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Clamped Plates on Pasternak-Type
Elastic Foundation by the
Boundary Element Method

A boundary element solution is developed for the analysis of thin elastic clamped
plates of any shape resting on a Pasternak-type elastic foundation. The plate may
have holes and it is subjected to concentrated loads, line loads, and distributed
loads. The analysis is complete, i.e., deflections, stress resultants, subgrade reac-
tions, and reactions on the boundary are evaluated. Several numerical examples are
worked out and the results are compared with those available from analytical solu-

tions. The efficiency of the BEM is demonstrated and discussed.

1 Introduction

Biparametric elastic foundation models have been
developed to overcome the inadequacy of Winkler’s model in
describing the real soil response and the mathematical com-
plexity of the three-dimensional continuum. They are
characterized by two independent elastic constants and they
are derived either as an extension of the Winkler model by
assuming interaction between the spring elements (Filonenko-
Borodich, 1940; Hetenyi, 1946; Pasternak, 1954; Kerr, 1964)
or by simplifying the three-dimensional continuum (Reissner,
1958; Vlasov and Leontiev, 1966). Among them, the
Pasternak-type foundation model is the most natural exten-
sion of the Winkler model for homogeneous soil deposit and
the next higher approximation to the foundation response
(Kerr, 1964). Although this foundation model can adequately
approximate the soil-structure interaction, the analysis of
plates resting on it must overcome practically insurmountable
mathematical difficulties when a general analytical solution to
the governing boundary value problem is sought. Thus, only
plates with simple geometry and loading have been treated
analytically, such as circular plates with axisymmetric loading
or rectangular plates with uniform loading. On the other hand
approximate methods (Galerkin’s, Ritz’s) and numerical
methods (finite difference, finite element) have also been used.
However, the application of these methods has been restricted
to simple geometries. An extensive and lucid literature on the
subject at hand is found in Vlasov and Leontiev (1966) and
Selvadurai (1979). Recently (Balas et al., 1984), a boundary in-
tegral equation formulation of the problem has been presented
with application to a circular plate under a concentrated force
at the center.

In this investigation a boundary element solution to the
problem of thin elastic clamped plates resting on a Pasternak-
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type elastic foundation is developed. The shape of the plate is
arbitrary and it may have holes while its boundary may have
corners. The plate may be subjected to any kind of loading
(concentrated loads, line loads, distributed loads). The
analysis is complete in the sense that deflections, stress
resultants, and subgrade reactions at interior points as well as
reaction forces and moments on the boundary are fully
evaluated. The numerical technique presented herein for the
solution of the coupled boundary singular integral equations
and for the computation of all the field quantities is very effi-
cient. In case of linearly varying loading, the efficiency of the
method is improved by converting the domain integrals into
line integrals, thus reducing drastically the required computer
time. Numerical results are obtained for circular plates, rec-
tangular plates, and plates with a composite shape. They are
compared with those obtained from existing analytical solu-
tions. The accuracy of the results is very good, notwithstand-
ing the complexity of the kernel functions, which, in this case,
are real and imaginary parts of Hankel functions with com-
plex argument. Finally, the solution to plates resting on a
Winkler foundation as well as to plates not resting on a
subgrade are obtained as special cases for appropriate values
of the elastic constants.

2 Formulation of the Boundary Value Problem

Consider a thin elastic plate of thickness #, occupying the
two-dimensional multiply-connected region R of the plane,
bounded by the M+1 curves Cy, C;, C,, ..., Cy and
resting on a Pasternak-type elastic foundation with subgrade
reaction modulus & and shear modulus G. The curves C;
(i=0,1, 2, ... M)may be piecewise smooth, i.e., the bound-
ary of the plate may have a finite number of corners (Fig. 1).

Assuming that the plate maintains contact with the
subgrade and that there are no friction forces at the interface,
its deflection w (P) at any point PeR satisfies the following dif-
ferential equation (Kerr, 1964)

Lw=f(P)/D (nH

where f(P) is the transverse loading, D is the flexural rigidity
[D=EHh*/12(1 — »*)] of the plate and L is an operator defined
as
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In this case the interaction pressure p between plate and
subgrade is given as

p=kw~GV?w 3
the deflection of the plate must satisfy the

L=v* vé=(v?2 @

Moreover,

M
following conditions on the boundary C= UC,» of the plate
i=0

aw
w=0, n 0
where dw/0n denotes the directional derivative along the out-
ward normal to the boundary.

The bending moments M, and M,, the twisting moment
M,,, and the effective shear force ¥, acting on the boundary
of the plate are related to the deflection w by the following
relations (Katsikadelis and Armenakas, 1984a).

