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1 Introduction 

Clamped Plates on Pasternak-Type 
Elastic Foundation by the 
Boundary Element Method 
A boundary element solution is developed for the analysis of thin elastic clamped 
plates of any shape resting on a Pasternak-type elastic foundation. The plate may 
have holes and it is subjected to concentrated loads, line loads, and distributed 
loads. The analysis is complete, i.e., deflections, stress resultants, subgrade reac­
tions, and reactions on the boundary are evaluated. Several numerical examples are 
worked out and the results are compared with those available from analytical solu­
tions. The efficiency of the BEM is demonstrated and discussed. 

Biparametric elastic foundation models have been 
developed to overcome the inadequacy of Winkler's model in 
describing the real soil response and the mathematical com­
plexity of the three-dimensional continuum. They are 
characterized by two independent elastic constants and they 
are derived either as an extension of the Winkler model by 
assuming interaction between the spring elements (Filonenko-
Borodich, 1940; Hetenyi, 1946; Pasternak, 1954; Kerr, 1964) 
or by simplifying the three-dimensional continuum (Reissner, 
1958; Vlasov and Leontiev, 1966). Among them, the 
Pasternak-type foundation model is the most natural exten­
sion of the Winkler model for homogeneous soil deposit and 
the next higher approximation to the foundation response 
(Kerr, 1964). Although this foundation model can adequately 
approximate the soil-structure interaction, the analysis of 
plates resting on it must overcome practically insurmountable 
mathematical difficulties when a general analytical solution to 
the governing boundary value problem is sought. Thus, only 
plates with simple geometry and loading have been treated 
analytically, such as circular plates with axisymmetric loading 
or rectangular plates with uniform loading. On the other hand 
approximate methods (Galerkin's, Ritz's) and numerical 
methods (finite difference, finite element) have also been used. 
However, the application of these methods has been restricted 
to simple geometries. An extensive and lucid literature on the 
subject at hand is found in Vlasov and Leontiev (1966) and 
Selvadurai (1979). Recently (Balas et al., 1984), a boundary in­
tegral equation formulation of the problem has been presented 
with application to a circular plate under a concentrated force 
at the center. 

In this investigation a boundary element solution to the 
problem of thin elastic clamped plates resting on a Pasternak-
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type elastic foundation is developed. The shape of the plate is 
arbitrary and it may have holes while its boundary may have 
corners. The plate may be subjected to any kind of loading 
(concentrated loads, line loads, distributed loads). The 
analysis is complete in the sense that deflections, stress 
resultants, and subgrade reactions at interior points as well as 
reaction forces and moments on the boundary are fully 
evaluated. The numerical technique presented herein for the 
solution of the coupled boundary singular integral equations 
and for the computation of all the field quantities is very effi­
cient. In case of linearly varying loading, the efficiency of the 
method is improved by converting the domain integrals into 
line integrals, thus reducing drastically the required computer 
time. Numerical results are obtained for circular plates, rec­
tangular plates, and plates with a composite shape. They are 
compared with those obtained from existing analytical solu­
tions. The accuracy of the results is very good, notwithstand­
ing the complexity of the kernel functions, which, in this case, 
are real and imaginary parts of Hankel functions with com­
plex argument. Finally, the solution to plates resting on a 
Winkler foundation as well as to plates not resting on a 
subgrade are obtained as special cases for appropriate values 
of the elastic constants. 

2 Formulation of the Boundary Value Problem 

Consider a thin elastic plate of thickness h, occupying the 
two-dimensional multiply-connected region R of the plane, 
bounded by the M+1 curves C0, Cu C2, . . . , CM and 
resting on a Pasternak-type elastic foundation with subgrade 
reaction modulus k and shear modulus G. The curves C; 
(; = 0, 1, 2, . . . M) may be piecewise smooth, i.e., the bound­
ary of the plate may have a finite number of corners (Fig. 1). 

Assuming that the plate maintains contact with the 
subgrade and that there are no friction forces at the interface, 
its deflection w(P) at any point PeR satisfies the following dif­
ferential equation (Kerr, 1964) 

Lw=f{P)/D (1) 
where/(P) is the transverse loading, D is the flexural rigidity 
[D=Ehi/\2(\ - v2)] of the plate and L is an operator defined 
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- ^ V 2 + — — 
D D 

"=£ + £. V4 = (V2)2 
(2) 

In this case the interaction pressure p between plate and 
subgrade is given as 

p = kw-GV2w (3) 

Moreover, the deflection of the plate must satisfy the 
M 

following conditions on the boundary C=\jCi of the plate 

dw 
w = 0, 

dn 
- = 0 (4a,b) 

where dw/dn denotes the directional derivative along the out­
ward normal to the boundary. 

The bending moments Mn and Mt, the twisting moment 
Mnl, and the effective shear force V„ acting on the boundary 
of the plate are related to the deflection w by the following 
relations (Katsikadelis and Armenakas, 1984a). 

M„ = -Dv2w M, = -uDV2w (5a,b) 

M„t=0 V„ = -D—V2w (5c,d) 

3 Integral Representation of the Solution 

The integral representation of the solution can be obtained 
by using the Green identity for the operator L and the fun­
damental solution to equation (1). 

The Green identity for the self-adjoint operator L is: 

i \ (vLw — wLv)do= I \v -V^w-

d . dw , 
•w—v^iH v 2 y -

on dn 

dn 

G dw 

~~D~V dn 

dn 

G 

~D~ 

-V2w 

dv 

~~dn~ 
\ds (6) 

where d/dn denotes the outward normal derivative. 
Relation (6) is readily obtained by combining the Rayleigh-

Green identity (Katsikadelis, 1982) for the biharmonic 
operator with the classical Green identity for the harmonic 
operator (equation (Al) in the Appendix). Relation (6) is valid 
for any two functions w and v, which are four times con­
tinuously differentiable inside the region R and three times 
continuously differentiable on its boundary C. 

