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This paper is concerned with the development of an efficient and accurate finite element 
procedure for the solution directly in the time domain of transient problems involving structures 
submerged in an infinite acoustic fluid. The central feature of the procedure is a novel 
impedance, or, absorbing boundary, element that is used to render the computational domain 
finite. This element is local in both time and space, and is completely defined by a pair of 
symmetric stiffness and damping matrices. It thus can be attached directly to the adjoining fluid 
elements within the computational domain using standard assembly procedures. Due to its local 
nature, it also preserves the overall structure of the global equations of motion, including 
symmetry and sparseness. Thus the new impedance element makes it possible to solve complex 
transient exterior structural acoustics problems via existing finite element software for interior 
problems by just incorporating this element into current finite element librafids. Standard 
step-by-step temporal integration techniques can then be used to solve the resulting equations of 
motion. Even though the focus is in the time domain, the same equations of motion can 
naturally be used to determine the solution under time-harmonic excitation directly in the 
frequency domain. In this paper the new methodology is presented in a two-dimensional setting, 
using as a model an infinite cylindrical thin elastic circular shell submerged in an acoustic fluid. 
The absorbing element, however, can be used equally well with any arbitrary (possibly 
nonlinear) two-dimensional structure. Explicit formulas for the element matrices are included, 
and numerical examples, involving both transient scattering and radiation model problems, are 
given for the homogeneous shell as well as for a shell with a concentrated mass to illustrate the 
validity and accuracy of the new procedure. 

PACS numbers: 43.20.Px, 43.20.Tb, 43.30.Jx, 43.40.Rj 

INTRODUCTION 

To date the overwhelming majority of investigations 
dealing with problems in structural acoustics have focused 
on the steady-state response of the fluid-structure system 
to time-harmonic excitation; it is thus natural that solu- 
tions have been carded out primarily in the frequency do- 
main. While frequency-domain analyses are often sufficient 
in practice, there are situations for which an analysis di- 
rectly in the time domain may be desirable or even un- 
avoidable. Clearly, a time-domain approach provides the 
only practical alternative if any part of the structure can 
behave inelastically. Also, given that measurements of ex- 
perimental or actual performance of fluid-structure inter- 
action systems are recorded directly in the time domain, it 
may be of interest in some cases, say for purposes of struc- 
tural or noise control or optimum structural design, to 
either use or compare this information with that predicted 
directly by the mathematical models. 

With these applications in mind, this paper is con- 
cerned with the ultimate development of efficient, yet ac- 
curate, numerical techniques for evaluating directly in the 
time domain the transient response of (possibly inelastic) 

structures of complex geometry submerged in an infinite 
(or semi-infinite) acoustic medium. The excitation can be 
exterior, e.g., in the form of prescribed incident pressure 
waves propagating through the fluid (scattering problem), 
or interior, due to forces generated within the structure 
itself (radiation problem). In contrast to the vast literature 
available for time-harmonic problems (see, e.g., Refs. 1-4 
for a partial list of relevant studies) transient problems in 
exterior structural acoustics have received scanty attention. 
Whereas an exact boundary integral formulation for tran- 
sient problems in terms of retarded potentials is possible, 
the direct application of this procedure to realistic prob- 
lems is generally impractical due to the nonlocal nature of 
this formulation both in time and in space; that is, in this 
approach the response at every point on the fluid-structure 
interface depends on the complete history of the response 
at every other point. An alternative approach is to truncate 
the infinite domain and to specify a boundary condition on 
the artificial boundary that will satisfy approximately the 
radiation condition. The goal is to arrive at boundary con- 
ditions that are more local, at least in time. 

A survey of various absorbing boundary treatments up 
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to 1990 is given by Givoli. 5 Here we mention the well- 
known sequences of boundary conditions obtained by 
Engquist and Majda 6 and Bayliss and Turkel 7 using ratio- 
nal approximations to pseudodifferential operators and as- 
ymptotic expansions of the radial distance, respectively. A 
finite element scheme for solving the acoustic radiation 
problem using Bayliss and Turkel's second-order approxi- 
mation has been implemented by Pinsky et al. 8 and by Pin- 
sky and Abboud 9'•ø for two- and three-dimensional prob- 
lems, respectively. Numerical results were presented in 
these papers for various uniform and nonuniform Dirichlet 
exterior problems and for the axisymmetric radiation prob- 
lem involving an elastic infinite cylindrical shell subject to 
a uniform internal pressure; the Bayliss-Turkel second- 
order condition was also incorporated formally into the 
symmetric formulation of the complete structure-fluid in- 
teraction problem developed originally by Everstine • 
without any numerical examples; it should be added that 
the nonsymmetric character of the boundary treatment in 
Refs. 8-10 destroys the symmetry of the global equations. 
An example of an application based on an alternative 
boundary treatment, the doubly asymptotic approximation 
(DAA), is given in Ref. 12 for the case of an infinite 
cylindrical shell with appendages. This approach, •3-•7 
which combines an early time with a late time approxima- 
tion, allows one to enforce the absorbing boundary condi- 
tion directly on the interface of the structure with the fluid. 
The price one pays for this benefit, however, is having to 
deal with a spatially nonlocal boundary, since at each in- 
stant the DAA causes the response at each point of the 
boundary to be coupled with that at every other point. 

