

form of the subtended quantity. The Fourier-transformed

Green’s functions ĝD and ĝN can be obtained from Eq. (7)

with the aid of the Fourier-transformed fullspace Green’s

function ĝ, which is expressed as

ĝ n1; x1ð Þ ¼ � ieiajn1�x1j

2a
; (10)

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=cð Þ2 � k2

q
x=cð Þ2 > k2

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x=cð Þ2

q
x=cð Þ2 < k2;

c ¼
ffiffiffi
l
q

r
; k ¼ jkj; k ¼ k2; k3ð Þ:

8><
>: (11)

In the above, k2 and k3 are horizontal wavenumbers,

i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, and c ¼
ffiffiffiffiffiffiffiffi
l=q

p
denotes the

medium’s wave velocity. Thus, when ðx=cÞ2 > k2, there is a

propagating wave, and when ðx=cÞ2 < k2, there is an eva-

nescent wave. We use Eqs. (8) and (9) to discuss the resolu-

tion differences between the conventional and the switching

mirror.

III. PHYSICAL CONSTRAINTS AND RESOLUTION
DEGRADATION

As mentioned in Sec. I, there are two main physical con-

straints in geophysical applications, when time reversal is

used to focus wave energy at a target. In this section, we dis-

cuss the physical constraints in detail and the resulting reso-

lution degradation.

A. Constraints in geophysical applications

For geophysical applications, a key difficulty in focusing

wave energy stems from the unboundedness of the host

medium, which results in a limited aperture for both the

recording and transmitting steps, i.e., one can record and time-

reverse from the top surface only (or a part thereof), with no

possibility of installing mirrors either on the sides of the

domain or below the source/focal point. The result is a

partially-focused wavefield, whose resolution has degraded.

To improve the focusing, Harker and Anderson (2013) sug-

gested an empirical approach for optimizing the mirror density

and aperture when the subsurface source location is known.

A second difficulty, which further degrades the resolu-

tion, stems from the switching mirror: in practice, Dirichlet

data are recorded, but only Neumann data can be transmit-

ted. Thus, the recorded displacement time series are, liter-

ally, used to drive applied surface tractions (Koo et al.,

2016). We denote the switching mirror’s effect as the Dr-to-

Ntr case (recorded Dirichlet to transmitted Neumann), and

denote the conventional mirror’s, yet practically infeasible,

case, as Dr-to-Dtr.

Let us denote the real-valued surface Dirichlet record-

ings as p(t), and their Fourier transform as p� ¼ F½pðtÞ�; it

can be easily seen that p� ¼ wrðxÞ; x 2 CTRM. Then, the

time-reversed data p(�t) in the time domain are equivalent

to phase-conjugated data p�ðxÞ in the frequency domain,

where an overbar denotes complex conjugation, and an infi-

nite time line has been assumed. In practice, however, data

are recorded for a finite duration T; then, the time-reversed

data for a finite time period T are p(T � t), or e�ixTp�ðxÞ in

the frequency domain.

Thus, to obtain utr in the Dr-to-Dtr conventional mirror

case, we set P ¼ p� in Eq. (5), and to obtain vtr in the Dr-to-

Ntr case we set Q ¼ ðl=x0Þp� in Eq. (6), where the scalar

l=x0 is introduced to correct the physical dimensions that

are affected by the data switching.

We note that a central assumption in the switching mir-
ror case is that an array of Dirichlet data recording sensors
(e.g., geophones) is deployed simultaneously with an array
of actuators (for applying surface tractions) on the surface of
the halfspace. Alternatively, one may consider an actuator-
only array deployment, as suggested in Ulrich et al. (2009),
by exploiting a reciprocal TR concept. It can be shown that
the transmitted wavefield in the reciprocal TR case discussed
in Ulrich et al. (2009) is identical to Eq. (9), similarly suffer-
ing from the resolution degradation we treat herein. In field
applications, both the standard TR case with the switching
mirror, and the reciprocal TR case discussed in Ulrich et al.
(2009) require the same array of actuators. The main differ-
ence between the two approaches is in the sequence of
operations: in the reciprocal TR case, several single source-
sensor events must be separately triggered, and subsequently
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synchronized, prior to time-reversing, whereas in the stan-

dard TR case with the switching mirror, there is a need for

an array of surface sensors in addition to the actuator array.