The fundamental solution to equation (1) is a singular par­
ticular solution of the following differential equation 

Lv = b(Q-P)/D (7) 

in which 8(Q—P) is the Dirac 5-function, Q is the field point, 
and P is the source point. The nature of the solution to equa­
tion (7) depends on the quantity /x = G2/4kD. In this investiga­
tion only the case n < 1 is considered which seems to be valid 
for usual foundation materials (Kerr, 1964). For these values 
of fi the solution to equation (7) is given as (Vlasov and Leon-
tiev, 1966): 

v = v(P,Q) = v{Q,P) = 
4Dsin20 

•Re[/*y>(fc>)] 

where 

(3 = cosd + ismd, 20 = a rc t an ( -Vl / j t -1 ) 

(8) 

(9a,b) 

(9c,d) 

r=\P-*Q\ is the distance between the points P, Q and 
Re[H^(fip)] denotes the real part of the zero order Hankel 
function of the first kind. Notice that when G approaches 0, it 
can be shown that v(P,Q) reduces to - (P/2'wD)kei(p) which 
is the fundamental solution to the equation governing the 
plate resting on a Winkler-type elastic foundation (Kat­
sikadelis and Armenakas, 1984a, 1984b). 

From equation (8) it can be shown that 

Fig. 1 Two dimensional region ft occupied by the plate 

dv e 
dn 4£>sin20 

V'(p)costp 

V Z D = 
1 

4Z>sin20 

1 

U(p) 

V4u = 
dn 4£Dsin20 

U' (p)COScp 

(10«) 

(106) 

(10c) 

in which ( ) ' denotes differentiation with respect to the argu­
ment p, <p is the angle between r and n (see Fig. 1), and 

V(p)=Re[H2>tfp)] (Ha) 

V'(P)=Re[-PH[iHl3p)] 

= -cosdRelHYHMl+sindlmlH^iPp)] (lib) 

U(p)=Re[-(32m»Wp)] 

= - cos26RelH$m3p)] + sin20//«[.ff<,»(/3p)] (1 lc) 

t/'(p) = R e [ W ( f t o ) ] 

= cos30Re[#V>(/3p)] - smMm[H[»Wp)] (1 Id) 

The real valued functions Rt[H^^p)], Im[H^Wp)], 
Re[H\l)(ffp)], Im[H\l'>(fip)] involved in the aforegoing relations 
(11) are evaluated, for both small and large arguments, from 
their series expressions which are given in Zinke (1959). 

It can be shown that for p^O it is 

amV(p) = l-20/Tr, 

RmU(p)~lnp, 
p-0 
emfpV'(p)] = 0, 
/.-0 

toiV'(p) = 0 (\2a,b) 
p-0 

UmU'(p) (12c,d) 
P-O p 
2im\pU'(p)}=2sm2d/ir (12eJ) 
p-0 

Applying equation (6) for the deflection of the plate w and 
the fundamental solution v, which satisfy equations (1) and 
(7), respectively, using relations (8, 10a, 11a) and the boun­
dary conditions (4a, b) the integral representation for the 
deflection w(P) is obtained as 

W(P) = IL v(p'QV(&daQ-D\c ["(̂ .?)*(<?) 

dv(P,q);l 

dn„ Hg)] dsn 4sin20 
[F(P)-Jl(P)+J2(P)] (13) 

where the following notation has been introduced for 
conciseness 
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$(q) = V2w(q), ¥ (? )=-—V 2 w(q) (Ua,b) 
dng 

F(P)=~\\RV(pPQ)f(Q)daQ (15) 

Ji(P) = \cV(pPq)V(q)dsq, 

J2(P)=\ pPqV'<j>Pq)$>(q)dwq (16a,b) 

PPq = IP— q \/l, oj = JO" 

Notice that in equation (166) the relation cos<pds = rdu has 
been used (Katsikadelis, 1982). In the aforegoing relations, 
points inside the region R are denoted by uppercase letters, 
while points on the boundary C are denoted by lowercase let­
ters. Moreover, the subscript of the elements da, and ds in­
dicates the point that varies during integration. Furthermore, 
alonq denotes that the normal derivative is taken with respect 
to point q. 

From relations (5) it is seen that the boundary quantities 
V2w and d/dnv2w appearing in the line integral of equation 
(13) have a direct physical meaning. 

4 Derivation of the Boundary Integral Equations 

In equation (13) the loading function/(Q) is given at every 
point in R. Moreover, the function v(P,Q) and its derivatives 
are obtained from equations (8) and (10). However, the func­
tions y(q) and #(#) are not known at the points of the 
boundary C. These two unknown boundary quantities are 
established from the solution of two coupled boundary in­
tegral equations which are derived using the procedure 
presented in Katsikadelis and Armenakas (1984a). Thus, the 
first boundary integral equation is established from equation 
(13) by letting point P approach a point p on the boundary C 
The existence of the line integrals in equation (13) for P=peC 
and their continuity as P-~peC can be easily concluded from 
relations (12a,b). Consequently, taking into account that 
w(p) = 0 the first boundary integral equation is obtained as 

- ^cPpqV'ippq)i(q)dwq+ j c V(Ppq)*(q)dsq=F(p) (17) 

The second boundary integral equation is obtained by ap­
plying the operator V2 on both sides of equation (13) and by 
letting point P approach a point p on the boundary. Thus 