Barry et al. •8 have developed a family of approximate 
local boundary conditions for the transient two- 
dimensional wave equation using ideas of geometrical op- 
tics. For a particular value of a parameter their second- 
order condition coincides with the corresponding second- 
order Bayliss-Turkel condition. By giving it a viscoelastic 
interpretation, Kallivokas et al. •9 were able to recast the 
second-order condition of Barry et al. into an equivalent 
form that can be represented completely, upon discretiza- 
tion, by a very simple boundary element, local in time and 
space. The practical significance of this novel impedance 
element, which can be completely characterized by a pair 
of stiffness and damping symmetric matrices, is that it 
makes it possible, apparently for the first time, to solve 
accurately and efficiently exterior initial-value problems in 
structural acoustics, and other multiphase phenomena, 
with existing finite element software for interior problems. 

The main objective of the present paper is to demon- 
strate how this approach can be applied readily to the 
solution of the exterior two-dimensional structural acous- 

tics problem. To preserve symmetry we formulate the 
problem variationally in terms of the displacement field 
and the velocity potential field introduced originally by 
Everstine, • for the structure and the fluid, respectively. 
We concentrate on the infinite cylindrical thin elastic shell, 
using this canonical geometry as a benchmark since the 
corresponding transient scattering problem is amenable to 
exact solution. Arbitrary elastic structures can be analyzed 
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FIG. 1. (a) Model of fluid-structure interaction system. (b) Reduced 
model with finite fluid region and absorbing boundary. 

similarly merely by modifying the expression for the strain 
energy in the variational principle. We present numerical 
results for scattering and radiation problems for the homo- 
geneous shell and for a limiting rigid scatterer, as well as 
for a shell with a concentrated line mass, using a finite- 
duration modified Ricker 2ø pulse as the excitation. The 
Ricker pulse, used frequently in seismology, has the prop- 
erty that the amplitude of its Fourier transform has a single 
well-defined dominant frequency, and has nonzero values 
only over a prescribed frequency band. Thus, the pulse can 
be tuned to excite the structure-fluid system up to a de- 
sired maximum frequency. 

I. PROBLEM DESCRIPTION AND ABSORBING 
BOUNDARIES 

We discuss initially the general case of an arbitrary 
two-dimensional elastic structure submerged in an infinite 
acoustic medium and subsequently present a detailed der- 
ivation for the cylindrical shell. Suppose 12e represents the 
region occupied by the structure, 12 + the corresponding 
exterior region, and F their interface, as shown in Fig. 
1 (a). We assume that the homogeneous, compressible, and 
inviscid fluid remains close to an equilibrium state with 
constant density and velocity. Then the linearized equa- 
tions of motion for the fluid are 

pitf = -- VP, ( 1 a) 

p+pV-vf=O, (lb) 

p=(1/c2)p, (lc) 
where ¾f is the velocity vector, P is the total pressure, p is 
the density, and c is the speed of sound in the acoustic 
medium. We assume there is an incident transient fluid 

motion given by a pressure œ0, where œ0 satisfies the wave 
equation with speed of sound c; the simple modifications 
needed to consider the corresponding radiation problem 
will be discussed later. Following Everstine, • we introduce 
the velocity potential function •b through the following re- 
lationships: 

1 pO v f= V•b-- • V dt, (2a) 
p= _p•+po. (2b) 

With this choice of •p, --p{b represents the scattered pres- 
sure and (la) is satisfied automatically. Equations (lb) 
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and ( 1 c) also will be satisfied for a system which is initially 
at rest provided ½ satisfies the wave equation: 

½2721p = 1•. ( 3 ) 

Since the scattered wave --p•b must be outgoing, then 
must satisfy a radiation condition at infinity. Rather than 
considering the structural acoustic scattering problem over 
the infinite domain •2, we introduce an artificial, smooth, 
convex boundary F f in f• + and pose an equivalent prob- 
lem over the finite region f•eu•f, as shown in Fig. 1 (b). 
Then on F f, •p will satisfy an exact nonlocal condition for 
the normal derivative, •pn = V•p' n, where n is the unit outer 
normal to F f, of the form: 

l•n:•-[l•t( ',' ) ] (x,t), on F f. (4) 

The fight side denotes a functional of the values of 
for • ranging over F f and g from 0 to t. Hence, •- is the 
exact operator expressing the spatial and temporal nonlo- 
cality on F f. In other words, if- merely expresses the fact 
that at a given instant t the motion at every point on the 
artificial boundary F f is coupled with the time histories of 
all other points on F f. Theoretically, one could obtain 
by solving (3) in the exterior region 11 + for given values 
•PIFœ on F f and then computing the normal derivative on 
Ff. Even if this were possible the relationship (4) would 
not be too practical due to its nonlocal behavior. 

The idea then is to approximate •- so as to reduce the 
temporal nonlocality. Using geometrical optics to obtain 
an (exact) asymptotic expansion of the Laplace transform 
of •- for large values of the transform parameter s, Barry 
et al. 18 obtained a sequence of approximations for •-. The 
first three approximations are: 

1. 

(5a) 
1. 1 

-7 

+ (5c) 2 

in which g= curvature of F f, the subscript A denotes dif- 
ferentiation with respect to the arc length, and 6 is an 
arbitrary parameter that for stability must be greater than 
a certain critical value 6or. 