To compare the horizontal and the vertical resolutions

of the two cases (conventional versus switching mirror), we

introduce metrics that quantify the focal resolution and aid

in the comparison.

B. Normalized local intensity (NLI)—A resolution
metric

Two commonly used metrics to quantify the resolution

of a wavefield in the frequency domain and in the vicinity of

a focal point are: (a) Rayleigh’s criterion, which is defined

as the distance between the focal point (or the maximum

amplitude point) and the first zero of the wavefield’s ampli-

tude curve (Fig. 2); and (b) the standard (Houston) criterion

(Houston and Hsieh, 1934), which is defined as the distance

between half-maximum points on the amplitude curve (Fig.

2). Both criteria attempt to quantify the size of the focal spot

(width) but fail to quantify the brightness (intensity) of the

focal spot when contrasted with the background (other met-

rics can be found in Yon et al., 2003 and Heaton et al.,
2017). To quantify the relative brightness of the focal point,

we introduce a NLI metric, defined as

NLI u½ � ¼
Lb

ðx0þLa

x0�La

jujdx

La

ðx0þLb

x0�Lb

jujdx

; (12)

where u is a wavefield having a focal point at x¼ x0, La is a

user-defined radius of the focal spot, and Lb>La is user-

defined radius for normalization (for a constant amplitude

wavefield u, the NLI is 1). For the applications considered

in this article, we choose La¼ k/2, which coincides with the

diffraction limit, and Lb¼ 2k, where k denotes the wave-

length (¼2px/c). For example, the NLI of the closed-cavity

problem (Fig. 2) is

NLI uclosed cavity
tr

� �
¼ NLI

i sin xrð Þ
2pr

� �
� 2:719; (13)

where the analytic solution uclosed cavity
tr can be found in Fink

and Prada (2001), and r denotes radial distance from the ori-

gin, set at the center of the cavity.

For the numerical results discussed herein, we rely on

the Houston metric to quantify the focal width, and on the

NLI to quantify the focal brightness. The resolution can be

assessed using either or both metrics; herein, we report val-

ues for both metrics.

C. Switching mirror resolution effect

To set the stage for the design of the filter, we first pro-

vide numerical evidence of the resolution deterioration for a

prototype problem. Specifically: a point source is placed at

x0 depth (Fig. 1) and triggered at an operating frequency x:

the associated wavelength is such that k¼ 0.4x0. On the sur-

face, the TRM is a square with sides of 200x0 (or 500k) in

order to simulate a large aperture. At the TRM, Dirichlet

data are recorded, following the source’s broadcasting.

Then, we compare the resolution associated with the trans-

mitted wavefields Eq. (5) and Eq. (6), which correspond to

the conventional mirror case (Dr-to-Dtr), and the switching

mirror case (Dr-to-Ntr), respectively.

FIG. 2. Common resolution metrics in time-reversal wave-focusing:

Rayleigh criterion (� k/2); standard (Houston) criterion (� 0.6k).

FIG. 3. Vertical cross-section of the amplitude of the time-reversed

displacement wavefield in the vicinity of the focal point x1¼ x0: (a)

conventional mirror case; (b) switching mirror case. (a) Dr-to-Dtr case. (b)

Dr-to-Ntr case.

FIG. 4. Switching-mirror’s effect on the wavefield along the depth; without

filter (Dr-to-Ntr) versus filtered-data (F½Dr�-to-Ntr); large aperture TRM.
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Figure 3(a) depicts the vertical slice of the wavefield in

the conventional mirror Dr-to-Dtr case along x2¼ x3¼ 0. The

vertical (x1) resolution using Rayleigh’s criterion is approxi-

mately k, which is twice the resolution of the closed-cavity

case; using the Houston criterion, the resolution is approxi-

mately 1.2k. Similarly, the normalized local intensity is NLI

� 2.41, which, though smaller than the closed-cavity’s NLI

(2.70), is quite acceptable. In general, the small loss in reso-

lution is due to the interference between the symmetric

(imaginary part) and anti-symmetric (real part) components

of the wavefield: the symmetric component is identical to

the solution of the closed-cavity problem. However, an anti-

symmetric component is present in the semi-infinite prob-

lem, which is due to the one-sided mirror, and would have

been canceled out if there was a second mirror below the

focal point.