M,=-Dv?w M,=—vDViw

(4a,b)

(5a,b)

a
M, =0 V,= ~DHV2w (5c,d)

3 Integral Representation of the Solution

The integral representation of the solution can be obtained
by using the Green identity for the operator L and the fun-
damental solution to equation (1).

The Green identity for the self-adjoint operator L is:

a ov
SS (va—va)da=S [v——V w——noVV2w
R on an

(©6)

9 o2 2 " el

Yon Y Ut VT D e T D Y on
where 9/9n denotes the outward normal derivative.

Relation (6) is readily obtained by combining the Rayleigh-
Green identity (Katsikadelis, 1982) for the biharmonic
operator with the classical Green identity for the harmonic
operator (equation (A7) in the Appendix). Relation (6) is valid
for any two functions w and v, which are four times con-
tinuously differentiable inside the region R and three times
continuously differentiable on its boundary C.

The fundamental solution to equation (1) is a singular par-
ticular solution of the following differential equation

Lv=6(Q—P)/D 0]

in which 8 (Q— P) is the Dirac é-function, Q is the field point,
and P is the source point. The nature of the solution to equa-
tion (7) depends on the quantity u = G?/4kD. In this investiga-
tion only the case p<1 is considered which seems to be valid
for usual foundation materials (Kerr, 1964). For these values
of u the solution to equation (7) is given as (Vlasov and Leon-
tiev, 1966):

G 0 G d
ow w v]ds

v=v(P,Q)=v(Q,P)= ADSino0 Re[H‘”(ﬁp)] ®
where

0="D7k, p=r/t (9a,b)

B=cosf +ising, 20=arctan(—~1/p— 1) 9c,d)

r=1P+« Q| is the distance between the points P, Q and

Re[H{(Bp)] denotes the real part of the zero order Hankel
function of the first kind. Notice that when G approaches 0, it
can be shown that v(P,Q) reduces to — (2/2xD)kei(p) which
is the fundamental solution to the equation governing the
plate resting on a Winkler-type elastic foundation (Kat-
sikadelis and Armenakas, 1984a, 1984b).

From equation (8) it can be shown that
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Fig. 1 Two dimensional region R occupied by the plate

v ¢

—_— (10a)
an 4Dsin20

V' (po)cose

V2= U(p) (106)
4Ds

Dsin26

1
9 V2y=——"—U’(p)cosep (10¢)

on 4¢Dsin20

in which ( )’ denotes differentiation with respect to the argu-
ment p, ¢ is the angle between r and n (see Fig. 1), and

V(o) =Re[HP(Bp)] (11a)
V'(p) =Re[~BH (Bp)]
= —cosORe[H{V(Bp)] + sinBIm[H (Bp)] (1156)
U(p) =Re[-B2HP(Bp)]
= —cos20Re[HP (Bp)] + sin20Im{HP(Bp)] (11c)
U’ (p) = Re[B*HP(Bp)]
= cos30Re[H{"(Bp)] — sin30Im[H{D (Bp)] (11d)
The real valued functions Re[H!P(Bp)], Im[H(Bp)l,

Re[H{V(Bp)], Im[H{Y(Bp)] involved in the aforegoing relations
(11) are evaluated, for both small and large arguments, from
their series expressions which are given in Zinke (1959).

It can be shown that for p—0 it is

dmV (p)=1-20/m, AmV'(p)=0 (12a,b)
p—0 p—0
1
AmU (p) ~ fnp, timU’ (p) ~— (12¢,d)
p—0 p—0 Iy
(12e,/)

limlpV’'(p)] =0, lmlpU’ (p)] =2sin28/ 7
p—0 p—0

Applying equation (6) for the deflection of the plate w and
the fundamental solution v, which satisfy equations (1) and
(7), respectively, using relations (8, 10a, 114) and the boun-
dary conditions (4a, b) the integral representation for the

- deflection w(P) is obtained as

wp = [ v @)o,-D| _1w(Pa¥@

v (P,q) 2
on, 4sin26
where the following notation has been introduced for
conciseness

8(q) |ds, = (F(P)=J,(P) + 1y ()] (13)
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B()=VW(a), ¥(@)=—Viw(g)  (14ab)
an,

rey=—1 ([ v d 1

~—{. Voro)r(@sg (15)
1@ =| Vv @ads,

BPY= | _os V' 0s)® (@), (16,5)

=|P-ql/t, w=%r

Notice that in equation (16b) the relation coseds=rdw has
been used (Katsikadelis, 1982). In the aforegoing relations,
points inside the region R are denoted by uppercase letters,
while points on the boundary C are denoted by lowercase let-
ters. Moreover, the subscript of the elements do, and ds in-
dicates the point that varies during integration. Furthermore,
d/0n, denotes that the normal derivative is taken with respect
to point g.