The first approximation is identical to the Mindlin and 
Bleich 2• plane wave approximation (PWA), while for a 
circle the second one coincides with the first-order expres- 
sion from Bayliss and Turkel. 7 Physically, (Sa) corre- 
sponds to a set of dashpots on the a•ificial boundary while 
(5b) represents a set of Voigt elements with springs and 
dashpots in parallel. It is notewo•hy that for 6:--cg, 
(5c) reduces to an approximation derived by Kdegsmann 
et al., 22 while for the special case of a circle (5c) also re- 
duces to the second-order condition derived by Bayliss and 
Turkel 7 provided one chooses 6=46c• (6c•=c/4R), where 
R is the radius of the circle. We remark that the Laplace 

transform of (4) agrees with that of (5c) through terms of 
order s-2; hence the designation of second order for the 
latter approximation. 

Equation (5c), or any of its particular cases, can be 
used directly for numerical applications, as was done in 
Ref. 8. This equation, however, has the disadvantage that it 
contains a linear combination of ½n and its time derivative 
l•n rather than being expressed in terms of lpn by itself, as 
required in a variational formulation. This has the conse- 
quence of destroying the symmetry of the original problem 
(and perhaps also decreasing the accuracy of the numeri- 

ß 

cal procedure) since (5c) requires that lpn be approximated 
numerically. 

By giving (5c) a physical interpretation borrowed 
from viscoelasticity in terms of springs and dashpots, Kal- 
livokas et aL 19 were able to show that this equation can be 
rewritten as: 

1 . g sac lp(1 ) C + lPn: C '• +•-• wxx, (6a) 

where ½(1) and ½(2) are two auxiliary variables, which are 
related to •p by 

K2C 1•(I) K2C •(I) 86 (½- )=•-• ' (6b) 

c c 

26 (•pxx--'t'(2) j,(2) -- vxx ) =• vxx ß (6c) 

Now, (6a) has the desired form. Even though it contains 
two new variables and the introduction of these variables 

adds two new equations to the formulation, the set of equa- 
tions (6) can be readily incorporated into a variational 
formulation. 

Thus the structural acoustics problem, in its exact for- 
mulation, consists in solving the equations of elastodynam- 
ics for the displacement field within •-•e and the wave equa- 
tion (3) in 11 f for the velocity potential field, under zero 
initial conditions, due to the incident pressure p0. In addi- 
tion the traction and the normal velocity must be contin- 
uous across the interface F and ½ must satisfy the radiation 
condition (4). Here, p0 and its normal derivative enter into 
the formulation through the transition conditions across F. 
For the approximate problem we replace (4) by either 
(Sa), (Sb), or (6). 

II. VARIATIONAL FORMULATION 

In order to derive a finite element approximation for 
the structural acoustics problem described in the preceding 
section it is desirable to have a variational formulation of 

the problem. In this section we develop a direct variational 
formulation for the particular case of an infinitely long 
cylindrical shell, using Hamilton's principle as a point of 
departure. We consider this canonical shell for clarity and 
convenience, so that later on we may assess the accuracy of 
our numerical approximations through comparisons with 
exact solutions. To extend the procedure to an arbitrary 
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two-dimensional elastic structure one need only use the 
appropriate expressions for the strain energy of the given 
structure in the following formulation. 

Consider an infinitely long cylindrical shell of thick- 
ness d and radius a referred to an (r, 0,z) polar coordinate 
system. The corresponding displacements of the shell at 
midsurface are to, v, and u. We assume that the incident 
wave pO acts normally to the cylindrical surface of the shell 
and is independent of the coordinate z; this gives rise to a 
plane-strain state in which the axial component of displace- 
ment u vanishes and the circumferential and radial com- 

ponents v and to, respectively, are independent of the axial 
coordinate z. We use the thin shell theory as presented by 
Junger and Feit. 23 

For this shell-fluid system, Hamilton's principle can 
be expressed as 

5 (Ts+Tœ--Vs--Vœ)dt 
1 

where 23 

( uf . n ) •JP ds 

(7) 

Ts= • Ps d (•2 -I-//12) d•[, (Sa) 

1 ;• ¾f' ¾fd•, Tf=•p f (8b) 

1 Ed l fr Vs-- 2 l_v2 a 2 [ 
(8c) 

1 ;n P2dl•' (Sd) 

Here, Ps, E, and v, are the mass density, Young's modulus, 
and Poisson's ratio of the shell, fi2=d2/12a2, subscript •b 
denotes partial derivative in the circumferential direction, 
t 1 and t 2 are two arbitrary instants, u f is the displacement 
within the fluid (fif= ¾f), and the differential of arc length 
dA is equal to adck. Equation (7) is a statement of the 
condition that the sum of the variation of the Lagrangian 
must be equal to the negative of the virtual work done by 
external agents acting on each subsystem. Here, Ts and Tf 
are the kinetic energy in the shell and fluid, respectively, Vs 
is the strain energy in the shell, and Vf the potential energy 
in the fluid. The first integral on the right is the virtual 
work done on the shell by the fluid pressure, while the 
second and third terms represent the corresponding work 
on the inner and outer boundaries of the fluid. 