The switching mirror’s effect is most clearly seen in

Fig. 3(b), where it is difficult to even quantify the resolu-

tion using, for example, Rayleigh’s criterion. Using the

Houston criterion, the focal width is approximately 3.88k,

which signals a clear degradation when compared with the

1.2k focal width of the conventional mirror. Similarly, the

NLI in this Dr-to-Ntr case is NLI � 1.44, which represents a

40% reduction with respect to the NLI of the Dr-to-Dtr

case.

We note that the horizontal resolution has not been

affected significantly: for both the conventional and the

switching TR mirrors, the resolution in Rayleigh’s crite-

rion and Houston’s criterion is approximately 0.5k and

0.6k, respectively, i.e., both cases have similar focal

spot sizes with that of the closed-cavity problem. The

normalized local intensity of the Dr-to-Dtr case is NLI

� 2.70, which is also close to the NLI of the closed-cavity

problem (2.72), whereas the NLI of the Dr-to-Ntr case is

NLI � 2.07, which represents a reduction of approximately

24% when compared to the Dr-to-Dtr case. In summary, the

vertical resolution has degraded significantly more than

the horizontal resolution when the switching mirror is

used.

To better understand the origin of the resolution degra-

dation, we derive next the relation between the two wave-

fields; the relation would also lead to the design of a filter to

improve the resolution of the Dr-to-Ntr case.

IV. RESOLUTION-IMPROVING FILTER

We seek a resolution-improving filter that can be

applied to the boundary data so that the recorded data in the

switching mirror case (Dr-to-Ntr), when time-reversed,

result in a wavefield that focuses at the target with a resolu-

tion rivaling that of the conventional case (Dr-to-Dtr) case,

that is,

vfiltered
tr ¼ �

ð
CTRM

gN
l
x0

F p�
� 	

dCTRM ¼ utr; (14)

where Fð�Þ denotes the sought filter, and vfiltered
tr ¼ vtrjQ¼Fðp� Þ

is the wavefield of the Dr-to-Ntr case driven by the filtered

data Fðp�Þ.
First, we derive a relation between the two wavefields,

utr and vtr, valid for a homogeneous, semi-infinite domain,

where utr is a solution of the Dirichlet problem with bound-

ary data P, and vtr is a solution of the Neumann problem

with boundary data Q ¼ ðl=x0ÞP. Accordingly

TABLE I. Unfiltered versus filtered switching TRM resolution: large aper-

ture with continuous actuators.

Horizontal Vertical

Criterion Unfiltered Filtered Unfiltered Filtered

Houston 0.50k 0.59k 3.88k 1.16k
NLI 2.07 2.71 1.44 2.38

FIG. 5. Switching-mirror’s effect on the wavefield along the depth; without

filter (Dr-to-Ntr) versus filtered-data (F½Dr�-to-Ntr); small aperture TRM.

FIG. 6. (Color online) Plots of the wavefield amplitude. (a) Dr-to-Dtr case; (b) Dr-to-Ntr case (unfiltered); (c) F½Dr�-to-Ntr case (filtered).
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�x0

@

@x1

vtr xð Þ ¼ x0

@

@x1

ð
CTRM

gN
l
x0

P dCTRM

¼
ð

CTRM

l
@

@x1

gN


 �
P dCTRM

¼
ð

CTRM

�l
@

@n1

gD


 �
P dCTRM

¼
ð

CTRM

N gDð ÞP dCTRM ¼ utr xð Þ: (15)