V2w(P) = \\R V2v(p,Q)AQ)daQ 

-Diim \ V2v(P,q)*(.q)dsa 
P~p JC 

+ Dlim [ -^-V2v(P,q)$(q)dsa (18) 
P-P JC dn v 

By virtue of equations (10b,c) and (I2c,d) it is seen that, the 
first line integral on the right-hand side of equation (18) 
represents a single layer potential due to a mass distribution 
y(q), while the second line integral represents a double layer 
potential due to a mass distribution $ {q). Hence, both line in­
tegrals exist for P=peC. Moreover, the first line integral is 
continuous, while the second line integral exhibits a discon­
tinuity jump as P—peC (Courant and Hilbert, 1953) which is 
equal to 

f a , 
Urn -—•V2v(P,q)$(q)dsq 
P_ P Jc dn * 

{ d 2ir — a 

— V2v(p,q)<l>(q)dsq=——$(p) (19) 
c dn v

 2-KD 

Fig. 2 Discretization of the boundary 

where a is the angle between the tangents at point p (see Fig. 
1). It is a = 7r when the boundary is smooth at point p. Taking 
into account equation (19), the second boundary integral 
equation is obtained from equation (18) as 
2asin20 f N T , , , 

*(/>)+ U(PpqW(q)dsq 
it Jc 

-\cPpqU'(ppq)$(q)do>q = G(p) (20) 

in which 

G(p)=-^-^RU{ppQ)f(Q)daQ (21) 

For any given geometry of the clamped boundary of the 
plate, the functions *(5) and ¥(s) may be obtained from the 
solution of the coupled boundary integral equations (17) and 
(20). Once the functions *(s) and *($) are known, the solu­
tion to the boundary value problem (equations (1) and (4)) 
may be obtained from equation (13). 

5 Numerical Analysis 

The numerical solution of the coupled boundary singular in­
tegral equations (17) and (20) is accomplished using the 
boundary element approach. In this approach the boundary is 
divided into N intervals, not necessarily equal, referred to as 
boundary elements. The end points of each element are refer­
red to as extreme points. Each boundary element is approx­
imated by a given curve (straight line, parabolic arc, etc.) and 
the unknown boundary functions <&, ^ are approximated by a 
polynomial (constant, linearly varying, parabolically varying, 
etc.). The points on which the unknown functions are 
evaluated are referred to as nodal points. 

In this investigation each boundary C,- is divided into A/, 
elements (i = 0, 1,. . . ,M) not necessarily equal. The center of 
the elements or other points near them are taken as their 
nodes. The elements on the external boundary are numbered 
consecutively counterclockwise while on the internal bound­
aries clockwise (Fig. 2). The values of $ and ^ are assumed 
constant on each element (step function assumption) and 
equal to their values at the nodal point of each element. 
Moreover, the curved elements are approximated by parabolic 
arcs (Katsikadelis and Sapountzakis, 1985). This approxima­
tion reduces appreciably the error due to the approximation of 
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curved boundaries by straight line elements. Denoting by $y 
and ¥j the values of $ and ^ at they'th nodal point (i.e., the 
nodal point of they element), the integral equations (17) and 
(20) are transformed into the following system of 2N 

(N= 2JNJ) simultaneous algebraic equations 

N N 

D ««*, + L WJ=F
k (*=i,2,... ,AO 

y = i y = i 

N / 2 \ N 

y = l 

(£=1,2 , . . . ,iV) 

in which 5^ is the Kronecker delta and 

aki =-\.PkQV'(Pkq)duq, bkJ = J V(Pkq)dsq 

CkJ= z\PkiU'<J)kq)d^q, dkJ = J U(pkq)dsq 

(22a) 

(22b) 

(23a,b) 

(23c,d) 

Gk=~^RU(pkQ)f(Q)daQ (23eJ) 

Pkq=\Pk-l\/l, PkQ=lPk-QM> QeR,pkeC, 
#ey'-element 

In relations (23a, b, c, d), the symbol denotes integration 

on the y'-element; point pk is a nodal point. 

Evaluation of Line Integrals akJ, bkJ, ckJ, and d^. When 
k^j (p^O), these integrals can be evaluated using any of the 
known numerical techniques for the evaluation of line in­
tegrals. In this investigation the curved boundary element is 
approximated by a parabolic arc passing through its nodal and 
extreme points and its value is computed using eight-point 
Gaussian quadrature. When k=j, the argument p vanishes for 
q=pk. From relations (12a), (12e), and (12y0 it is seen that the 
line integrals akk, bkk, and ckk are not singular and conse­
quently they are evaluated as in the case k^j. However, as it is 
seen from relation (12c), the line integral dkk has a logarithmic 
singularity and it is evaluated using the technique presented in 
Katsikadelis and Armenakas (1985). 

Evaluation of Double Integrals F^ and Gk. We may 
distinguish the following four cases: 

a) The plate is subjected to a concentrated load P a t a 
point Q0. In this case, the loading function f(Q) can be 
represented as 

XQ)=P6(Q-Q„) (24) 
Using relation (24) the values of the integrals (23eJ) are 

" *-v(P*Qo')> Gk=-^U(Pk0J (25a,b) 
D D 

where pkQo = \pk-Q0\/t 
b) The plate is subjected to a line load p(s) distributed 

along a curve L*. In this case the double integrals (23eJ) are 
evaluated using relations (25a, b) from the following line in-. 
tegrals along the curve L* 

Fk=-^-\L*P(Q)V(PkQ)dsQ, 

Gk=~\L,p(Q)U(PkQ)dsQ (26a,b) 

where pkQ = \pk-Q\/t, QeL *. 

c) The plate is subjected to a uniform or a linearly varying 
load distributed over an area R* ^Rof the plate bounded by a 
curve C*. In this case, it is V2f=0 and by virtue of relations 
(A6), (AT), (AS), and (A9) in the Appendix the double in­
tegrals (23e, f) can be converted into the following line in­
tegrals on the curve C*. 