If one substitutes (2), (8), and the exact boundary 
condition (4) on F f into (7), it can be shown that after: 
(a) performing the indicated variation on the left side; (b) 
integrating by parts with respect to time, as necessary un- 
der the temporary assumption that the virtual quantities 
5v, 5w, &b vanish at the two limits t 1 and t2; (C) recalling 
that po satisfies the wave equation in the fluid; and (d) 
using the divergence theorem on the term containing the 
gradient of the incoming pressure, (7) reduces to the fol- 
lowing form: 

t2 p 
[ (%+w) (6v,+6w) +B2(w**- v,) (6w**- •%) ]dg 

+ p f V•b V&b dfl + p •Sw dA + p tb&b dA- p f 

: ft'•{Lpø•Sw dA- L &b fjpø•dt dA}dt. (9) 

This variational form, which must hold for arbitrary 5v, 5w, and &b, will be the basis for the discretization process. To 
verify that (9) is the weak form of the structural acoustics problem under consideration we apply the divergence theorem 
in (9) on the terms that contain derivatives of the quantities 5v, 5w, and &b. After collecting like terms there results. 

l _ v2 a2 [ -- v&k-- wrk q- ( w&krk-- v&k ) ] •SV 
Ed 1 

w v ) 

+ pt}--p ø -'l- L ( --plpn-'I- ;•Pøndt+ptb) •50 dA •- ;rf [•bn--•-[•b]]•b d•L dt 

=0. (10) 
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This expression will be satisfied for arbitrary 5v, 5w, and 
&p if and only if: 

a 2 

• •-- ( 1 +/•2)%•--w•+/•2w•=0, on F, ( 1 la) 
a 2 ( 1 -- •)a 2 
• • %--•2%• w•2w•• Ed (pO_p•) Cs 

=0, on F, (l lb) 

C2•2•--•=0, in •f, (1 lc) 

lfoO •=•n--• Pn dt, on F, (11d) 
, 

•n-•[•] =0, on F f, (11e) 

where Cs = •E/ps( 1 --•) is the compressional wave veloc- 
ity in the shell. 

Equations (1 l a) and (1 lb) are the equations of mo- 
tion for the shell; (1 l c), the governing equation for the 
fluid, is the same as (3); and (1 l d), in view of (2a), en- 
sures that the normal velocity of the shell is equal to that of 
the fluid across the interface F. Lastly, (1 l e) is the exact 
boundary condition on F f. Notice that the last two condi- 
tions are naturM, that is, they are satisfied automatically if 
the variationM form (9) holds for arbitrary 6v, 6w, •. 
Thus, we have established that the triad [v,w,•] will be a 
solution of the exact structural acoustic problem defined by 
( 11 ) if and only if (9) holds for arbitra• 6v, 6w, •. Once 
• has been dete•ined, the fluid velocity and pressure can 
be evaluated directly from (2). 

In our approximate procedure, the exact absorbing 
boundary condition (1 l e) will be replaced by the approx- 
imate set of equations (6). [The implementation of the 
lower-order approximations (5a) or (5b) is straightfor- 
ward.] To introduce (6) into the variational fo• (9) it 
su•ces to replace the term that contains the exact value • 
of the normal derivative of • by its approximate counter- 
part and integrate the term containing second derivatives 
by parts. That is, 

f 

1 . • •c•(•) 5fidA+ 

fF •C ( •(1) 1•(1)) 
•(1) d• f • •A_•2) 

1 _• •2) dA. (12) 
It is important to observe that with the replacement (12) 
the variational operator in (9) will lead, upon spatial dis- 
cretization, to a symmetric system of ordinary differential 
equations. 

III. FINITE ELEMENT DISCRETIZATION 

The spatial discretization of (9) with the replacement 
shown in (12) involves using standard finite element piece- 
wise polynomial approximations for the displacements v 
and w on F, the velocity potential •b in the closure •f of 
•f, and the auxiliary function lp (1) on I "f, as follows: 

¾(x,t)--ar(x)v(t), (13a) 

w(x,t)=ar(x)w(t), (13b) 

•p(x,t) =igT(x) tp(t), (13C) 

lp (1) (x,t) -- •T(x) lp(1) (t), (13d) 

in which, a,/3, and y are vectors of global shape functions; 
v, w, •b, and •b (1) are the unknown nodal displacements, 
potential velocities, and auxiliary functions, defined over 
F, •f, and 1 •f, initially at rest. The global shape functions 
a(x) have continuous first derivatives on F; ig(x) is con- 
tinuous over •f, and y(x) corresponds to the restriction to 
F f of/•(x). On the other hand, since •p and lp (2) are related 
only through their second tangential derivatives, we ex- 
press the tangential derivative of •p(2) via: 

•p(ff ) (x,t) =•r (x)rl( t) , (13e) 

rather than approximating lp (2) directly, in order to avoid 
singular matrices in later calculations. Here, •(x) need be 
only piecewise continuous over F f. 

The corresponding virtual quantities /5¾(x), /Sw(x), 
&p(x), •p(1)(x), and •p(x2)(x) are approximated by the 
same global functions as their respective trial functions, 
i.e., 

(5¾(X) =ar(x)(SV, (14a) 

(SW (x)= aT(x) (SW, (14b) 

5•p(x) =15T(x) 6tp, (14C) 

151p(1 )(X)-- yT(x) 151p(1), (14d) 

(14e) 

After substituting (13) and (14) into (9) with (12), and 
noting that •Sv, •Sw, &b, &b (i), and •5•/are arbitrary, there 
results a system of ordinary differential equations with the 
following structure: 

M•+ C•+KU=F, (15) 

T T where, U r = (vT, wT, I•,I•Tf,I•i.5,1• (1) ,7 ), •nd Or, 
Oaf, and 0rf denote partitions of •p over F, II f, and r f, 
respectively; M, C, and K are the mass, damping, and stiff- 
ness matrices of the system, and F(t) represents the effec- 
tive wave excitation. 