In deriving Eq. (15), the translational property of the full-

space Green’s function was used in conjunction with

@

@x1

gN n; xð Þ ¼ @

@x1

g n; xð Þ þ @

@x1

g n; Rxð Þ

¼ @

@x1

g n� xð Þ þ @

@x1

g n� Rxð Þ

¼ � @

@n1

g n� xð Þ þ @

@n1

g n� Rxð Þ

¼ � @

@n1

g n; xð Þ þ @

@n1

g n; Rxð Þ

¼ � @

@n1

gD n; xð Þ; n 2 CTRM; x 2 X; (16)

where g, gN, gD, and R were defined in Sec. II. We note that

due to the arbitrariness of P, Eq. (15) holds true when P is

replaced by the time-reversed data p� .

A. Filter design

Equation (15) implies that a partial spatial derivative

with respect to x1 is required for wavefield vtr (Dr-to-Ntr

case) to produce the same wavefield (utr) of the Dr-to-Dtr

case, bearing the associated resolution benefits. However,

because the boundary data are measured only on the surface,

i.e., at x1¼ 0, it is impossible to take the direct spatial deriv-

ative of the data with respect to x1. To overcome the diffi-

culty, we enlist the following property that stems from the

definition Eq. (9):

@

@x1

� ia


 �
v̂tr ¼ 0; (17)

where a is defined in Eq. (11). Then, Eq. (15), following

Fourier transforms with respect to x2 and x3, yields

ûtr x1ð ÞjP̂¼p̂�
¼ �x0

@

@x1

v̂tr x1ð Þ
� �

Q̂¼ðl=x0Þp̂�

¼ �x0 ia v̂tr x1ð Þ
� �

Q̂¼ðl=x0Þp̂�

¼ �x0 ia �ĝN n1; x1ð Þ l
x0

p̂�
� �

n1¼0

¼ �ĝN n1; x1ð Þ �ialp̂�
� 	

jn1¼0

¼ v̂tr x1ð ÞjQ̂¼�ialp̂�
: (18)

The above relation implies that the filtered Dr-to-Ntr

case, henceforth denoted as F½Dr�-to-Ntr, can result in the

same wavefield as the Dr-to-Dtr case, simply by using as

Neumann data Q̂ ¼ �ialp̂� . Thus, in the frequency

domain, the filter Fð�Þ, to be used on the recorded Dirichlet

data, becomes

Fð�Þ ¼ F�1
x2
F�1

x3
ð�x0 iaÞF x2

F x3
ð�Þ

� �
; (19)

TABLE II. Unfiltered versus filtered switching TRM resolution: finite aper-

ture with discrete actuators.

Horizontal Vertical

Unfiltered Filtered Unfiltered Filtered

Houston 0.58k 0.63k 1.56k 1.50k
NLI 2.34 2.81 1.80 2.17

FIG. 7. Time domain prototype mod-

els. (a) Homogeneous medium; (b) lay-

ered medium.

FIG. 8. Initial condition: applied displacement field at the focal region.
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where FX½w� is the spatial Fourier transform of w with

respect to X, and F�1
X is its inverse Fourier transform, i.e.,

FX w½ � ¼
ð1
�1

w Xð ÞeisXdX � ~w sð Þ

and

F�1
X ~w½ � ¼ 1

2p

ð1
�1

~w sð Þe�isXds: (20)

We remark that the filter, Eq. (19), can be used for layered

media as well by simply defining a using the properties of

the topmost layer.

V. NUMERICAL EXAMPLES

We demonstrate the performance of the proposed filter

using synthetic data in both the frequency and the time

domains. First, in the frequency domain and in three dimen-

sions, we show the effect of the filter using ideal, yet unrealis-

tic, conditions: a large aperture with near-continuously-placed

actuators/transmitters. Then, we repeat the experiment with a

small aperture and a number of discrete actuators/transmitters

and show how the filter improves the resolution. Last, we turn

to time domain applications in two dimensions, and demon-

strate again the filter’s effect.