From relations (5) it is seen that the boundary quantities
V2w and 8/0n V2w appearing in the line integral of equation
(13) have a direct physical meaning.

4 Derivation of the Boundary Integral Equations

In equation (13) the loading function f(Q) is given at every
point in R. Moreover, the function v(P,Q) and its derivatives
are obtained from equations (8) and (10). However, the func-
tions ¥(g) and ®(q) are not known at the points of the
boundary C. These two unknown boundary quantities are
established from the solution of two coupled boundary in-
tegral equations which are derived using the procedure
presented in Katsikadelis and Armenakas (1984a). Thus, the
first boundary integral equation is established from equation
(13) by letting point P approach a point p on the boundary C.
The existence of the line integrals in equation (13) for P=peC
and their continuity as P—peC can be easily concluded from
relations (12a,b). Consequently, taking into account that
w(p)=0 the first boundary integral equation is obtained as

~| ¥ G2 @du,+ | V¥, =F@)  an

The second boundary integral equation is obtained by ap-
plying the operator V2 on both sides of equation (13) and by
letting point P approach a point p on the boundary. Thus

v = || v2m.01(Qde

—Dbim Sc v2u(P,q)¥ (q)ds,

P—p

18)

By virtue of equations (10b,¢) and (12¢,d) it is seen that, the
first line integral on the right-hand side of equation (18)
represents a single layer potential due to a mass distribution
¥ (g), while the second line integral represents a double layer
potential due to a mass distribution ® (g). Hence, both line in-
tegrals exist for P=peC. Moreover, the first line integral is
continuous, while the second line integral exhibits a discon-
tinuity jump as P—peC (Courant and Hilbert, 1953) which is
equal to

a
+D€im§ —V2u(P,q)®(q)ds,
P-p dC an

d
; 2
fim Sc I Vv (P,)®(q)ds,

P=p

a ) _ 2r—a ’
~| sovwat@ds, =S e (9)

2xD
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Fig. 2 Discretization of the boundary

where « is the angle between the tangents at point p (see Fig.
1). It is & = 7 when the boundary is smooth at point p. Taking
into account equation (19), the second boundary integral
equation is obtained from equation (18) as

2asin26
200+ | U2 (@)as,
~{ 2wV ) @y =G ) 20)
in which
1
6 =—-| |, Uo,0)(Qdog e

For any given geometry of the clamped boundary of the
plate, the functions ®(s) and ¥ (s) may be obtained from the
solution of the coupled boundary integral equations (17) and
(20). Once the functions ®(s) and ¥ (s) are known, the solu-
tion to the boundary value problem (equations (1) and (4))
may be obtained from equation (13).

5 Numerical Analysis

The numerical solution of the coupled boundary singular in-
tegral equations (17) and (20) is accomplished using the
boundary element approach. In this approach the boundary is
divided into N intervals, not necessarily equal, referred to as
boundary elements. The end points of each element are refer-
red to as extreme points. Each boundary element is approx-
imated by a given curve (straight line, parabolic arc, etc.) and
the unknown boundary functions ®, ¥ are approximated by a
polynomial (constant, linearly varying, parabolically varying,
etc.). The points on which the unknown functions are
evaluated are referred to as nodal points.

In this investigation each boundary C; is divided into N;
elements (i=0, 1, . . . ,M) not necessarily equal. The center of
the elements or other points near them are taken as their
nodes. The elements on the external boundary are numbered
consecutively counterclockwise while on the internal bound-
aries clockwise (Fig. 2). The values of & and ¥ are assumed
constant on each element (step function assumption) and
equal to their values at the nodal point of each element.
Moreover, the curved elements are approximated by parabolic
arcs (Katsikadelis and Sapountzakis, 1985). This approxima-
tion reduces appreciably the error due to the approximation of
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curved boundaries by straight line elements. Denoting by &,
and ¥; the values of & and ¥ at the jth nodal point (i.e., the
nodal point of the j element), the integral equations (17) and
(20) are transformed into the following system of 2V

M
= E N,-) simultaneous algebraic equations
i=0

MZ’z\

N
Ebkj\llszk (k=12,...,N) (22a)
/=l j=
N
) (c,q Zsin26o,,) @, + 2 ¥, =G,
=
(=12, .. N (22b)
in which é,; is the Kronecker delta and
Opj= — Sj Pkq V'(qu)dwq, bkj = Sj V(qu)dsq (23a,b)
cy= = Sj oigU" r)derg, dy= Sj U(peg)ds, (23¢,d)
1
Fe=—-| Vo) (0day,
1
Ge=—-{| . Utoiprr(01deq (@3e)

~ql/t, prg=lp,—Ql/,
gej-element
In relations (234, b, ¢, d), the symbol

Pkg = lpk QERapkECy

_ denotes integration
J

on the j-element; point p, is a nodal point.

