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Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-
geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-
temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the de-
sign process involves numerical simulations of the underlyingwave physics, and assumes a perfect knowledge of
the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of
the properties of the geological formations is elusive, and quantification of the reliability of a deterministic ap-
proach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss
a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the
wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid
perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave mo-
tion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the
layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the prob-
abilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification
procedure using synthetic data.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Elastic wave stimulation of subsurface formations (Fig. 1(a)) can be
used as a primary or secondary recourse for enhanced oil recovery, re-
moval of trapped contaminant particles fromaquifers, subsurface colloi-
dal transport of contaminants atwaste disposal sites, etc. (Beresnev and
Johnson, 1994; Kouznetsov et al., 1998; Roberts et al., 2001; Kostrov and
Wooden, 2002; Vogler and Chrysikopoulos, 2002; Iassonov and
Beresnev, 2003; Pride et al., 2008; Roberts and Abdel-Fattah, 2009;
Beresnev and Deng, 2010; Beresnev et al., 2011; Manga et al., 2012; Lo
et al., 2012; Deng and Cardenas, 2013). The utility of the stimulation
depends upon, among other factors, the magnitude of the wave
motion generated in the target zone. When artificial wave sources
(e.g., Vibroseis) are used to apply the stimulation, equipment limita-
tions, and geometric as well as material attenuation pose challenges in
delivering sufficient vibrational energy to the target formation. Conse-
quently, the selection of locations and frequency content of the wave
sources that enables illumination of the target zone with a strong
hitectural and Environmental
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wave field is key to the success of the aforementioned engineering
applications.

If the geometric description andmaterial properties of the heteroge-
neous geostructure in question are known, then numerical-simulation-
based techniques can be used to compute the source characteristics that
focus the wave energy into the target formation. For example, if the lo-
cations of thewave sources are fixed (due to, say, practical constraints),
or are assumed to be fixed, then a frequency sweep can be performed to
obtain the source-time-signals maximizing the wave motion in the tar-
get. The frequency sweep uses amathematical abstraction of the under-
lyingwave physics (Fig. 1(b)) to compute a predefinedmotionmetric of
the target zone for a range of frequencies driving the sources. The source
frequency corresponding to the maximum value of the motion metric
can be used to designmonochromatic source signals that deliver energy
to the target, albeit not necessarily optimally or maximally. Alternative-
ly, the problem can be cast as a search for the optimal spatio-temporal
characteristics of the wave sources. This approach formally gives rise
to an inverse source problem (Jeong et al., 2015; Karve et al., 2015;
Karve and Kallivokas, 2015), which, upon resolution, yields optimal
source time signals and locations that maximize the chosen motion
metric of the target region. Time reversal (TR) is another technique
that can be used to focus energy in the region of interest (Anderson
et al., 2008; Ulrich et al., 2009). It consists of a two-step process. In the
first step, the ground surface, or portion of the same, is populated by a
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Fig. 1.Wave energy focusing to subterranean formations. (a) Wave energy focusing. (b) Mathematical model.
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receiver array (the time reversal mirror), and a source is placed in the
target region. The waves emitted by the source are recorded by the re-
ceiver array. In the second step, the signals recorded at all the receivers
are time reversed, and broadcast from their respective locations. The re-
broadcast waves, despite the limited mirror, could focus energy albeit
imperfectly. As placing wave sources in the target may be infeasible or
impractical, the first step can be performed in a numerical simulation.
The signals measured at the load locations can be time reversed, and
used as source excitations in the field to achieve the desired focusing.
Thus, in summary, various techniques can be used to determine either
an optimal, or advantageous, spatio-temporal description of the wave
sources for focusing energy to a target subsurface formation.

The reliability of a methodology based on deterministic numerical
modeling of thewave propagation phenomenondepends upon the accu-
racy of: a) the mathematical model, b) the numerical approximation,
and c) thematerial and geometric data,which, for a layered geostructure,
consists of the elastic properties of the layers, and the geometries of the
interfaces between the layers. Precise knowledge of the elastic proper-
ties of the geological formations is difficult to obtain in practice. Conse-
quently, quantification of the effects of uncertainties in the material
properties on the outcome of wave propagation simulations is vital for
the success of many geophysical applications.