A. Frequency domain

1. Large aperture with continuous actuators

Here, we revisit the prototype problem we first consid-

ered in Sec. III C. As before, at the TRM, Dirichlet data are

recorded, following the source’s broadcasting. Next, the

switching TRM re-transmits the recordings as Neumann data

in two ways: first, unfiltered, and, then, in a second experi-

ment, as filtered, using the filter defined in Eq. (19). In both

cases, the transmitted wavefields are computed using the

boundary integral equation (6).

We note that along the horizontal direction, i.e., on a hori-

zontal plane (x2, x3) through the focal point x0, the size of the

focal spot has not changed significantly between the filtered and

the unfiltered cases. However, its brightness, as measured by the

NLI, has been affected: from 2.071 in the unfiltered case, to

2.713 in the filtered case, resulting in approximately 31%

improvement. Far more dramatic is the effect the filter has on

the vertical resolution: Fig. 4 shows the resulting wavefield dur-

ing the transmitting step, as a function of x1 (x2¼ x3¼ 0) along

the depth. As it can be seen, the unfiltered case resulted in a

smeared wavefield that lacks focus, with an associated NLI of

1.444. By contrast, the filtered case resulted in a sharper focus,

with an NLI of 2.382, marking a significant 65% improvement.

Table I summarizes the resolution results, using both the

Houston criterion for the focal width and the NLI for the

focal brightness.

2. Finite aperture with discrete actuators

Next, we limit the aperture and deploy a finite number

of receivers/transmitters and repeat the numerical experi-

ments. We note that we opted for the equidistant placement

of the receivers/transmitters, even though the filter does not

impose such a limitation. The TRM is now limited to a

square with sides 10x0 (or 50k); the spacing h between the

actuators/transmitters is set to half wavelength, i.e.,

h¼Dx2¼Dx3¼ k/2. The specific spacing choice is driven

FIG. 9. TRM central receiver recordings for a homogeneous medium. (a)

Unfiltered Dirichlet record. (b) Filtered Neumann record.

FIG. 10. (Color online) Focal resolu-

tion for the TR unfiltered and filtered

displacement wavefields in a homoge-

neous medium. (a) Unfiltered wave-

field. (b) Filtered wavefield.

FIG. 11. TRM central receiver recordings for a layered medium. (a)

Unfiltered Dirichlet record. (b) Filtered Neumann record.
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by our empirical studies, which showed that the resolution

does not improve appreciably when the spacing becomes

smaller than k/2, whereas it deteriorates when the spacing is

larger than k/2. To account for the discrete transmitters,

boundary integral equations (5) and (6) are modified to pro-

vide the resulting wavefields, per the details shown in the

Appendix. Using the filter, the NLI in the horizontal direc-

tion increased from 2.337 to 2.808, about 20.15% improve-

ment, while the NLI in the vertical direction increased

from 1.795 to 2.170, a 20.89% increase (Fig. 5). Overall,

there is approximately 20% resolution improvement in both

directions.

The plots shown in Fig. 6 depict the distribution of the

amplitude for all three cases: Fig. 6(a) pertains to the ideal

case of the conventional mirror (Dr-to-Dtr), Fig. 6(b) is the

case of the switching mirror with the unfiltered data (Dr-to-

Ntr), and Fig. 6(c) is the case of the switching mirror with the

filtered data (F½Dr�-to-Ntr). We note the visible smearing of

the field in the unfiltered case [Fig. 6(b)], whose sharpness is

restored to near-ideal levels following the application of the

filter [compare Figs. 6(a) with 6(c)].

Table II summarizes the resolution results, using both

the Houston and NLI criteria.

B. Time domain

In this section, we report on two experiments involv-

ing a homogeneous halfspace and a horizontally-layered

heterogeneous halfspace that demonstrate the effect of the

filter F for time domain applications. The properties and

the geometry of the two experiments are shown in Fig. 7.

We note that the figures depict a subregion of a larger

model that was used for the simulations; the extended

model was fixed at the outer boundaries, but the observa-

tions were limited to durations that were shorter than the

time needed for the waves to travel back from the outer

boundaries to the region of interest, in order to prevent pol-

luting the wavefields from spurious reflections from the

fixed outer boundaries of the extended computational

domain. Furthermore, in both cases, all quantities are

assumed to be normalized, and, thus, are given as dimen-

sionless parameters. For both experiments, the TRM is sit-

uated at the top surface.