Evaluation of Line Integrals «,;, by;, c;;, and d,;. When
k+#j (p#0), these integrals can be evaluated using any of the
known numerical techniques for the evaluation of line in-
tegrals. In this investigation the curved boundary element is
approximated by a parabolic arc passing through its nodal and
extreme points and its value is computed using eight-point
Gaussian quadrature. When k =, the argument p vanishes for
q =py. From relations (124), (12¢), and (12f) it is seen that the
line integrals oy, by, and ¢y, are not singular and conse-
quently they are evaluated as in the case k#j. However, as it is
seen from relation (12c¢), the line integral d, has a logarithmic
singularity and it is evaluated using the technique presented in
Katsikadelis and Armenakas (1985).

Evaluation of Double Integrals F, and G,. We may
distinguish the following four cases:

a) The plate is subjected to a concentrated load P at a
point Q,. In this case, the loading function f(Q) can be

represented as

f(Q)=P5(Q—-Q,) 24

Using relation (24) the values of the integrals (23e,f) are

P
—V(kao), G= (25a,b)

D
where pio = D= Q, I/L
b) The plate is subjected to a line load p(s) distributed

along a curve L*, In this case the double integrals (23e,f) are

P
Fp= 7U(ka0)

evaluated using relations (254, b) from the following line in-.

tegrals along the curve L*

1 |
Fe=—-{ . p(@V(oi0)ds,,

1 |
Ge=—-| . (@ UG)as, (26a,b)

where pyp = D —Q1/f, QeL*.
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¢) The plate is subjected to a uniform or a linearly varying
load distributed over an area R* S R of the plate bounded by a
curve C*. In this case, it is v2f=0 and by virtue of relations
(A6), (A7), (48), and (A49) in the Appendix the double in-
tegrals (23e, f) can be converted into the following line in-
tegrals on the curve C*.

F\ = —c0s20G, - £sin26 [e f(p0)
| ol G @, 1 <pkq>3§,(1—?dsq] (27a)
Go=i | . oV i) (@),

S V(pkq) af(q) q] Q7b)

where oy, = lp, —q 1/f, geC*; I(p) =Im[HP (Bp)]; € is given in
the Appendix.

The substitution of the domain integrals by line integrals
reduces drastically the required computer time. The line in-
tegrals (27a, b) as well as (26a, b) are evaluated numerically
employing the technique presented in Katsikadelis and
Armenakas (1985). Thus, the curve C*, L*, respectively, is ap-
proximated by a finite number of parabolic elements. On each
element the line integral is computed and the resulting partial
values are summed.

d) In the general case where f(Q) is an arbitrary function,
the domain integrals (23e, f) are evaluated using the method
presented in Katsikadelis and Armenakas (1983).

6 Evaluation of the Deflections, Stress Resultants and
Subgrade Reactions

When the integrals oy, by, ¢y, di» Fy, and G, are
established, the system of simultaneous algebraic equations
(22a, b) is solved and the values ®; and ¥; of the functions
& (s5) and ¥ (s) at the nodal points are obtained. These values
can be used to obtain the deflection w(P) and the stress
resultants at any point P in the interior of the plate.

The deflections w{P) is obtained from its integral represen-
tation (13). The line integrals J; (P) and J,(P) are computed
from the relations ‘

N
BP)= N Vior)ds,,
j=1

N
L(P)= Y%, S,» ppgV' (0pg)de, (284,b)
j=1

For the computation of the double integral F(P) in relation
(15) we distinguish again four cases as for the integral F}, in the
previous section.

Referring to relations (5) and (14) it is apparent that the
bending moments M,,, M, and the reaction force V, on the
boundary of the plate are readily computed from the values of
® and V.