The matrices M, C, and K have the following form: 
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M• 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

M•a•r 
0 

0 

0 

0 0 0 0 

0 0 0 0 

M•ns 0 0 0 

0 0 0 0 

0 0 0 0 

(16a) 

C• 

o 

o o o o o 

o o o 

o o o 

o o o 

o o •rS•r• 
0 0 0 

0 0 0 0 0 

0 0 

0 0 

q(1)¾,(1) 0 
o 

(16b) 

K• 

K•v 

o o 

o o 

o o 

o o 

o o 

o 

o 

o 

o . 

o 

(16c) 

The matrices M and K consist of three sets of block- 

diagonal matrices, each representing a different part of the 
system. The individual matrices within each block are des- 
ignated by the superscripts s, f, or a, to indicate explicitly 
that they correspond to the structure (shell), the fluid, or 
the absorbing boundary. Thus the top left blocks are the 
standard mass and stiffness matrices associated with the 

shell, the middle blocks contain the corresponding sets for 
the fluid, and the bottom right block in (16b) and (16c) 
represents the effective damping and stiffness of the absorb- 
ing boundary. 

Notice that the only coupling in the M and K matrices 
occurs between the fluid and the absorbing boundary. The 
shell and the fluid are coupled only through submatrices 
C•w•r and C•'f•w of the matrix C. From (9), (13b), and 
(13c) these matrices are defined by 

C•W•r= ,fs fratraZ ' (%rw)r=p 

[Corresponding expressions for all the other submatrices 
that appear in (16) can be obtained readily from (9) with 
(12) and (13).] 

Even though the submatrices C•r and C•'f•w operate 
on the first derivative of U there is no energy dissipation 
associated with them since the idealized structure has been 

taken to be undamped and the fluid is inviscid. The only 
damping in the actual, unbounded; system comes from the 
radiated energy, which, in our formulation, is modeled 
through the bottom right block of C associated with the 
absorbing boundary. 

From (15) and (16) it is seen that the absorbing 
boundary is characterized completely by the damping and 
stiffness matrices C • and K a, defined by 

•rS•rS 0 

0 •(•)•(•) 
0 0 

•rS•rS /•rf½ (1) 
/•(1)lpr f /•(1)lp(1) 
/•n•rS 0 

, 

•rS• 
(18) 
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as there is no inertia associated with our approximate ab- 
sorbing boundary. Since C a and K a are local and symmetric 
they can be constructed element by element and incorpo- 
rated into the equations of motion by standard assembly 
techniques using existing finite element software. All that is 
necessary is to incorporate the element matrices c a and k a 
corresponding to the global C a and K a into the finite ele- 
ment library of an existing software package for interior 
problems. The same finite element software package can 

then be used to solve the complete system of equations 
(15), in either assembled form, node-by-node, or element- 
by-element, by means of its own step-by-step time integra- 
tor. 

To illustrate that the element matrices c a and k a have, 
indeed, a simple form, we provide below the corresponding 
explicit element matrices for the particular case of a circu- 
lar absorbing boundary modeled by piecewise linear isopa- 
rametric elements: 

8h 4h -- 2h -- h -- 12R -- 12R ] 
4h 8h -h --2h 12R 1 

1 --2h --h 2h h 0 

ka = •-• --h --2h h 2h 0 ' 

--12R 12R 0 0 --8R2h --4R2h[ 
--12R 12R 0 0 --4R2h --8R2h] 

(19a) 

Rh 

16 8 0 0 0 0 

8 16 0 0 0 0 

0 0 2 1 0 0 

0 0 1 2 0 0 

0 0 0 0 --8R 2 --4R 2 

0 0 0 0 --4R 2 --8R 2 

(19b) 

where h denotes the element length and R is the radius of 
the absorbing boundary (Fig. 2). These matrices corre- 
spond to the specific value of •5--c/R (----46cr) in (12), thus 
ensuring the stability of the absorbing boundary condition, 
and hence, of the entire system (16). 

The (6 X 6) matrices in (19) are associated with the 
six degrees of freedom corresponding to the nodal values of 
the three variables lprf , lp (1), and lp• 2) at each end of a 
two-noded linear element. This impedance element can 
also be viewed as a six-noded element with one degree-of- 
freedom per node, as per Fig. 2. The potential function 
•brf is associated with the nodes 1 and 2, whereas the aux- 
iliary variables •b (•) and lp? ) are associated with the nodes 
3, 4 and 5, 6, respectively. It should be observed that even 
though the six nodes in the impedance element are shown 
in Fig. 2 as occupying distinct locations for ease of visual- 

•,//•e•nts 
FIG. 2. Impedance element. 
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ization, in reality nodes 3, 5 and 4, 6 coincide with nodes 1 
and 2, respectively. Alternative matrices k a and c a corre- 
sponding to higher-order polynomial approximations can 
be constructed readily by selecting different shape func- 
tions in (13). 