In this article, we discuss amethodology that could be used to quan-
tify the uncertainty in the delivery ofwave energy to targeted geological
formations. Our working hypotheses are: a) the mathematical model
and the numerical approximation are sufficiently accurate, and b) the
geometries of the interfaces between the layers of the geostructure in
question are known with confidence, i.e., the uncertainty is confined
to the values of the elastic properties of the layers. Our goal is to provide
a probabilistic framework aiding the engineering decision making pro-
cess for the wave-physics-simulation-based design procedures, in gen-
eral, and thefield implementation ofwave energy focusing applications,
in particular.

To this end, we formulate the wave propagation problem for a two-
dimensional, isotropic, layered, elastic halfspace. We negotiate the
semi-infinite extent of the domain of interest by truncating it with a
buffer of hybrid perfectly-matched-layers (PMLs) (Kucukcoban and
Kallivokas, 2013). The layered elastic domain contains a target inclu-
sion, and tractions applied on the loaded boundary (ground surface)
initiate thewavemotion.Wedefine amotionmetric for the target inclu-
sion to measure the amount of the wave energy delivered to the target.
We assume that the geometric description of the geostructure is known,
and that themean values of thematerial properties of the layers, aswell
as the associated (marginal) probability distribution functions (PDFs)
have been computed, using, for example, the procedure described by
Gouveia and Scales (Gouveia and Scales, 1998). The uncertainty analysis
is used to compare the performance of candidate spatio-temporal char-
acteristics of the wave sources (optimal, or otherwise). Note that
the candidate source specifications can be computed using the deter-
ministic wave simulations mentioned earlier. The quantification of un-
certainty in the value of the motion metric is carried out in two steps.
In the first step, we perform a first-order sensitivity analysis of the
elastodynamic system to calibrate the dependence of themotionmetric
on each of the Laméparameters. This (deterministic) sensitivity analysis
computes the derivative of themotionmetric with respect to amaterial
parameter at a given (assumed) set of the properties. In the next step,
we treat the Lamé parameters as random variables with known proba-
bility distribution functions (PDFs). We, then, use the Rackwitz-Fiessler
algorithm (Rackwitz and Fiessler, 1978) to perform a first-order uncer-
tainty analysis of the elastodynamic system. This analysis allows estima-
tion of theprobabilities of failure to attain any specified threshold values
of the motion metric.

In the following sections, we discuss in detail: a) the mathematical
and computational model for the associated wave physics, b) the first-
order sensitivity analysis, and c) the first-order uncertainty analysis
using the Rackwitz-Fiessler algorithm, respectively. As an example, we
present the results of uncertainty quantification for a synthetic geolog-
ical formationmodel, and optimal loads reported in (Karve et al., 2015).
Next, we illustrate how the proposed methodology can be easily ex-
tended to quantify the uncertainty in the wave delivery to a poroelastic
target inclusion embedded in an elastic geostructure. Lastly, we outline
a candidate design procedure for the field implementation of the wave-
based enhanced oil recovery method (or other similar applications of
wave energy delivery to targeted geological formations).

2. The mathematical and computational model

The governing equations for a two-dimensional, heterogeneous, iso-
tropic, elastic solid (Ωreg, Fig. 2), truncated by PMLs (ΩPML, Fig. 2), and
enclosing a target inclusion (Ωa, Fig. 2), for time t∈(0,T]=J, are given
as:

div μa ∇ua þ ∇uT
a

� �þ λadivuaf gI� �
−ρa€ua ¼ 0; x ∈Ωa; ð1Þ

and,

div μb ∇ub þ ∇uT
b

� �þ λbdivubf gI� �
−ρb€ub ¼ 0;x ∈Ωreg; ð2aÞ

div _S
T ~Λe þ ST ~Λp

� �
−ρb a€ub þ b _ub þ cubð Þ ¼ 0;x ∈ΩPML; ð2bÞ



Fig. 2. Problem definition.
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D : a€Sþ b _Sþ c _S
� �

−
1
2

∇ub
~Λp þ ~Λp ∇ubð ÞT þ ∇ _ub

~Λe þ ~Λe ∇ _ubð ÞT
h i

¼ 0;x ∈ΩPML; ð2cÞ

where an overdot, (˙), denotes a derivativewith respect to time, a colon,
(:), represents tensor inner product, and spatial as well as temporal de-
pendencies are suppressed for brevity. Eqs. (1), (2a), (2b), (2c) are the
elastodynamics equations for a semi-infinite medium, augmented by
PMLs (Kucukcoban and Kallivokas, 2013). Specifically, Eqs. (1), (2a),
and (2b) are equilibrium equations, whereas Eq. (2c) is the combined
constitutive law and kinematic condition equation. ua(x, t) represents
the displacement field in the target inclusion Ωa, whereas ub(x, t) de-
notes the displacement in the rest of the domain (Ωreg∪ΩPML). S(x, t)
is the stress history tensor in ΩPML, given by,

S x; tð Þ ¼ S11 x; tð Þ S11 x; tð Þ
S21 x; tð Þ S22 x; tð Þ

� 	
¼

Z t

0
σ x; τð Þdτ; ð3Þ

where σ is the Cauchy stress tensor. ~Λe and ~Λp are components of
the stretching tensor, and a,b,c are coefficients defining complex
co-ordinate stretching in the PML region. Their detailed definitions
are beyond the scope of this article and can be found in (Kucukcoban
and Kallivokas, 2013). (λa,μa,ρa) and (λb,μb,ρb) are the Lamé parame-
ters and mass density for the inclusionΩa andΩreg∪ΩPML, respectively.
D is the compliance tensor, so that the constitutive law takes the
formD : _S¼ 1

2 ð∇ub þ ∇uT
bÞ. For t∈ J, the governing equations are subject-

ed to the following boundary conditions:

ub ¼ 0; x ∈ ΓPML
fixed; ð4aÞ

σT
bn ¼ f x; tð Þ; x ∈ Γload; ð4bÞ

σ T
bn ¼ 0; x ∈ Γfree; ð4cÞ

_S
T ~Λe þ ST ~Λp

� �
n ¼ 0; x ∈ ΓPML

free ; ð4dÞ

interface conditions:

uþ
b ¼ u−

b ; x ∈ ΓI; ð5aÞ
σT
bn

þ
I ¼ − _S

T ~Λe þ ST ~Λp

� �
n−
I ; x ∈ ΓI; ð5bÞ

ua ¼ ub; x ∈ Γa; ð5cÞ

σT
an

−
a ¼ −σT

bn
þ
a ; x ∈ Γa; ð5dÞ

where,

σa ¼ μa ∇ua þ ∇uT
a

� �þ λa divuað ÞI; ð5eÞ

σb ¼ μb ∇ub þ ∇uT
b

� �þ λb divubð ÞI; ð5fÞ

and initial conditions:

ua x;0ð Þ ¼ 0; _u a x;0ð Þ ¼ 0; x ∈Ωa; ð6aÞ

ub x;0ð Þ ¼ 0; _u b x;0ð Þ ¼ 0; x ∈Ωreg ∪ΩPML; ð6bÞ

S x;0ð Þ ¼ 0; _S x;0ð Þ ¼ 0; x ∈ΩPML: ð6cÞ

The tractions f(x, t) applied on Γload consist of contributions fi(x, t)
from ns sources. The i-th source consists of a spatial θi(x) and a temporal
fi(t) component. θi is further decomposed into the x1-directional compo-
nent θi1(x) and the x2-directional component θi2(x). Thus,

f x; tð Þ ¼
Xns
i¼1

f i x; tð Þ ¼
Xns
i¼1

θi1 xð Þ
θi2 xð Þ

� 	
f i tð Þ: ð7Þ

In this work, we use horizontally polarized loads that vary like a
Gaussian function on the loaded boundary (x2=0), i.e., θi1(x)=0, and,

θi2 xð Þ ¼ exp −
x1−ηi
� �2

bi

" #
; i ¼ 1;2;…;ns: ð8Þ

Notice that the parameter ηi controls the location of the center line of
the load, and that bi defines the width of the load. We employ the finite
element method to resolve the initial boundary value problem defined
by Eqs. (1)–(6c). To this end, we cast the governing Eqs. (1), (2a),
(2b), (2c) in their weak form.We, then, introduce spatial discretization
via continuous Lagrange shape functions to arrive at the following semi-
discrete equation:

M€y tð Þ þ C _y tð Þ þ Ky tð Þ ¼ F tð Þ; ð9Þ

where,

y¼ ~ua1 ~ua2 ~ureg
b1

~ureg
b2




 


~uPML
b1

~uPML
b2

~S11 ~S22 ~S12
h iT

; ð10Þ

F ¼ 00F1 F200000
h iT

: ð11Þ

The quantities with a tilde over the quantity symbol (~) denote
vectors of nodal values of the subtended quantity. We note that M,C,
andK are, the globalmass, damping, and stiffnessmatrices, respectively,
y is the vector of unknown displacements (everywhere) and stress his-
tories (PML only), and F is the force vector. Further details of the global
and element matrices can be found in (Kucukcoban and Kallivokas,
2013; Karve et al., 2015).