The bending moments M,, M, the twisting moment M,,
and the shear forces Q, and Q, at any point of the plate are
equal to

Pw 2w d
M ="‘D< a2 +VW>, QX: —DEVZW (29a,b)
M——D(azw+ azw) -l v oca
r- e o ) = dy Y ©
Pw
M= =M, =D =)o (29¢)

The second and third order derivatives of the deflections in
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equation (29) may be evaluated from the computed values of
the deflections with sufficient accuracy using numerical dif-
ferentiation. However, the accuracy is increased and the com-
puter time is considerably reduced when they are evaluated by
direct differentiation of relation (13) using the following com-
binations of derivatives.

ty=er | 5[, Kitorsao

- SC K,-(p)\I/ds+%SC A,(p)ciadQ]

(i=1,2,3,4,5) (30)
where
iFw  Fw Fw  Pw
4= PO oy’ &= oy’
*w
=2 , 31a,b,
V= 2y (31a,b,c)
d ——i’—a—vzw ds = t’a V2w (31d,e)
4 ax s 5= ay 3
K (0)=U(p), K;(p)=C(p)cos2w,
K;(p) =C(p)sin2w (32a,b,0)
Kip) =U’"(p)cosw, Ks(p)=U’(p)sinw (32d,e)
A (p)=U" (p)cose,
2
A; (p) = U’ (p)cospcos2w — ——C(p)cos(2w — @) (32f,8)
P
. 2 .
A5 (p)=U’(p)cosgsin2w ——C(p)sin(2w — ¢) (32h)
o
1
Ay (p)=— [—p—U’ (p)cos(w— @)+ V(p)coswcose
+2U(p) c0520c05wcos<p] (32))
1 .. .
As(p)= — [———U’ (o)sin(w — ¢) + V{(p)sinwcose
p
+2U (p)cosZ(isinwcos(p] (32)
2 ’
C(p)=U(p)~—p—V (0) (32k)

For an arbitrary loading function f(Q) the double integrals in
equation (30) may be evaluated using the technique presented
in Katsikadelis and Armenakas (1983).

When the loading is due to a concentrated force P at some
point Q the double integrals in relation (30) can be directly
evaluated from relations analogous to (25). Moreover, when
the loading is due to a line load along a curve L*, the double
integrals in relation (30) are reduced to line integrals on the
curve L* and they are computed from relations analogous to
(26). Finally, when the plate is loaded by a uniform or a linear-
ly varying load distributed over a region R* € R bounded by a
curve C* the double integrals in relation (30) can be converted
into line integrals. Thus, using integration by parts and
employing relations (46) and (A48) in Appendix, we obtain

[/ 22) v
= -%—SC* SV (p)cos(2w + ¢)ds

Journal of Applied Mechanics

Table 1 Percent error in the deflection w, bending moment
M,, and reaction force V, in a clamped circular plate with
radius a, resting on an elastic foundation (A =10, s=13), and
subjected to a uniform load ¢

Number Error Error Error
of BE inw in M, in V,
r=.5a .r=.5a r=a

10 .051 1.056 .836
20 .006 137 117
30 .002 .041 .036
40 .001 .017 015
50 .000 .009 .008
60 .000 .005 .005
70 .000 .003 .003
80 .000 .002 .002

G| d
- Sc* [—a{;—cos(w+<p)— aﬁ sin(w+¢)] V(p)ds (33a)
H fiV(p)da=—l—~S SV’ (p)sinwcos(w
R*” 3xdy £ Jc*
+p)ds— Sc* —g—g—V(p)sin(w+go)ds (33b)
H fiVZV( Ydo = ~LS JU(p)cos(w+ p)ds
R* ox ° £ Jct P ks
1 d
+7SC* %V' (p)coseds (33¢0)
SS f—a—VZV(p)da= ———1—-5 JU(p)sin(w+ o)ds
R” 8y 2 Jct ¢
1 aof |
+_£'_Sc* a_nV (0)coseds (33d)

where x, yeR and £, neC*,

7 Numerical Results

A computer program has been written for the numerical
evaluation of the response of clamped plates resting on a
Pasternak-type elastic foundation by integrating the boundary
integral equations (17) and (20) using the numerical technique
described in Section 5. Numerical results have been obtained
for circular plates with or without holes, rectangular plates
and a plate of composite shape subjected to concentrated
loads, uniform, and linearly varying loads. The obtained
results are in excellent agreement with those obtained from
analytical solutions or other numerical solutions. When G—0
the solution for the plate resting on a Winkler-type elastic
foundation is obtained, while when both constants, G and &,
are small, the solution for the plate not resting on an elastic
subgrade is obtained.