It should also be noted that except for a change in the 
physical meaning of the nodal quantities, the structure of 
the absorbing boundary element is such that it can be used 
with either potential-based formulations, as the one pre- 
sented herein, or with pressure-based formulations where 
the total pressure is the primary unknown field quantity 
within the fluid domain. In the latter case, however, the 
symmetry of the formulation is lost. We complete our de- 
scription of the finite element discretization by giving some 
details about the forcing function F in (15). From (9) it is 
clear that F has nonzero values only for the degrees of 
freedom associated with the nodal shell radial displace- 
ments and the fluid velocity potential, i.e., F r 

( r r r ,0r,0r,0•,0•), where = 0 ,F w,FCr 

Fw(t) = •r pøa ds, (20a) 
FOr ( t) = pO• dt fl ds. (20b) 

We recall that for the scattering problem discussed thus far 
p0 and pø n are the pressure and the normal derivative of the 
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pressure of the prescribed incident wave on the wet surface 
F. If one is interested in the radiation problem, one need 
only interpret p0 in (20a) as the normal pressure applied 
directly on the shell and set F•r equal to zero. The radiated 
pressure pr in the fluid can be obtained directly from the 
solution of (15) as 

(21) 
Clearly, (15) can be solved by standard step-by-step inte- 
gration schemes; in this paper the numerical results are 
obtained by the trapezoidal rule. In the case of a time- 
harmonic steady-state excitation F=•e i•'t, (15) can be 
used directly in the frequency domain by solving the sys- 
tem of algebraic equations 

( -- co:M + icoC + K) •I = •, (22) 

which results from seeking a solution of the form U = •e icøt. 

IV. NUMERICAL EXAMPLES 

Our numerical experiments aim primarily at assessing 
the accuracy and validity of the suggested methodology 
with particular focus in the performance of the impedance 
element (IE) in the transient regime. To this end simple 
canonical systems are considered in two specific situations. 
One corresponds to a homogeneous elastic shell submerged 
in water and the other consists of the same homogeneous 
shell but with an added concentrated line mass equal to 
one half the mass of the shell, per unit length. The relative 
properties for the homogeneous shell are: cs/c=3.53, 
ps/p=7.65, v=0.3, and d/a=O.01. 

We consider both an exterior excitation in the form of 

a traveling plane wave that impinges upon the shell (scat- 
tering problem) and an interior excitation in the form of a 
line force acting on the shell (radiation problem). For 
completeness, we also consider the scattering problem for 
the limiting rigid case (cs/c= oo ). In all cases the time 
signal is represented by a finite-duration modified Ricker :ø 
pulse as shown in Fig. 3(a), where Wr is the dominant 
frequency of the excitation; a unit peak amplitude has been 
considered in this figure. The amplitude of the correspond- 
ing Fourier transform is shown in Fig. 3 (b). The numeri- 
cal results in this section were obtained by using piecewise 
cubic Hermite polynomials for the shell, eight-noded qua- 
dratic elements for the fluid, and nine-noded quadratic el- 
ements for the boundary elements. 

Figure 4 depicts the normalized backscattered pres- 
sure directly on a rigid circular scatterer as a function of 
normalized time, for different values of the dimensionless 
wave number k,a, where kr=wr/c is the dominant wave 
number of the Ricker pulse. Notice the different horizontal 
and vertical scales for the various wave numbers. The dot- 

ted lines represent the numerical solutions of the problem 
when the second-order circular absorbing boundary (6) is 
placed at a distance r/a = 1.2 from the center of the scat- 
terer, i.e., at only 0.2a from the wet surface of the scatterer. 
(The number of radial and angular elements, nr and no, 
used for each wave number are indicated in the figure cap- 
tion.) These solutions are to be compared against the cor- 
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FIG. 3. (a) Finite-duration modified Ricker pulse; (b) Fourier transform 
of (a). 

responding exact solutions, shown by solid lines, obtained 
by inversion via FFT of the exact frequency-domain solu- 
tion of the original exterior problem. The two sets of curves 
essentially agree with each other; by moving farther the 
absorbing boundary to r/a = 1.6 the two solutions become 
indistinguishable. Also shown for comparison in this figure 
are the solutions obtained by using the plane wave (PWA) 
and spring-dashpot (SD) approximations for the absorb- 
ing boundary, (5a) and (5b), respectively. Clearly, the 
PWA and SD approximations are unacceptable at low fre- 
quencies. Their accuracy increases with the wave number 
k,a, but in all cases the solution for the impedance element 
(IE) is closer to the exact solution, at negligible additional 
computational cost. 

Next we consider the response of the homogeneous 
shell as well as that of the shell with the concentrated line 

mass to an incident plane wave for a dominant wave num- 
ber k,a = 4. Here and in the remainder of the paper we use 
only the second-order boundary condition (6). The top 
half of Fig. 5 shows the normalized scattered pressure 
computed at different points on the wet surface of the shell 
and within the fluid on the absorbing boundary. (The 
points are identified by solid bullets in the inserts shown in 
the figure.) The boundary is located at r/a= 1.2 and the 
incident wave propagates from east to west as shown. The 
phase lag between the response at the various points is 
clear from this figure. In addition to the numerical approx- 
imations the response at the same points has also been 
computed by inverting the exact frequency-domain solu- 
tion via the FFT. (The calculations were carried out for 
values of tc/a up to 100 with a time step Atc/a=O. 1, but 
here the response is shown only up to 16 since the response 
practically dies out beyond this value, especially for the 
homogeneous shell.) Again, the two approximate and the 
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FIG. 4. Backscattered pressure directly on a rigid scatterer, exact and 
FEM solutions; (a) n,=2, no=12, (b) n,=2, no=12, (c) n•=2, no=16, 
(d) n•=2, no=32, (e) n•=2, no=32, (f) n•=4, no=64. 