The temporal dimension is now discretized using a timestep Δt.
We define the vector yi=y, at time t = iΔt. The equation of motion
of the spatio-temporally discretized system at time t = (i + 1) Δt, can
be written as:

M€yiþ1 þ C _yiþ1 þ Kyiþ1 ¼ Fiþ1: ð12Þ



Table 1
Material properties for the layers and the inclusion shown in the geological formation
model (Fig. 5(a)).

Layer λ(MPa) μ(MPa)

L1 416.67 625.00
L2 694.44 1041.67
L3 972.22 1458.33
L4 1250.00 1875.00
T 277.78 416.67
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We employ Newmark's time integration scheme to integrate Eq. (12)
in time. The time histories of the state variables €y; _y; y can now be com-
puted given the force vector F. The time historieswill be used to calculate
the motion metric measuring the intensity of energy focusing. Next, we
define the motion metric, and select candidate source specifications for
a synthetic geo-formation.

3. Wave energy focusing

Given the geometry and the material properties of the geostructure
in question, the spatio-temporally optimal wave sources that maximize
the wave motion in a target formation can be obtained using the com-
putational model (Eq. (12)), and one of the aforementioned methods
(frequency sweep, TR, or inverse source method). Once the optimal
load characteristics are calculated, one can perform the sensitivity and
reliability analyses to quantify the effects of uncertainty in the input.
Here, we demonstrate this process using a synthetic geological forma-
tion model (Fig. 5a). The formation model contains four layers (L1-L4)
and a target inclusion (T). In a deterministic approach, we assume that
the material properties of the layers (λbi,μbi) and the inclusion (λa,μa),
as well as the interface geometries are known with confidence. As an
example, consider the values of the Lamé parameters given in Table 1.
The mass density for all layers is 2200 kg/m3.

To measure the intensity of energy focusing, we define the motion
metric in terms of the time-averaged kinetic energy. If u(t) denotes
the displacement at a computational node at time t, then the time-
averaged kinetic energy (KETA) at that node is defined as:

KETA ¼
Z T

0

1
2
ρ _u tð Þ � _u tð Þ½ �dt=T; ð13Þ

where ρ is themass density. Time-averaged kinetic energy, further inte-
grated over the target inclusion, is defined as KEinc. Thus,

KEinc ¼
Z
Ωa

Z T

0

1
2
ρa _ua tð Þ � _ua tð Þ½ �dtdΩ=T

¼
Z T

0

1
2
_~ua tð ÞTMinc

_~ua tð Þdt=T; ð14Þ
Fig. 3. Optimal time signals (obtained without changing load locations) and assoc
where _~uaðtÞ is the velocity vector corresponding to the computational
nodes in the inclusion, and Minc is the mass matrix of the inclusion.
The units of KETA are J/m3, and those of KEinc are J/m. We use plots of
KETA and values of KEinc to compare the degree of energy focusing
achieved by candidate source specifications. The effectiveness of the
stress wave stimulation can be assessed by comparing the metric
(KEinc) with a threshold value ðKEthÞ, where the threshold is selected
based on the engineering application of interest.

In (Karve et al., 2015), an inverse source approach was followed for
the geological formationmodel (Fig. 5(a)) endowedwith the properties
given in Table 1, and the source characteristics that maximize the wave
energy delivery to the target inclusionwere computed. In one of the nu-
merical experiments (experiment 2), the inversion process was carried
out for three horizontally polarized loads applied on the ground surface.
Here, we use two sets of optimal (converged) load characteristics
reported in that experiment, specifically: a) the optimal time signals
obtained without changing the load locations (load case A), and b) the
optimal time signals and locations obtained by a simultaneous spatio-
temporal optimization process (load case B). Figs. 3 and 4 show the
optimal time signals for the two cases. Fig. 5(b) and (c) show the plots
of time averaged kinetic energy. The focusing of kinetic energy in the
target inclusion is clearly seen in these figures. Table 2 summarizes
the optimal source characteristics and the resulting (KEinc) values.
Further details of the inversion methodology can be found in (Karve
et al., 2015). In the following sections, we outline the sensitivity and
uncertainty analyses, respectively, and illustrate their use for the load
cases A and B.