For the presentation of the numerical results the following
dimensionless parameters are introduced which are established
by writing equation (1) in a dimensionless form

s=a/ND/G, N=a/4D/k

where g is a characteristic length of the plate (e.g., the radius
of 'a circular plate, the length of one side of a rectangular
plate, etc.). The shear modulus G may vary between O to
40MN/m, while the subgrade reaction modulus & may vary
from 0 to 200MN/m3. Thus, for usual engineering applica-
tions it is 0 <s<30 and 0 <X =<20. In computations, it may be
set s=0. However, the value A =0 must be excluded because it
raises computational difficulties. A small value of A\ (say
A=0.1to 0.5) and s=0 give accurate results for the plate not
resting on subgrade.

In Table 1, the percent error in the numerical results obtain-
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Table 2 Deflections w=w/(Pa%/D) in a ciamped circular plate with radius a subjected to a concentrated
force P at its center

A=.134, 5=0 A=12,5=0 A=12,5=15
r/a analytic - BEM analytic BEM analytic BEM
0 .19894E — 01 .19894E — 01 .86806E — 03 .86806E — 03 .59681E —~ 03 .59681E — 03
0.2 .16537E-01 .16537E-01 .13953E - 03 . .13953E~-03 .11590E - 03 .11590E - 03
0.4 .10878E—01 .10877E — 01 ~.12264E — 04 —.12264E — 04 .10507E — 04 .10507E—-04
0.6 54154E-02 .54150E - 02 —.22695E — 05 —.22695E — 05 S51292E - 06 S1292E - 06
0.8 .14797E ~ 02 .14795E — 02 35712E-06 35711E - 06 —.12968E — 07 — . 12965E — 07

Table 3 Deflections, bending moments and shearing forces in a clamped circular ring-shaped plate with
an inner radius b and an outer radius a = 3b subjected to a uniform load ¢

A=.134,5=0 A=12,5=0 A=12,s5=15
r/b analytic BEM analytic BEM analytic BEM
Deflections w=w/{ga*/D)
1.4 .21740E - 01 .21741E - 01 .54455E—04 .54455E — 04 .51193E-04 .51188E—04
1.8 .44073E - 01 .44073E —01 S52551E—04 52551E—04 .52615E—-04 .52615E — 04
2.1 .40622E - 01 .40622E ~ 01 52518E—-04 52518E—-04 ,52617E—04 .52617E—04
2.6 .16895E - 01 .16894E — 01 .54912E— 04 .54912E - 04 .50906E — 04 .50906E — 04
Bending moment M, =M, /qa’
1.0 —.44861E+00 ~ .44861E+00 —.73420E—02  ~.73420E—02  —.74249E-02  —.74715E-02
1.4 .80839E — 02 .80860E — 02 .14935E - 03 .14935E - 03 .19618E — 03 .19677E—03
1.8 L15789E 4+ 00 J15789E 400  — .24074E-05 —.24073E- 05 55076E 06 .55478E — 06
2.2 .13134E+ 00 JA3134E4+00 —.35616E - 05 —.35623E—-05 .81261E — 06 .81279E - 06
2.6 —~.24062E-01 —.24065E — 01 .17698E - 03 17701E—-03 22293E-03 .22296E — 03
3.0 —.286I2E+00 —.28612E+00 —.68067TE—02  —.68074E—02  —.67599E—-02  —.67623E-02
Shearing force O, = Q,/qa

1.0 .14684E + 01 .14685E + 01 .12489E + 00 .12489E + 00 .16905E + 00 .16960E + 00
1.4 .70599E + 00 .70598E + 00 —.34146E—02 —.34146E - 02 —.19353E-02 —.19402E - 02
1.8 .19355E + 00 .19354E + 00 .95462E — 04 95463E—04  —.14228E-04  —.14296E—04
2.2 —.20528E+00 —.20528E+00  —.13524E-03 —.13525E-03 .20057E — 04 .20061E — 04
2.6 —.54293E+00 —.54293E+00 40313E~02 .40316E — 02 .22448E - 02 .22451E—02
3.0 —.84387E+00 —.84387E+00 ~.11555E+ 00 —.11556E + 00 —.15316E + 00 - .15318E+ 00

Table 4 Deflection w =w/(ga*/D) and bending moments M, =M,/qa* M, =M,/qa* in a clamped rec-
tangular (a X b) plate subjected to a hydrostatic load f=gx/a, 0<x=a, 0<y=<b, for various side ratios
b/a ([A=0.134, s=0, v=0.3). The analytical results are obtained from Timoshenko and Woinowsky-