Fk= -cos26Gk — 
sin20 r 

[ef(Pk) D 

+ \c* PkqI'(Pkq)f(q)d0>q - ] c„ I(pkq )-Q^-dso\ (27°) 

G * = " D " L ] C * PkqV'(Pkq)f(Q)d^q 

-I (21b) 

wherepkq= \pk-q\/2, qeC; I(p) =Im[H^)(l3p)]; e is given in 
the Appendix. 

The substitution of the domain integrals by line integrals 
reduces drastically the required computer time. The line in­
tegrals (27a, b) as well as (26a, b) are evaluated numerically 
employing the technique presented in Katsikadelis and 
Armenakas (1985). Thus, the curve C*, L*, respectively, is ap­
proximated by a finite number of parabolic elements. On each 
element the line integral is computed and the resulting partial 
values are summed. 

d) In the general case where/(Q) is an arbitrary function, 
the domain integrals (23e, f) are evaluated using the method 
presented in Katsikadelis and Armenakas (1983). 

6 Evaluation of the Deflections, Stress Resultants and 
Subgrade Reactions 

When the integrals akj, bkJ, ckj, dkj, Fk, and Gk are 
established, the system of simultaneous algebraic equations 
(22a, b) is solved and the values $, and ^ of the functions 
$(s) and ty(s) at the nodal points are obtained. These values 
can be used to obtain the deflection w(P) and the stress 
resultants at any point P in the interior of the plate. 

The deflections w(P) is obtained from its integral represen­
tation (13). The line integrals Jl (P) and J2(P) are computed 
from the relations 

Ji(P)=H%\.V(PPq)dsq, 
y = l Jj 

h(P) = 2 > , P?iV'(PPq)duq (28a,6) 
; = i Jj 

For the computation of the double integral F(P) in relation 
(15) we distinguish again four cases as for the integral Fk in the 
previous section. 

Referring to relations (5) and (14) it is apparent that the 
bending moments M„, M, and the reaction force V„ on the 
boundary of the plate are readily computed from the values of 
$ and ^ . 

The bending moments Mx, My, the twisting moment Mxy 

and the shear forces Qx and Qy at any point of the plate are 
equal to 

d 
Mr=-

My = 

~ » ( -

- - » ( . 

d2W d2W 

lx2~ + V 
dy2 ) . Qx=-D-

dx 
-Vzw (29a,b) 

d2 

dy2 

w d2w 
+ v-dx2 Qy=-D—V2w (29c,d) 

dy 

Mxy=-M=D(\-v) 
d2w 

(29c) xy yx -"- 'dxdy 

The second and third order derivatives of the deflections in 
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equation (29) may be evaluated from the computed values of 
the deflections with sufficient accuracy using numerical dif­
ferentiation. However, the accuracy is increased and the com­
puter time is considerably reduced when they are evaluated by 
direct differentiation of relation (13) using the following com­
binations of derivatives. 

d,=-
1 

4sin20 ll>\lK> (p)fda 

- {c^,(p)*ds + ^ - j c A,(p)<f>ds 

(/= 1,2,3,4,5) (30) 

where 

< / . = -
d2w d2\ 

dx2 dy2 -, d2=-
d2w d2w 

dx2 dy2 ' 

d,=Z 
dxdy' 

d4=-e-—v2w, ds=-e—v2w 
ox dy 

K1(p) = U(P), K2(p) = C(p)cos2a>, 

K3(p) = C(p)sin2u 

K4(p) = U'(p)cosoo, K5(p) = U'(p)sinu 

Al(p) = U'(p)cos<p, 

2 
A2(jo) = £/'(p)cos<pcos2co C(p)cos(2u-ip) 

P 

A3(p) = U' (p)cos^sin2o C(p)sin(2o>-<p) 
P 

A4(p) = - U'(p)cos(o)-ip)+V(p)cosa)Cos<p 
L P 

- 2£/(/t>)cos20coscocos(o 

(3\a,b,c) 

(3W,e) 

(32a,b,c) 

(32d,e) 

(32/,g) 

(32A) 

+; (320 

A5(p)= - U'(/j)siri(co - <p) + K(p)sincocosv 
L p 

+ 2£/(p)cos20sinwcos<p (32/) 

C(P) = U(p) V'(p) 
p 

(32k) 

For an arbitrary loading function/(Q) the double integrals in 
equation (30) may be evaluated using the technique presented 
in Katsikadelis and Armenakas (1983). 