4. Sensitivity analysis

The sensitivity analysis quantifies the dependence of the motion
metric on the value of a particular system parameter (Lamé parameter)
by calculating the relevant derivative. Here, we use the procedure
discussed in (Tsikas, 1997; Van Keulen et al., 2005) to perform sensitiv-
ity analysis of the second-order elastodynamic system (Eq. (9)).We de-
fine a vector (q) of Lamé parameters for the layers and the inclusion
(i.e., the system parameters):

q ¼ q1 q2…qN½ �T ¼ λb1
λb2…λa μb1 μb2

…μa

h iT
: ð15Þ

Now, the semi-discrete equilibrium Eq. (9) can be rewritten as:

M qð Þ€y qð Þ þ C qð Þ _y qð Þ þ K qð Þy qð Þ ¼ F; ð16Þ

wherewe have explicitly shown the dependence of the systemmatrices
and state variables on q. The goal of the sensitivity analysis is to com-

pute zi ¼ ∂y
∂qi

and its time derivatives for i = 1,2,…,N. To this end, we
iated frequency content. (a) Time signals. (b) Normalized Fourier amplitude.



Fig. 4. Optimal time signals and associated frequency content after simultaneous time signal-location optimization. (a) Time signals. (b) Normalized Fourier amplitude.

Fig. 5. Geological formation model and plots of time-averaged kinetic energy (KETA). (a) Geological formation model. (b) KETA after time signal optimization (load case A). (c) KETA after
time signal and load-location optimization (load case B).
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perturb the i-th parameter (qi) using an increment ϵ→0.We, then,write
the equilibriumequation for the perturbed system. After some algebraic
simplifications, and neglecting second ordered terms in ϵ, we arrive at
the following equation for the sensitivity variable zi:

M qð Þ€zi þ C qð Þ _zi þ K qð Þzi ¼ −
∂M qð Þ
∂qi

€y qð Þ−∂C qð Þ
∂qi

_y qð Þ−∂K qð Þ
∂qi

y qð Þ: ð17Þ

The right hand side of Eq. (17) requires assembly of the derivatives
of the system matrices, which is performed using the derivatives
of the element matrices given in Appendix A. We discretize the time
Table 2
Optimal source characteristics for the geological formation model computed using the inverse

Load case Time signals Location parameters (

A Fig. 3 η1=−7.00,η2=−5
B Fig. 4 η1=−19.00,η2=−
line using timestep Δt. We define the vector zji=zi, at time t= jΔt .
The equation of motion for the sensitivity variables, at time t= jΔt,
can be written as:

M qð Þ€zij þ C qð Þ _zi
j
þ K qð Þzij ¼ −

∂M qð Þ
∂qi

€y
j
qð Þ−∂C qð Þ

∂qi
_y
j

qð Þ−∂K qð Þ
∂qi

y j qð Þ:

ð18Þ

Thus, if the time histories of the state variables ðyðqÞ; _yðqÞ; €yðqÞÞ,
and the derivatives of system matrices with respect to the material
source approach.

m) KETA KEinc (J/m)

.00,η3=0.00 Fig. 5(b) 3.22
19.16,η3=−20.04 Fig. 5(c) 4.75



Table 3
Results of sensitivity analysis (load case A).

qi ∂KEinc
∂qi

(nJ/mPa) qi ∂KEinc
∂qi

(nJ/mPa)

λb1
0.397 μb1

3.215
λb2

0.114 μb2
−1.273

λb3
−0.020 μb3

−1.374
λb4

0.019 μb4
0.468

λa −0.039 μa −6.705
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parameter of interest (qi) are known, then the time histories of the sen-

sitivity variables ðzi; _zi; €ziÞ can be computed by integrating Eq. (18),
using, for example, the Newmark's method. Once the time history of

the velocity-like sensitivity variable ð _ziÞ is computed, the derivative of
the motion metric (KEinc(q)) , with respect to a material parameter qi
can be evaluated as:

∂KEinc qð Þ
∂qi

¼
Z T

0
_ziua

tð ÞTMinc
_~u tð Þdt=T ; ð19Þ

where _ziua
contains the nodal values of the velocity-like sensitivity vari-

able corresponding to the degrees of freedom in the target inclusion.
As an illustration, we perform the sensitivity analysis for the geolog-

ical formationmodel (Fig. 4) endowedwithmaterial properties given in
Table 1. The results of sensitivity analysis for load cases A and B are sum-
marized in Tables 3 and 4, respectively. It can be seen that the motion
metric is most sensitive to the value of the second Lamé parameter
(shear modulus) of the target inclusion. Out of the surrounding layers,
the metric is more sensitive to the properties of the first layer for load
case A, and that of the second layer for load case B. In general, themetric
is less sensitive to the variation in λ values than it is to the variation in μ
values.

The deterministic sensitivity analysis quantifies the effect of varia-
tion in the input data in a very limited sense. The derivatives computed
in this analysis are valid only at the material state at which they are
computed. The systemmay not exhibit similar behavior at other values
ofmaterial properties. Furthermore, the sensitivity analysis provides lit-
tle information about the ability of the wave sources to create strong
wave motion in the target zone. To quantify the effect of uncertainty
in a comprehensive manner, we discuss a probabilistic analysis next.

5. Uncertainty analysis

Toassess the uncertainty in thewave energy delivery,we investigate
probabilistically the motion metric by treating the material properties
as random variables. For a layered geo-formation, if the geometry
of the interfaces between the layers is (assumed to be) accurately
known, and the loading is specified, then KEinc depends on the values
ofmaterial properties of the layers. Thus, themotionmetric of the target
inclusion is a function of N random variables (q). The uncertainty in
wave energy delivery can be estimated by evaluating the probability
of failure to attain a predefined threshold value (KEth) of the metric,
Table 4
Results of sensitivity analysis (load case B).

qi ∂KEinc
∂qi

(nJ/mPa) qi ∂KEinc
∂qi

(nJ/mPa)

λb1
0.379 μb1

−0.501
λb2

0.485 μb2
2.735

λb3
0.036 μb3

−2.596
λb4

0.044 μb4
0.819

λa −0.359 μa −9.793
i.e., P[KEinc(q)bKEth ]. If the joint probability distribution function
(PDF) for the random system variables, fQ(q1,q2,… ,qN), is known,
then the required probability can be evaluated as,

P KEinc qð Þ bKEth½ � ¼
Z

⋯
Z

KEinc qð Þ b KEth

f Q q1; q2;…; qNð Þdq1dq2…dqN : ð20Þ

The integral on the right hand side of Eq. (20) is evaluated over the
region where KEincðqÞbKEth. Typically, only the marginal PDFs ( fQi

(qi))
for the individual random variables (qi) are known, and the joint PDF
is difficult to obtain. Hence, approximate methods are required to eval-
uateP½KEincðqÞ � bKEth�. In this work, we favor a first-order approach for
computing the integral in Eq. (20). The first-order analysis requires
computation of the first derivatives of the motion metric with respect

to the random system variables (qi), or,
∂KEincðqÞ

∂qi
for i=1,2,… ,N. Note

that we calculated the required derivatives in the sensitivity analysis
(Eq. (19)). We remark that a more accurate, second-order approach re-
quires computation of the Hessian of KEinc(q) in the N-dimensional
space,which is prohibitively expensive for large elastodynamic systems.

We employ the Rackwitz-Fiessler algorithm (Appendix C, (Rackwitz
and Fiessler, 1978))to perform the first-order uncertainty analysis. In
this algorithm, the original (correlated or uncorrelated) random vari-
ables (q) are mapped to uncorrelated, standard normal random vari-
ables (U) using a linear transformation. The joint PDF ( fU(U1,⋯ ,UN))
can now be easily computed as the product of N standard normal
PDFs. The surface KEincðqÞ ¼ KEth is approximated as a first-order sur-
face (an N-dimensional hyperplane) to enable an efficient but approxi-
mate computation of the integral in Eq. (20).