Krieger (1959)
b/a=0.5 b/a=1.0 b/a=1.5
analytic BEM analytic BEM analytic BEM

w(a/2,b/2) .080E — 03 .079E—-03 .630E — 03 .630E — 03 .110E—-02 .109E — 02
M, (a/2,b/2) .198E — 02 .198E — 02 115E-01 .114E-01 .184E - 01 .183E-01
M, (a/2,b/2) SISE—-02 SI13E-02 115E-01 .114E - 01 .102E-01 .101E—-01

. (a,b/2) —.115E - 01 —.115SE-01 ~.334E-01 —.336E - 01 ~.462E — 01 —.463E — 01
M .(0,0/2) —.028E—-02 —.028E-01 —.179E-01 -.179E-01 —.295E-01 —.295E-01
M, (a/2,b) —.104E - 01 —.104E—-01 —.257E-01 —.257E-01 —.285E 01 —.286E—-01

Table 5 Influence coefficients for a clamped rectangular (24 X 2b) plate with side ratio b/a=1.2 resting
on an elastic foundation with A=5,5=7

L
pos??ign Influence coefficients for w=w/(Pa2/D) at x=0, y=0
x/a
y/b 0 0.2 0.4 0.6 0.8
0.8 .5162E — 04 .4602E — 04 .3248E-04 A727E-04 .5126E - 05
0.6 2121E-03 .1858E—-03 1261E—-03 .6504E — 04 .1970E — 04
0.4 .6331E~-03 .5314E—-03 .3287E—-03 .1558E - 03 4547E — 04
0.2 .1664E — 02 1261E—-02 .6620E — 03 .2796E ~ 03 7735E - 04
0 3197E - 02 1920E - 02 . .8765E-03 .3465E — 03 .9330E-04
Influence coefficients for M, =M,/P at x=0, y=0 (»=0.3)
x/a .
y/b 0 0.2 0.4 0.6 0.8
0.8 — 2970E—-04 —.6935E—04 —.1236E 03 —.1099E—03 —.4193E-04
0.6 1802E—03 —~.1224E-03 —.5151E-03 —.4878E — 03 —.1915E-03
0.4 2578E~02 .3950E — 03 —.1750E—-02 —.1565E—02 —.5783E - 03
0.2 .2081E - 01 .2087E—02 © —.5684E — 02 ~.3793E—-02 —.1241E-02
0 .1000E + 31 —.4089E — 02 —.1025E-01 ~.5392E - 02 —.1641E—-02
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ed using the BEM as compared with those. obtained from
analytical solutions (Selvadurai, 1979) is presented versus the
number of boundary elements for a clamped circular plate
resting on an elastic foundation (A= 10 and s = 13), subjected
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to a uniform load. It is apparent that only a few boundary
elements (20 to 30) are sufficient to obtain accurate results.

To demonstrate the accuracy of the BEM three more ex-
amples are worked out for which results from analytical solu-
tions are available. Thus, in Table 2 the deflections along the
radius of a clamped circular plate subjected to a concentrated
load P at its center are tabulated. They are obtained on the
basis of analytical solutions and also using the BEM with 32
elements. Three characteristic cases are considered: (a) plate
not resting on an elastic foundation (A =0.134, s=0); (b) plate
resting on a Winkler-type foundation (A= 12, s=0); (c) plate
resting on a Pasternak-type foundation (A=12, s=15). The
analytical solutions are obtained from Timoshenko and
Woinowsky-Krieger (1959), Schleicher (1926), and Selvadurai
(1979), respectively.

Moreover, in Table 3 the deflection, the bending moment
and the shearing force along the radius of a clamped circular
ring-shaped plate with an inner radius b and an outer radius
a=23b are presented when it is subjected to a uniform load q.
The numerical results are obtained using the BEM with 32
boundary elements on each boundary and they are compared
with those obtained from the analytical solutions (as in Table
2). Furthermore, in Table 4 the deflection and bending
moments in a clamped rectangular plate (@ X b) not resting on
an elastic foundation (A=0.134, s=0) and subjected to a
hydrostatic load are presented. The results are obtained using
44 boundary elements and they are compared with existing
results from the analytical solution (Timoshenko and
Woinowsky-Krieger, 1959).

a4 a/ | a/2
Y -4.05E-3 qa?

a/2 \

\
—

My

a/2

Mn

\
-6.06 E-3 qatt
—
-689E-3qa? |
.