When the loading is due to a concentrated force P at some 
point Q the double integrals in relation (30) can be directly 
evaluated from relations analogous to (25). Moreover, when 
the loading is due to a line load along a curve L*, the double 
integrals in relation (30) are reduced to line integrals on the 
curve L* and they are computed from relations analogous to 
(26). Finally, when the plate is loaded by a uniform or a linear­
ly varying load distributed over a region R*cR bounded by a 
curve C* the double integrals in relation (30) can be converted 
into line integrals. Thus, using integration by parts and 
employing relations (AS) and (AS) in Appendix, we obtain 

IJ R'J\dx2 dy2 

1 

•) V(p)do 

= — 1 tfV'(p)cos(2o) + <p)ds 

Table 1 Percent error in the deflection w, bending moment 
Mr, and reaction force V„ in a clamped circular plate with 
radius a, resting on an elastic foundation (X = 10, s = 13), and 
subjected to a uniform load q 

Number 
of BE 

Error 
in w 

r=.5a 

Error 
in Mr 
r=.5a 

Error 
inK„ 
r = a 

- f 

10 
20 
30 
40 
50 
60 
70 
80 

cns( 

.051 

.006 

.002 

.001 

.000 

.000 

.000 

.000 

Cj} + iO) SI 

1.056 
.137 
.041 
.017 
.009 
.005 
.003 
.002 

niiii + ca^ V 

.836 

.117 

.036 

.015 

.008 

.005 

.003 

.002 

OW.T (33a) 
ic* La? dt, r'i 

f df 
+ <p)ds- J c„ —— V(p)sin(u + <p)ds 

\\R*f^2V(p)do=~^c9fU(p)cos(u + <p)ds 

(33b) 

t h 
df 

- -V (p)cos<pds 
ic* d£ 

\\Rf-^-V2V(p)da=-~^ctfU(p)sm(o> + <p)ds 

1 f df 

(33c) 

(33d) 

where x, yeR and £, ijeC*. 

7 Numerical Results 

A computer program has been written for the numerical 
evaluation of the response of clamped plates resting on a 
Pasternak-type elastic foundation by integrating the boundary 
integral equations (17) and (20) using the numerical technique 
described in Section 5. Numerical results have been obtained 
for circular plates with or without holes, rectangular plates 
and a plate of composite shape subjected to concentrated 
loads, uniform, and linearly varying loads. The obtained 
results are in excellent agreement with those obtained from 
analytical solutions or other numerical solutions. When G—0 
the solution for the plate resting on a Winkler-type elastic 
foundation is obtained, while when both constants, G and k, 
are small, the solution for the plate not resting on an elastic 
subgrade is obtained. 

For the presentation of the numerical results the following 
dimensionless parameters are introduced which are established 
by writing equation (1) in a dimensionless form 

s = a/-/D/G, X = 

where a is a characteristic length of the plate (e.g., the radius 
of a circular plate, the length of one side of a rectangular 
plate, etc.). The shear modulus G may vary between 0 to 
40MN/m, while the subgrade reaction modulus k may vary 
from 0 to 200MN/m3. Thus, for usual engineering applica­
tions it is 0<5<30 and 0<X<20. In computations, it may be 
set s = Q. However, the value X = 0 must be excluded because it 
raises computational difficulties. A small value of X (say 
X = 0.1 to 0.5) and s = 0 give accurate results for the plate not 
resting on subgrade. 

In Table 1, the percent error in the numerical results obtain-
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Table 2 Deflections w = w/(Pa2/D) in a clamped circular plate with radius a subjected to a concentrated 
force P at its center 

r/a 
X=.134,^ = 0 

analytic BEM 
X=12,5 = 0 

analytic BEM 
X = 12, 5=15 

analytic BEM 

0 
0.2 
0.4 
0.6 
0.8 

.19894E-

.16537E-

.10878E-

.54154E-
J4797E-

-01 
-01 
-01 
-02 
-02 

.19894E-

.16537E-

.10877E-

.54150E-

.14795E-

-01 
-01 
-01 
-02 
-02 

.86806E-

.13953E-
-.12264E-
-.22695E-

.35712E-

-03 
-03 
-04 
-05 
-06 

.86806E-

.13953E-
-.12264E-
-.22695E-

.35711E-

-03 
-03 
-04 
-05 
-06 

.59681E-

.11590E-

.10507E-

.51292E-
-.12968E-

-03 
-03 
-04 
-06 
-07 

.59681E-

.11590E-

.10507E-

.51292E-
-.12965E-

-03 
-03 
-04 
-06 
-07 

Table 3 Deflections, bending moments and shearing forces in a clamped circular ring-shaped plate with 
an inner radius b and an outer radius a = 36 subjected to a uniform load q 

r/b 

1.4 
1.8 
2.1 
2.6 

X=.134, 
analytic 

.21740E-01 

.44073E-01 

.40622E-01 

.16895E-01 

5 = 0 
BEM 

.21741E-

.44073E-

.40622E-

.16894E-

-01 
-01 
-01 
-01 

X=12,5 = 0 
analytic BEM 

Deflections w = w/(qa4/D) 