The motion is triggered by the initial displacement dis-

turbance shown in Fig. 8: it is defined as

u x;0ð Þ¼
cos2

p x1�x0ð Þ
2R

� �
cos2 px2

2R

� �
; x1�x0ð Þ2þx2

2<R2

0; otherwise;

8><
>:

(21)

where R¼ 0.2 and x0¼ 7R¼ 1.4.

First, the response of the homogeneous medium is

recorded at the TRM, and is then time-reversed: Fig. 9(a)

shows the recorded signal at the central TRM receiver

(Dirichlet data), while Fig. 9(b) shows the filtered record to

be time-reversed (Neumann data).

Figure 10 depicts the resulting wavefields in the Dr-to-Ntr

(unfiltered) case, and the filtered F½Dr�-to-Ntr case. While the

resolution in the horizontal direction is not affected by the filter,

the resolution in the vertical direction is clearly improved [Figs.

10(a) and 10(b)]. If we apply a Houston-like criterion (distance

between the half-point maxima), then the relevant Houston dis-

tance is about 0.4216, while in the filtered case, it is about

0.1708 (smaller values suggest sharper focus)—a 59% improve-

ment. In general, the results in the time domain are consistent

with those in the frequency domain.

Next, we repeat the experiment for the layered medium

depicted in Fig. 7(b), comprising three layers of increasing

stiffness (shear wave speed) with depth. We use the top layer’s

speed to define the parameter a of the filter in Eq. (19).

The central TRM receiver’s recordings, both unfiltered

and filtered, are shown in Fig. 11.

The resulting wavefields are depicted in Fig. 12. It can be

seen that the filter, in this case, has resulted in improving the

sharpness not only along the vertical direction, but also along

the horizontal. Using the focal narrowness Houston-like crite-

rion, the sharpness improvement is about 26% along the hori-

zontal direction, and about 76% along the vertical direction.

Last, Tables III and IV summarize the time-domain

resolution results using both the Houston and NLI criteria

[to compute the NLI, we used La¼R, and Lb¼ (5/2)R]. It is

FIG. 12. (Color online) Focal resolu-

tion for the TR unfiltered and filtered

displacement wavefields in a layered

medium. (a) Unfiltered wavefield. (b)

Filtered wavefield.

TABLE III. Unfiltered versus filtered switching TRM resolution in the time

domain; homogeneous medium.

Horizontal Vertical

Unfiltered Filtered Unfiltered Filtered

Houston 1.02R 0.96R 2.11R 0.85R

NLI 2.21 2.25 1.25 1.63
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evident that, whether one uses the Houston or the NLI crite-

rion or both, filtering the switching mirror’s recordings prior

to broadcasting improves significantly the vertical resolution.

VI. CONCLUSIONS

We proposed an approach to improve the focal resolution

when it is desirable to focus wave energy to a subsurface loca-

tion based on time-reversal concepts, in the presence of a

switching TR mirror, which, if left untreated, would cause res-

olution degradation. Specifically, we designed a filter that can

be readily used on recorded TRM Dirichlet data prior to time-

reversing them as Neumann data. The filter is especially well-

suited for geophysical settings involving semi-infinite

domains. We verified the filter’s benefit, suggested by the the-

ory, with numerical experiments in the frequency and time

domains, for both homogeneous and heterogeneous domains.