exact solutions practically coincide. The corresponding ap- 
proximate solutions for the shell with the concentrated 
mass (denoted by an open circle) are shown on the bottom 
half of Fig. 5. No significant differences are apparent in the 
scattered pressure either on the wet surface or within the 
fluid itself, due to the added mass. Interestingly, one can 
recover the normalized frequency spectrum that character- 
izes a particular structure by applying an FFT to the tran- 
sient response and then dividing the result for each fre- 
quency by the corresponding amplitude of the Fourier 
transform of the Ricker pulse [Fig. 3 (b)]. The result of this 
transformation on the scattered pressure is shown on Figs. 
6 and 7 for the uniform shell and the shell with the con- 

centrated mass, respectively. It is noteworthy that the scat- 
tered pressure at a distance of only 0.2a from the scatterer 
has the same characteristics as the far-field response, in- 
cluding the scallop-like shape of the backscattered pressure 
with dips at normalized frequencies ka = ncfc (n = 1,2,... ). 
Here k=o•/c, and the dips represent a dynamic absorber 
effect corresponding to the natural frequencies of the shell 
in vacuo when it is constrained to deform only tangentially 
(without deforming in the radial direction), i.e., essentially 
as a confined membrane. Several small peaks may be ob- 
served directly on the surface of the shell, corresponding to 
resonant frequencies of the shell-fluid system. The pres- 

FIG. 5. Scattered pressure at various points (denoted by solid bullets) on 
and near a shell due to an incident plane wave; n,= 8, no= 16, r/a= 1.2, 
k•=4; (a), (b), (c) homogeneous shell; (d), (e), (f) shell with con- 
centrated line mass (inhomogeneous shell). 

ence of resonant frequencies is more pronounced for the 
shell with a mass (Fig. 7). Here resonant frequencies are 
quite distinct, though the peaks are highly attenuated, 
away from the shell. 

Figures 8 and 9 pertain to the radiated pressure field 
generated within the fluid when a horizontal concentrated 
line load acts directly on the shell, as indicated in the in- 
serts. Results for the homogeneous shell are shown on Fig. 
8 while those on Fig. 9 are for the shell with a concentrated 
mass. These results were obtained by placing the absorbing 
boundary at r/a= 1.6. The need for using a larger buffer 
zone relative to that used for the scattering problems (r?a 
= 1.2) is that higher "modes" are excited by the applied 
load than by an incident wave, within the frequency range 
of interest. To verify that r/a= 1.6 provides a sufficient 
buffer the same problems were solved a second time, but 
with the absorbing boundary at r/a= 2, with no change in 
the results. The most striking difference between the radi- 
ation and the scattering problems is, of course, the long 
duration and large amplitude of the radiated pressure di, 
rectly outside the shell. Another interesting feature is that 
the added inertia due to the concentrated mass has a sig- 
nificant effect in reducing the amplitude of the radiated 
pressure on the wet surface. By contrast with the homoge- 
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FIG. 6. Normalized Fourier transform of the scattered pressure for the 
homogeneous shell [Fig. 5(a), (b), (c)]; (a), (b), (c) points on surface; 
(d), (e), (f) points at r/a = 1.2. 

FIG. 7. Normalized Fourier transform of the scattered pressure for the 
inhomogeneous shell [Fig. 5(c), (d), (e)]; (a), (b), (c) points on sur- 
face; (d), (e), (f) points at r/a = 1.2. 

neous shell, the interference provided by the concentrated 
mass causes the waves circumnavigating the shell to be 
radiated more strongly into the fluid. 

Figure 10 shows the radial and tangential displace- 
ments at various points of the homogeneous shell corre- 
sponding to the radiation problem for the homogeneous 
shell. Observe that the shape of the initial pulse of radial 
displacement at the point of application of the load is es- 
sentially equal to that obtained by integrating with respect 
to time the expression for the applied pressure, as expected, 
and that after a period of relative quiet there is a construc- 
tive interference of the waves propagating around the cir- 
cumference. The tangential displacement is shown only at 
the north and south points as the east and west points are 
nodal points. Notice also the difference in scale between 
the radial and tangential displacements, confirming that 
the response of the shell is predominantly in the radial 
direction. 

We next perform the same normalized FFT procedure 
on the results shown in Figs. 9 and 10 for the radiation 
problems as we did previously for the scattering problem. 
This process results in Figs. 11 and 12, respectively. Con- 
trary to the results in Fig. 7 here it is seen that the radiated 
pressure on the wet surface exhibits a discrete set of large 
peaks. These correspond precisely to the resonant frequen- 
cies of the shell-fluid system, i.e., the frequencies for which 

the real part of the system's impedance vanishes. 
Warburton 24 has given the following formula for approxi- 
mating the various resonant frequencies, co n of the im- 
mersed shell, under the assumption that the modes of the 
shell immersed in the acoustic fluid are the same as those 
for the shell in vacuo: 

con = fin 1 + n2 + 1 p• ' (23) 