.54455E-04 .54455E-

.52551E-04 .52551E-

.52518E-04 .52518E-

.54912E-04 .54912E-

Bending moment Mr =Mr/qa2 

-04 
-04 
-04 
-04 

X=12, 5 
analytic 

.51193E-04 

.52615E-04 

.52617E-04 

.50906E-04 

•=15 
BEM 

.51188E-

.52615E-

.52617E-

.50906E-

-04 
-04 
-04 
-04 

1.0 
1.4 
1.8 
2.2 
2.6 
3.0 

1.0 
1.4 
1.8 
2.2 
2.6 
3.0 

-.44861E + 00 
.80839E-O2 
.15789E + 00 
.13134E + 00 

- .24062E-01 
-.28612E + 00 

.14684E + 01 

.70599E + 00 

.19355E + 00 
-.20528E + 00 
-.54293E + 00 
-.84387E + 00 

-.44861E + 00 
.80860E-02 
.15789E + 00 
.13134E + 00 

- .24065E-01 
-.28612E + 00 

.14685E + 01 

.70598E + 00 

.19354E + 00 
-.20528E + 00 
-.54293E + 00 
-.84387E + 00 

- .73420E-02 
.14935E-03 

- .24074E-05 
- .35616E-05 

.17698E-03 
- .68067E-02 

Shearing force Qr 

.12489E + 00 
- .34146E-02 

.95462E-04 
- .13524E-03 

.40313E-02 
-.11555E + 00 

- .73420E-02 
.14935E-03 

- .24073E-05 
- .35623E-05 

.17701E-03 
- .68074E-02 

= Qr/w 
.12489E + 00 

- .34146E-02 
.95463E-04 

- .13525E-03 
.40316E-02 

-.11556E + 00 

- .74249E-02 
.19618E-03 
.55076E-06 
.81261E-06 
.22293E-03 

- .67599E-02 

.16905E + 00 
- .19353E-02 
- .14228E-04 

.20057E-04 

.22448E-02 
-.15316E + 00 

- .74715E-02 
.19677E-03 
.55478E-06 
.81279E-06 
.22296E-03 

- .67623E-02 

.16960E + 00 
- .19402E-02 
- .14296E-04 

.20061E-04 

.2245 I E - 0 2 
-.15318E + 00 

Table 4 Deflection w — w/(qa4/D) and bending moments Mx =Mx/qa2 My=My/qa2 in a clamped rec­
tangular (axb) plate subjected to a hydrostatic l oad /= <7*/a, 0 < * < a , 0<y<b, for various side ratios 
b/a ([X = 0.134, s = 0, v = 0.3). The analytical results are obtained from Timoshenko and Woinowsky-
Krieger (1959) 

b/a = 0.5 
analytic BEM 

b/a =1.0 
analytic BEM 

b/a= 1.5 
analytic BEM 

w(a/2,b/2) 
Mx(a/2,b/2) 
My(a/2,b/2) 
Mx(a,b/2) 
Mx(0,b/2) 
M (a/2,b) 

.080E-03 

.198E-02 

.515E-02 

.115E-01 

.028E-02 

.104E-01 

.079E-03 

.198E-02 

.513E-02 
-.115E-01 
-.028E-01 
-.104E-01 

.630E-03 

.115E-01 

.115E-01 

.334E-01 

.179E-01 

.257E-01 

.630E-03 

.114E-01 

.114E-01 
-.336E-01 
-.179E-01 
-.257E-01 

.110E-02 

.184E-01 

.102E-01 

.462E-01 

.295E-01 

.285E-01 

.109E-02 

.183E-01 

.101E-01 
-.463E-01 
-.295E-01 
-.286E-01 

Table 5 Influence coefficients for a clamped rectangular (la X 2b) plate with side ratio b/a = 1.2 resting 
on an elastic foundation with X = 5, s = 7 

position 

x/a 
y/b 

0.8 
0.6 
0.4 
0.2 
0 

x/a 
y/b 

0.8 
0.6 
0.4 
0.2 
0 

0 

.5162E-04 

.2121E-03 

.6331E-03 

.1664E-02 

.3197E-02 

Influence coefficients for w = w/(Pa^/D) at x = 0, ^ = 0 

0.2 

.4602E-04 

.1858E-03 

.5314E-03 

.1261E-02 

.1920E-02 

Influence coefficients for Mx -

0 

- . 2 9 7 0 E - 0 4 
.1802E-O3 
.2578E-02 
.2081E-01 
.1000E + 31 

0.2 

- . 6 9 3 5 E - 0 4 
- . 1 2 2 4 E - 0 3 

.3950E-03 

.2087E-02 
- . 4 0 8 9 E - 0 2 

0.4 

.3248E-04 

.1261E-03 

.3287E-03 

.6620E-03 

.8765E-03 

=MX/P at x = 0, y~-

0.4 

- . 1 2 3 6 E - 0 3 
- . 5 1 5 1 E - 0 3 
- . 1 7 5 0 E - 0 2 
- . 5 6 8 4 E - 0 2 
- . 1 0 2 5 E - 0 1 

0.6 

.1727E-04 

.6504E-04 

.1558E-03 

.2796E-03 

.3465E-03 

= 0(c = 0.3) 

0.6 

- . 1 0 9 9 E - 0 3 
- . 4 8 7 8 E - 0 3 
- . 1 5 6 5 E - 0 2 
- . 3 7 9 3 E - 0 2 
- . 5 3 9 2 E - 0 2 

0.8 

.5126E-05 

.1970E-04 

.4547E-04 

.7735E-04 

.9330E-04 

0.8 

- . 4 1 9 3 E - 0 4 
- . 1915E-03 
- . 5783E-03 
- . 1241E-02 
- . 1641E-02 
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ed using the BEM as compared with those obtained from 
analytical solutions (Selvadurai, 1979) is presented versus the 
number of boundary elements for a clamped circular plate 
resting on an elastic foundation (X= 10 and s= 13), subjected 

subgrade 
reactions p 

++++ 
•++++-V-V-V 

+++++AAA - +++-VA-A'* 
++++A-A-A-A-
_ ++A-A-A'A\ 
+++A-A-AAX 
' ++A-AAW 

+A-A-AAXX 
+A-A-AXXX 

AXXXX 
x x x 

x 
XXX 
xxxx 
xxxxx 
xxxxxx 
xxxxxxx 
XXXXXKXit 
XXXXX**-><.-)0 
XXX-X.^-^Tt. 
•)<• •><. * - • ) ! - * * + + + 

+++ixy.xxx 
++A-++-/-X X X AA-++++++ 
. +++++**xx\A-++++++ 
++++++y-y-x x x A-++++++ 
' ++++++y.*xx+++++++ 
+++++++T-* X A+++++++ 
++-H-+++**xJr+++++++ 