APPENDIX: TRANSMITTED WAVEFIELDS USING
DISCRETE ACTUATORS

Let PN
Dx denote a sampling function, i.e.,

PN
Dx ¼

XN

n;m¼�N

dðx2� nDxÞdðx3�mDxÞ; n;m 2Z; (A1)

where (2Nþ 1)� (2Nþ 1) is the total number of the sam-

pling points and Dx is the sampling interval. Then, the dis-

crete data are defined as

Pdsc ¼ PPN
Dx (A2)

and

Qdsc ¼ QPN
Dx: (A3)

Then, the boundary integral equation (5) yields

udsc ¼ N gD;Pdscð ÞCTRM

¼
ð1
�1

ð1
�1

� @

@n1

g n; xð Þ � @

@n1

g n; xð Þ
� �

n1¼0

� Pdsc n2; n3ð Þdn2dn3

¼ �2

ð1
�1

ð1
�1

@

@n1

g n; xð Þjn1¼0P n2; n3ð ÞPN
Dxdn2dn3

¼ �2

ð1
�1

ð1
�1

@

@n1

g n; xð Þjn1¼0P n2; n3ð Þ

�
XN

n;m¼�N

d n2 � nDxð Þd n3 � mDxð Þdn2dn3

¼ �2
XN

n;m¼�N

@

@n1

g 0; nDx;mDx; xð ÞP nDx;mDxð Þ;

(A4)

and, similarly, Eq. (6) yields

vdsc ¼ �ðgN ;QdscÞCTRM

¼ �2
XN

n;m¼�N

gð0; nDx;mDx; xÞQðnDx;mDxÞ; (A5)

where udsc and vdsc are the wavefields for given discrete

Dirichlet and Neumann data, respectively.

Alam, M., McClellan, J. H., Norville, P. D., and Scott, W. R. (2004). “Time-

reverse imaging for detection of landmines,” Proc. SPIE 5415, 167–174.

Anderson, B. E., Remillieux, M. C., Le Bas, P.-Y., and Ulrich, T. J. (2019).

Time Reversal Techniques (Springer International Publishing, New York),

pp. 547–581.

Anderson, B. E., Ulrich, T. J., Le Bas, P.-Y., and Ten Cate, J. A. (2016).

“Three-dimensional time reversal communications in elastic media,”

J. Acoust. Soc. Am. 139(2), EL25–EL30.

Cassereau, D., and Fink, M. (1993). “Focusing with plane time-reversal mir-

rors: An efficient alternative to closed cavities,” J. Acoust. Soc. Am.

94(4), 2373–2386.

Clay, C. S., and Anderson, B. (2011). “Matched signals: The beginnings of

time reversal,” Proc. Meet. Acoust. 12(1), 055001.

Draeger, C., Cassereau, D., and Fink, M. (1997). “Theory of the time-

reversal process in solids,” J. Acoust. Soc. Am. 102(3), 1289–1295.

Fink, M. (1992). “Time reversal of ultrasonic fields: I. Basic principles,”

IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566.

Fink, M. (2008). “Time-reversal acoustics,” J. Phys.: Conf. Ser. 118(1), 012001.

Fink, M., and Prada, C. (2001). “Acoustic time-reversal mirrors,” Inv.

Problems 17(1), R1–R38.

Fink, M., Prada, C., Wu, F., and Cassereau, D. (1989). “Self focusing in

inhomogeneous media with time reversal acoustic mirrors,” in

Proceedings of the IEEE Ultrasonics Symposium 1989, October 3–6,

Montreal, Quebec, pp. 681–686.

Greenberg, M. D. (2015). Applications of Green’s Functions in Science and
Engineering (Courier Dover Publications, Mineola, New York).

Harker, B. M., and Anderson, B. E. (2013). “Optimization of the array mir-

ror for time reversal techniques used in a half-space environment,”

J. Acoust. Soc. Am. 133(5), EL351–EL357.

Heaton, C., Anderson, B. E., and Young, S. M. (2017). “Time reversal

focusing of elastic waves in plates for an educational demonstration,”

J. Acoust. Soc. Am. 141(2), 1084–1092.

Houston, W. V., and Hsieh, Y. M. (1934). “The fine structure of the Balmer

lines,” Phys. Rev. 45, 263–272.

Koo, S. (2017). “Subsurface elastic wave energy focusing based on a time reversal

concept,” Ph.D. thesis, The University of Texas at Austin, Austin, TX.

Koo, S., Karve, P. M., and Kallivokas, L. F. (2016). “A comparison of time-

reversal and inverse-source methods for the optimal delivery of wave

energy to subsurface targets,” Wave Motion 67, 121–140.