3a/8 a8 a/d

X
qa

-1.66 E-1qa T
| ¢

a/d /8 3a/8

a/2

-L13 E-1 ga

Fig. 3 Uniformly loaded clamped piate of composite geometry resting
on a Pasternak-type elastic foundation (A = 15, s = 18): (a) Perspective of
the deflection surface of the plate; (b) deflections w=w/qga"/D),
subgrade reactions p=p/q and directions of principal bending
moments; (c) boundary reactions and stress resultants
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In Table 5, the influence coefficients for the deflection
w=w/(Pa%/D) and for the bending moment M, =M,/P at
point x=y=0 of a clamped rectangular plate (2a X 2b) with
side ratio b/a= 1.2 for various positions of the concentrated
load P are presented (A=5, s=7). The obtained values differ
considerably from the corresponding values for a Winkler-
type foundation (see Katsikadelis and Armenakas, 1984a).

Finally, in Fig. 3 results obtained on the basis of BEM using
74 boundary elements for a clamped plate of composite shape
resting on elastic foundation (A\=15, s=18) and subjected to a
uniform load g are shown. These results are considered ac-
curate because they differ negligibly from those obtained us-
ing twice as many boundary elements.

Conclusions

The following conclusions can be deduced from this
investigation:

(@) The BEM solution to the problem of bending of thin
plates on a biparametric elastic foundation developed herein is
well suited for computer-aided analysis.

(b) Plates having a composite shape including holes and
subjected to any kind of loading are efficiently and completely
analyzed; i.e., their deflections, bending, and twisting
moments, shearing forces, boundary reactions and subgrade
reactions can be established with good accuracy.

(¢) The conversion of the domain integrals into line in-
tegrals reduces drastically the computer time and renders BEM
a powerful tool for analyzing difficult plate problems.

(d) For plates with relatively smooth boundary the con-
stant element yields good results. The results are considerably
improved if curved boundaries are approximated by parabolic
arcs.

(¢) The evaluation of the kernel functions, which are real
and imaginary parts of Hankel functions with complex argu-
ment, are accurately computed from real valued series
expressions.
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APPENDIX

In this Appendix certain formulae are derived which are
used to convert the double integrals (23e, f) and (334, b, c, d)
into line integrals when the loading function f(Q) varies
linearly over a region R* € R bounded by a curve C*.

Consider the differential equation

d’w N 1 dw w0

dz? z dz
When z=p8p, with p=IP—QI/¢ and f=¢? a complex-
constant, equation (41) reduces to

d*w 1 dw

(A1)

+— ——+pB2w=0 A2

o2 P B (A2)

Equation (A2) is satisfied by the Hankel function
(Abramowitz and Stegun, 1972)

HP(Bp)=V(p)+il(p) (A3)

where V(p) and I(p) are, respectively, the real and imaginary
part of HY (8p).

Substituting equation (A3) into equation (A42) and
separating real and imaginary parts, the following two
simultaneous differential equations are obtained

V2V {(p)=sin20l(p) —cos20V (p) A4

V2I(p) = —cos20I(p) —sin268V (p) (A5)
d? 1 d
h 224, - 2
where v dp2 + o dp

Elimination of I(p) from equations (44) and (A45) yields
V(p) = —cos20V2V(p) —sin20V2I(p) A6)

For any two functions w and v which are two times con-
tinuously differentiable in the region R* and one time con-
tinuously differentiable on its boundary C* it is valid

aw v
25 2 = -
”R* (vViw—wVvv)do SC* <v—6n w o >a’s A7

Applying the Green identity (47) for the pair of functions
v=f, w=V(p) and noting that V2f=0 we obtain

[] . v2rorr@an

(48)

a0 [0V (@)
=ef . [—&;—f(m—wp) . as,

Similarly, applying the same identity for the pair of functions

- v=fand w=1(p) we obtain

.. v @

~efo)+| . [ 104 D,

where in double integrals it is p = |P— Q |/f, QeR* while in line
integrals, it is p= IP—q |/L, geC*.

(A9)
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The additional term ¢f(P) in equation (49) is due to the fact
that the line integral behaves like a double layer potential. The
value of the constant is established by a limiting process.
Thus, isolating point P by a small circle centered at point P,
when P is inside R*, or by a small circular sector when point P
is on C*, applying Green’s identity (47), letting the radius of
the small circle or of the circular sector, respectively, shrink to
a point and taking into account that for small values of the
argument p it is

81(p)
an

=T (p)c0sp = - {sindRe{HP(80)]

Journal of Applied Mechanics

+ cos0Im[H{V(Bp)]} cosp = ~ 1 icos<,o

! 7w
we obtain
e=—4 when P is inside R* (A10a)
e=—22—a/m) when Pison C* (A10b)
Note that
e=0 when P is outside R* (A10c)

« is the angle between the tangents at point p of the boundary.
For smooth boundaries it is a=.
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