•++ 

AA-X+++++++-
-H-+++++A-* X • / .+++++++ 
J-+++++A-A-X X S + + + + + + + 

A X X X + + + + + + + 
f++++A-*XX*T<.+++++H 
++++A-AXX/VO 
+4++i(x-X)(y.^ i 

*>w ' 
+++++++++++ 
+++++++++++ 

H++ 
V-+A-+A-+++++-A+ 

AA-A-A-A-A-++++++ 
<+>f Jf A-A-A-A-A-A-++' 

(XXXXAAAAAA++ 
; x x x x x w < J f A » w 

K + ^ X X X X X X X A A A A A i i 
- + + M X X X X X X X M X A 
-++WXXXXXXXXXXX, 
-+++-t-i-y-y- y.x x x x x x 
+ + + W X X X X X X X X 
--++++^xxxxxxx 
-+++++^xxxxx 
-+++++^) 'X.XX 

- + + ^ (b) 

deflections w(x10" ) 

to a uniform load. It is apparent that only a few boundary 
elements (20 to 30) are sufficient to obtain accurate results. 

To demonstrate the accuracy of the BEM three more ex­
amples are worked out for which results from analytical solu­
tions are available. Thus, in Table 2 the deflections along the 
radius of a clamped circular plate subjected to a concentrated 
load P at its center are tabulated. They are obtained on the 
basis of analytical solutions and also using the BEM with 32 
elements. Three characteristic cases are considered: (a) plate 
not resting on an elastic foundation (X = 0.134, s = 0)\ (b) plate 
resting on a Winkler-type foundation (X = 12, s = 0); (c) plate 
resting on a Pasternak-type foundation (X=12, 5=15). The 
analytical solutions are obtained from Timoshenko and 
Woinowsky-Krieger (1959), Schleicher (1926), and Selvadurai 
(1979), respectively. 

Moreover, in Table 3 the deflection, the bending moment 
and the shearing force along the radius of a clamped circular 
ring-shaped plate with an inner radius b and an outer radius 
a = 3b are presented when it is subjected to a uniform load q. 
The numerical results are obtained using the BEM with 32 
boundary elements on each boundary and they are compared 
with those obtained from the analytical solutions (as in Table 
2). Furthermore, in Table 4 the deflection and bending 
moments in a clamped rectangular plate (a x b) not resting on 
an elastic foundation (X = 0.134, 5 = 0) and subjected to a 
hydrostatic load are presented. The results are obtained using 
44 boundary elements and they are compared with existing 
results from the analytical solution (Timoshenko and 
Woinowsky-Krieger, 1959). 

a/4 . a/4 

33 

Fig. 3 Uniformly loaded clamped plate of composite geometry resting 
on a Pasternak-type elastic foundation (A = 15, s = 18): (a) Perspective of 
the deflection surface of the plate; (b) deflections w = w/(qai>/D), 
subgrade reactions p = p/q and directions of principal bending 
moments; (c) boundary reactions and stress resultants 
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In Table 5, the influence coefficients for the deflection 
w = w/(Pa?/D) and for the bending moment MX=MX/P at 
point x=y = 0 of a clamped rectangular plate (2ax2b) with 
side ratio b/a— 1.2 for various positions of the concentrated 
load P are presented (X = 5, 5 = 7). The obtained values differ 
considerably from the corresponding values for a Winkler-
type foundation (see Katsikadelis and Armenakas, 1984a). 

Finally, in Fig. 3 results obtained on the basis of BEM using 
74 boundary elements for a clamped plate of composite shape 
resting on elastic foundation (X = 15,5 = 18) and subjected to a 
uniform load q are shown. These results are considered ac­
curate because they differ negligibly from those obtained us­
ing twice as many boundary elements. 

Conclusions 

The following conclusions can be deduced from this 
investigation: 

(a) The BEM solution to the problem of bending of thin 
plates on a biparametric elastic foundation developed herein is 
well suited for computer-aided analysis. 

(b) Plates having a composite shape including holes and 
subjected to any kind of loading are efficiently and completely 
analyzed; i.e., their deflections, bending, and twisting 
moments, shearing forces, boundary reactions and subgrade 
reactions can be established with good accuracy. 

(c) The conversion of the domain integrals into line in­
tegrals reduces drastically the computer time and renders BEM 
a powerful tool for analyzing difficult plate problems. 

(d) For plates with relatively smooth boundary the con­
stant element yields good results. The results are considerably 
improved if curved boundaries are approximated by parabolic 
arcs. 

(e) The evaluation of the kernel functions, which are real 
and imaginary parts of Hankel functions with complex argu­
ment, are accurately computed from real valued series 
expressions. 
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A P P E N D I X 

In this Appendix certain formulae are derived which are 
used to convert the double integrals (23e,f) and (33a, b, c, d) 
into line integrals when the loading function f(Q) varies 
linearly over a region R*^R bounded by a curve C*. 

Consider the differential equation 

d2w 1 dw 
- + ; rW = 0 dz2 dz 

(A\) 

When z = fip, with p=\P-Q\/l and P = ew a complex-
constant, equation (A\) reduces to 

d2w 1 dw . 
- + — + 02w = O dp2 dp 

(A2) 

Equation (A2) is satisfied by the Hankel function 
(Abramowitz and Stegun, 1972) 

HiiHM = V(p)+iI{p) (A3) 

where V(p) and I(p) are, respectively, the real and imaginary 
part of //<„»(&>). 