Larmat, C. S., Guyer, R. A., and Johnson, P. A. (2010). “Time-reversal

methods in geophysics,” Phys. Today 63(8), 31–35.

Norville, P. D., and Scott, W. R., Jr. (2005). “Time-reversal focusing of elas-

tic surface waves,” J. Acoust. Soc. Am. 118(2), 735–744.

Parvulescu, A., and Clay, C. S. (1965). “Reproducibility of signal transmis-

sions in the ocean,” Radio Electr. Eng. 29(4), 223–228.

Prada, C., Kerbrat, E., Cassereau, D., and Fink, M. (2002). “Time reversal

techniques in ultrasonic nondestructive testing of scattering media,” Inv.

Problems 18(6), 1761–1773.

Prada, C., Wu, F., and Fink, M. (1991). “The iterative time reversal mirror:

A solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am.

90(2), 1119–1129.

Shimura, T., Watanabe, Y., Ochi, H., and Song, H. C. (2012). “Long-range

time reversal communication in deep water: Experimental results,”

J. Acoust. Soc. Am. 132(1), EL49–EL53.

Thomas, J., Wu, F., and Fink, M. (1994). “Self focusing on extended objects

with time reversal mirror, applications to lithotripsy,” in Proceedings of
IEEE Ultrasonics Symposium 1994, October 31–November 3, Cannes,

France, pp. 1809–1814.

Ulrich, T. J., Van Den Abeele, K., Le Bas, P.-Y., Griffa, M., Anderson, B.

E., and Guyer, R. A. (2009). “Three component time reversal: Focusing

vector components using a scalar source,” J. Appl. Phys. 106(11), 113504.

Yon, S., Tanter, M., and Fink, M. (2003). “Sound focusing in rooms: The

time-reversal approach,” J. Acoust. Soc. Am. 113(3), 1533–1543.

TABLE IV. Unfiltered versus filtered switching TRM resolution in the time

domain; layered medium.

Horizontal Vertical

Unfiltered Filtered Unfiltered Filtered

Houston 1.39R 1.01R 4.34R 1.04R

NLI 2.35 2.14 1.33 1.59

2336 J. Acoust. Soc. Am. 145 (4), April 2019 Goh et al.

https://doi.org/10.1117/12.542686
https://doi.org/10.1121/1.4942629
https://doi.org/10.1121/1.407457
https://doi.org/10.1121/1.3602160
https://doi.org/10.1121/1.420094
https://doi.org/10.1109/58.156174
https://doi.org/10.1088/1742-6596/118/1/012001
https://doi.org/10.1088/0266-5611/17/1/201
https://doi.org/10.1088/0266-5611/17/1/201
https://doi.org/10.1121/1.4798268
https://doi.org/10.1121/1.4976070
https://doi.org/10.1103/PhysRev.45.263
https://doi.org/10.1016/j.wavemoti.2016.07.011
https://doi.org/10.1063/1.3480073
https://doi.org/10.1121/1.1945468
https://doi.org/10.1049/ree.1965.0047
https://doi.org/10.1088/0266-5611/18/6/320
https://doi.org/10.1088/0266-5611/18/6/320
https://doi.org/10.1121/1.402301
https://doi.org/10.1121/1.4730038
https://doi.org/10.1063/1.3259371
https://doi.org/10.1121/1.1543587

	s1
	l
	n1
	s2
	s2A
	d1
	d2a
	d2b
	d2c
	d3
	d3a
	d3b
	d3c
	d4
	d4a
	d4b
	d4c
	s2B
	d5
	d6
	d7
	d7a
	f1
	d7b
	d8
	d9
	d10
	d11
	s3
	s3A
	s3B
	d12
	d13
	s3C
	f2
	f3
	f4
	s4
	d14
	d15
	t1
	f5
	f6
	d16
	s4A
	d17
	d18
	d19
	t2
	f7
	f8
	d20
	s5
	s5A
	s5A1
	s5A2
	f9
	f10
	f11
	s5B
	d21
	f12
	t3
	s6
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	t4