Here fl n is the nth natural frequency of the shell in vacuo. 
For ka between 0.8 and 4 the locations of the peaks of the 
radiated pressure generated by the homogeneous shell 
practically coincide with the values given by the preceding 
formula, thus providing another verification of the validity 
of the new methodology. However, the accuracy gradually 
degrades as the wave number, and hence the mode num- 
ber, increases, due to the limited number of elements used 
in the angular direction. For the shell with the concen- 
trated mass the resonant frequencies are, as expected, 
slightly lower than the corresponding ones for the homo- 
geneous shell. Observe that the resonant frequencies cor- 
responding to the odd number of wavelengths are absent 
from the records for the north and south points, as these 
are nodal points. However, once the concentrated mass is 
introduced these are no longer nodal points. 
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FIG. 8. Radiated pressure at various points (denoted by solid bullets) of 
a homogeneous shell due to a line load applied directly on the shell; nr = 8, 
no--64, r/a= 1.6, k,a=4. 
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FIG. 10. Normalized radial and tangential displacements at various 
points (denoted by solid bullets) of a homogeneous shell loaded with a 
line load; nr=8, n0--64, r/a= 1.6, k/•=4; (a), (b), (c) radial displace- 
ments; (d) tangential displacement. 
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FIG. 9. Radiated pressure at various points (denoted by solid bullets) of 
the inhomogeneous shell due to a line load applied directly on the shell; 
nr=8, n0=64, r/a= 1.6, k/•=4. 

Turning to the radiated pressure within the fluid one 
can make the following observations from Figs. 11 (d), (e), 
(f), and 12(d), (e), (f), 

( 1 ) Even at a short distance of 0.6a from the perfect 
shell, the resonant behavior of the shell is no longer dis- 
cernible [Fig. 11 (d), (e), and (f) ]. While this is the ex- 
pected behavior in the far field, it is somewhat interesting 
that it is already apparent near the shell. 

(2) For the scattering problem, we mentioned earlier 
that within the frequency range considered, the resonant 
frequencies of the fluid-structure system play no significant 
role in the response. Only the constrained tangential fre- 
quencies of the shell in vacuo are relevant. It is interesting 
that the same is true for the radiation problem for the 
homogeneous shell for a listener located even at a short 
distance away from the shell. 

(3) The behavior is drastically different for the shell 
with a concentrated mass. In this case the radiated wave 

carries clear information about all the resonant frequencies 
of the shell-fluid system. 

(4) By comparing Fig. 12 with Fig. 7 one is led to 
conclude that for purposes of structural identification the 
radiated pressure may be more useful than the scattered 
pressure. The resonant frequencies of the fluid-structure 
system, which may be regarded as the system's signature, 
can be determined quite accurately from the records of the 
radiated pressure obtained at a single listening point. The 
noise present in Figs. 6, 7, 11, and 12 at the lower end of 
the spectrum is mainly due to the truncation of the time 
signal for the inversion process. 
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FIG. 11. Normalized Fourier transform of the radiated pressurge for the 
homogeneous shell (Fig. 8 ); (a), (b), (c) points on surface; (d), (e), (f) 
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FIG. 12. Normalized Fourier transform of the radiated pressure for the 
inhomogeneous shell (Fig. 9)- (a), (b), (c) points on surface; (d), (e), 
(f) points at r/a--1.6. 

V. CONCLUDING REMARKS 

In light of the excellent agreement between the ap- 
proximate and exact solutions obtained for the test prob- 
lems, it appears that the new methodology based on finite 
element spatial discretization, standard step-by-step time 
integration, and a novel absorbing boundary element, pro- 
vides a practical and accurate means for solving complex 
transient radiation and scattering problems in structural 
acoustics directly in the time domain. This method can 
also be used for obtaining frequency domain solutions ei- 
ther directly by solving (22) for each frequency, or indi- 
rectly via FFTs as it was done herein. The novel absorbing 
boundary element permits one to retain the familiar form 
of the discretized equations of motion for the structure 
with their sparsity and symmetry intact. Since the element 
is completely represented by a pair of local symmetric stiff- 
ness and damping matrices, the entire procedure lends it- 
self to easy incorporation into existing finite element codes 
for interior problems. It also allows for ready paralleliza- 
tion that will best exploit the main features of particular 
advanced architecture computers. 

In this paper we have concentrated on the near-field 
behavior of the radiated and scattered pressure. Once this 
behavior has been established, one need consider only the 
fluid in order to determine the far-field behavior, using 

time-domain ? or frequency-domain approaches. One of the 
major objectives of this paper was to describe the overall 
merits of the proposed methodology. For this reason ca- 
nonical structures with simple geometries were used both 
in the theory and in the numerical illustrations. If, how- 
ever, one uses the general theory of elastodynamics to 
model the submerged structure, the methodology can be 
applied directly to arbitrary elastic structures (damping 
characteristics can be introduced without difficulty). Also, 
the present study was restricted to the analysis of elastic 
structures submerged in a full space. The present formula- 
tion for the fluid, however, can be applied without modi- 
fication to analyze a possible inelastic structure submerged 
in a half-space (free-surface or rigid bottom) provided the 
problem conditions are such that the fluid can still be ide- 
alized as a linear acoustic medium and the free-surface 

boundary condition can be approximated by a pressure 
release condition. Based on similar procedures, extensions 
to three-dimensional problems are also possible. These will 
be addressed in future communications. We hope this pa- 
per has helped show that the proposed methodology pro- 
vides a computationally powerful tool that will assist in 
gaining physical insight and in solving large problems in- 
volving complex submerged structures. 
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