Substituting equation (,43) into equation (A2) and 
separating real and imaginary parts, the following two 
simultaneous differential equations are obtained 

V2F(p)=sin20/(p)-cos201/(p) (A4) 

V 2 / (p) = - cos20/(p) - sin2dV(p) (A5) 

where V 
d2 1 d 

- + -dp2 p dp' 

Elimination of I{p) from equations (AA) and (A5) yields 

V(p)= - cos20V 2 K(p)-s in20V 2 / (p ) (AS) 

For any two functions w and v which are two times con­
tinuously differentiable in the region R* and one time con­
tinuously differentiable on its boundary C* it is valid 

J L « (vV2w-wV2v)da=\^ ( » 
dw 

dn 

dv 

In •)efe (Al) 

Applying the Green identity (Al) for the pair of functions 
v=f, w=V(p) and noting that V 2 / = 0 we obtain 

1L* v2y^f^d,7Q 
df(Q) dV(p)_ 

tq v,tq 
'L-fe^-^iiri*. •]• (AS) 

Similarly, applying the same identity for the pair of functions 
i>=/and w = I(p) we obtain 

JL, v2i(p)f(Q)do-Q 

^K>+!,h>^>^fh} <A9) 
where in double integrals it is p = \P — Q \/l, QeR* while in line 
integrals, it is p= IP—q \/l, qeC*. 
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The additional term ef(P) in equation 049) is due to the fact 
that the line integral behaves like a double layer potential. The 
value of the constant is established by a limiting process. 
Thus, isolating point P by a small circle centered at point P, 
when P is inside R*, or by a small circular sector when point P 
is on C*, applying Green's identity 047), letting the radius of 
the small circle or of the circular sector, respectively, shrink to 
a point and taking into account that for small values of the 
argument p it is 

—-— = —-I'(p)cos<p = 
dn ( ~lsm6Re[H\lHM] 

1 2 
+ cosdIm[H\i1(Pp)]}cos<p— cosy 

I irp 

we obtain 

e = — 4 when P is inside R* 

e = — 2(2 — a/7r) when P is on C* 

Note that 

6 = 0 when P is outside R* 

0410a) 

(A 10b) 

(A 10c) 

a is the angle between the tangents at point/? of the boundary. 
For smooth boundaries it is a = ir. 
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INFO : DOMINICK J. DEMICHELE, UNION COLLEGE, GRADUATE S CONTINUING STUDIES, 

WELLS HOUSE - 1 UNION AVENUE, SCHENECTADY, NY 12308 TEL:518-370-6288 

DATE : APRIL 6-10, 1987 LOCATION: BARCELONA, SPAIN ABSTRACT: No Info 
TITLE: INT CONF ON COMPUTATIONAL PLASTICITY 
INFO : D R J OWEN, DEPT OF CIVIL ENGINEERING, UNIVERSITY COLLEGE OF SWANSEA, 

SINGLETON PARK, SWANSEA SA2 8PP, UK 

DATE : APRIL 7-8, 1987 LOCATION: GLASGOW, SCOTLAND ABSTRACT: No Info 
TITLE: APPLIED SOLID MECHANICS CONFERENCE 
INFO : A S TOOTH, DEPARTMENT OF MECHANICS OF MATERIALS, UNIVERSITY OF 

STRATHCLYDE, 75 MONTROSE ST, GLASGOW Gl 1XJ UK 

ABSTRACT: 8/22/86 DATE : APRIL 9-10, 1987 LOCATION: MONTEREY, CA 
TITLE: AIAA DYNAMICS SPECIALISTS CONFERENCE 
INFO : ANTHONY F. MESSINA, DEPT. 76-12, LOCKHEED-CALIFORNIA CO., 

P.O. BOX 551, BURBANK, CA 91520 TEL: 818-847-4910 

DATE : APRIL 13-15, 1987 LOCATION: UNIVERSITY PARK,PA ABSTRACT: Past Due 
TITLE: INTERNATIONAL CONFERENCE ON ENVIRONMENTAL DEGRADATION OF MATERIALS 
INFO : R P MCNITT, 227 HAMMOND BUILDING, UNIVERSITY PARK, PA 16802 

OATE : APRIL 13-16, 1987 LOCATION: SAN ANTONIO, TX ABSTRACT: Past Due 
TITLE: IUTAM SYMPOSIUM ON ADVANCED BOUNDARY ELEMENT METHODS 
INFO : DR T A CRUSE, SOUTHWEST RESEARCH INSTITUTE, P 0 DRAWER 28510, 

SAN ANTONIO, TX 78284 TEL 512 684 5111 

DATE : APRIL 26-30, 1987 LOCATION: CINCINNATI, OH ABSTRACT: 6/1/86 
TITLE: SYM. ON COMPOSITE MATERIALS: FATIGUE AND FRACTURE, 9TH SYM. (ASTM) 
INFO : PAUL A. LAGACE, MIT, ROOM 33-313, CAMBRIDGE, MA 02139 

TEL: 617-253-3628 

DATE : APRIL 26-30, 1987 LOCATION: CINCINNATI, OH ABSTRACT: 6/1/86 
TITLE: MECHANICAL RELAXATION OF RESIDUAL STRESSES (ASTM) 
INFO : LEONARD MORDFIN, NATIONAL BUREAU OF STANDARDS, B344 MATERIALS 

BUILDING, GAITHERSBURG, MD 20899 

DATE : APRIL 28-MAY 1, 1987 LOCATION: UXBRIDGE, UK ABSTRACT: Past Due 
TITLE: MAFELAP 1987:C0NF ON THE MATHEMATICS OF FINITE ELEMENTS 8 APPLICATIONS 
INFO : SECRETARY, INSTITUTE OF COMPUTATIONAL MATHEMATICS, BRUNEL UNIVERSITY, 

UXBRIDGE, MIDDLESEX, UB8 3PH UK 
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