We illustrate the probabilistic analysis procedure using the geologi-
cal formation model shown in Fig. 5(a). The mean value and standard
deviation vectors corresponding to the vector of Lamé parameters (q)
are denoted by q and D, respectively. We assume that the Lamé param-
eter values given in Table 1 are themean values ðqÞ, the wave motion is
actuated by the (optimal) loads given in Table 2 (load cases A and B),
and the material properties are uncorrelated, normally distributed ran-
dom variables. We remark that the methodology can easily accommo-
date other types of probability distributions as well as correlated
random variables.

Initially, we use the same coefficient of variation for the entire
geostructure, i.e., Di ¼ Cυqi , for i = 1,2,…,N for a fixed value of Cv.
This assumption will be relaxed later. We compute the failure probabil-
ities for a range of thresholds of themotionmetric, given the values of q
and Cυ. The results for load cases A and B are plotted in Figs. 6 and 7,
Fig. 6. Results of uncertainty analyses using the same Cυ value for all layers (load case A).



Fig. 7. Results of uncertainty analyses using the same Cυ value for all layers (load case B).
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respectively. It can be seen that for a givenKEth value, P½KEincðqÞ bKEth�
decreases as Cυ decreases. It is also evident that P½KEincðqÞ bKEth�
reduces with the value of KEth for a given Cυ.
Fig. 8. Results of uncertainty analyses using different Cυ values for different layers.
Alternatively, the uncertainty in our knowledge of the material
properties of the layered geostructure can be captured by assigning dif-
ferent Cυ values to different layers (Gouveia and Scales, 1998). Fig. 8
shows the results of uncertainty analyses for such cases (the assumed
Cυ values for the layers are shown in a table within the figure).
It can be seen in Fig. 8 that the spatio-temporally optimized loads
(load case B) have a higher probability of achieving a given value of
the motion metric than the loads whose locations were kept fixed
while optimizing the time-signals (load case A). These analyses can be
used to compare the effectiveness of candidate loads in delivering
wave energy to the target formation, when the material properties of
the geostructure are not known with confidence.

6. Wave energy delivery to a poroelastic target inclusion

In the preceding sections, we discussed how the uncertainty inwave
energy delivery to a subsurface elastic formation can be quantified using
sensitivity and uncertainty analyses. The laboratory and analytical
investigations into the release of trapped particles from the pores of
geological formations (Beresnev and Johnson, 1994; Kouznetsov et al.,
1998; Roberts et al., 2001; Kostrov and Wooden, 2002; Vogler and
Chrysikopoulos, 2002; Iassonov and Beresnev, 2003; Pride et al., 2008;
Roberts and Abdel-Fattah, 2009; Beresnev and Deng, 2010; Beresnev
et al., 2000; Manga et al., 2012; Lo et al., 2012; Deng and Cardenas,
2013) suggest that an estimate of the fluid motion in the target forma-
tion can lead to a better assessment of the particle mobilization phe-
nomenon. In order to estimate the fluid motion generated due to the
applied stress wave stimulation, in this section, we consider the case
of a poroelastic target inclusion (Ωa, Fig. 2) embedded in a heteroge-
neous, elastic halfspace. We use Biot's equations of poroelastodynamics
(Biot, 1956) to model the wave propagation in the poroelastic target.
Thus, the response in the poroelastic target inclusion (Ωa) is described
by a solid and a fluid displacement field, ua, and uf, respectively. We
favor the u-w form of the Biot's equations (Biot, 1956; Schanz, 2009)
to model the wave propagation in the poroelastic target. The u-w
form uses the seepage displacementw=ϕ(uf−ua) , where ϕ is the po-
rosity, to describe the fluid displacement field in the poroelastic target
Ωa (Schanz, 2009). The governing equations in Ωa, for time t∈ J=
(0,T], are given by:

div μa ∇ua þ ∇uT
a

� �þ λa þ α2M
� �

divua þ αMdivw
� �

I
� �

−ρa€ua−ρ f €w
¼ 0;x ∈Ωa;

ð21aÞ

div αMdivua þMdivwf gI½ �−ρ f €ua
−ρ f

1þ C1

ϕ
€w−

1
κ

_w¼0;x ∈Ωa;

ð21bÞ

where an overdot, (˙), denotes a derivative of the subtended entity with
respect to time, and the temporal and spatial dependencies have been
suppressed for brevity. The parameters λa and M are defined as:

λa ¼ λs−α λs þ 2
3
μs


 �
; M ¼ 1

α−ϕ

λs þ 2
3
μs

þ ϕ
λ f

;
ð22Þ

where λs and λf denote the first Lamé parameter for the solid grains
and the interstitial fluid, respectively. μa=μ s, is the second Lamé
parameter (shear modulus) of the solid grains in the poroelastic target
inclusion. ρs and ρf are the mass densities of the solid grains and the
pore fluid, respectively, and ρa=(1−ϕ)ρs+ϕρf is the mass density of
the composite. κ=k/ηf denotes the fluid mobility, where k is the abso-
lute permeality and ηf is the fluid viscosity. The factor C1 depends on
the geometry of the pores: C1 is related the tortuosity of the fluid path,
at, by the equation, C1=1−at (Schanz, 2009). Various approximations



Table 6
Material properties for the poroelastic inclusion (T) in the composite elastic-poroelastic
geological formation model (Fig. 5(a)).

λs

(MPa)
μs
(MPa)

λf

(MPa)
ρs
(kg/m3)

ρf
(kg/m3)

ϕ κ=k/ηf
(Darcy m s/kg)

555.56 833.33 2000.00 2200 860 0.25 100

Table 7
Results of sensitivity analysis for the composite solid (load case C).

qi ∂KE f
inc

∂qi
(nJ/mPa) qi ∂KE f

inc
∂qi

(nJ/mPa)

λb1
0.3520 μb1

0.5716
λb2

0.0413 μb2
−0.7597

λb3
−0.0007 μb3

−0.2572
λb4

0.0033 μb4
0.1432

λs −0.0267 μ s −0.7103
λf −0.0032 - -

33P.M. Karve et al. / Journal of Applied Geophysics 125 (2016) 26–36
for C1 can be found in the literature (Schanz, 2009; Bourbié et al., 1987).
Here, we use C1 ¼ 1

2 ð1− 1
ϕÞ. In Eqs. (21a), (21b), α is Biot's effective

stress coefficient. Various correlations between the effective stress coef-
ficient (α) and the porosity of the poroelastic solid (ϕ) are available in
the literature (Luo et al., 2015; Lee, 2002). In this work, we use α=
1−(1−ϕ)3.8. The boundary between the poroelastic and the elastic re-
gion is denoted by Γa (Fig. 2). We enforce the following interface condi-
tions on Γa:

w � n−
a ¼ 0;x ∈ Γa; ð23aÞ

ua ¼ ub; x ∈ Γa; ð23bÞ

σT
an

−
a ¼ −σT

bn
þ
a ; x ∈ Γa; where; ð23cÞ

σa ¼ μa ∇ua þ ∇uT
a

� �þ λa þ α2M
� �

divua þ αMdivw
� �

I; ð23dÞ

σb ¼ μb ∇ub þ ∇uT
b

� �þ λb divubf gI: ð23eÞ

The first interface condition (Eq. (23a)) ensures that the fluid does
not flow from the poroelastic inclusion into the elastic host, whereas
the second interface condition (Eq. (23b)) enforces the continuity of
the solid displacement between the elastic host and the poroelastic in-
clusion. The final interface condition (Eq. (23c)) implies the continuity
of traction on Γa. We assume silent initial conditions for the pore fluid,
i.e.,

w x;0ð Þ ¼ _w x;0ð Þ ¼ 0: ð24Þ

The governing equations in the heterogeneous elastic host (Ωreg,
Fig. 2) and the PML region (ΩPML, Fig. 2) remain same as before
(Eqs. (2a), (2b), (2c)) – the response in Ωreg (Fig. 2) is described by
the ub displacement field, and that in the PML region (ΩPML) is
described by a displacement field (ub) and a stress history field (S).
The initial boundary value problem (IBVP) for wave propagation in
the composite (elastic-poroelastic) domain is given by governing partial
differential Eqs. (21a), (21b), (2); boundary conditions (4); interface
conditions (5), (23); and initial conditions (6), (24). We resolve the
IBVP using the finite element method. The details of the finite element
formulation can be found in (Karve and Kallivokas, 2015). Thus, given
the material and geometric description of the geostructure in question
and the definition of the applied forces, we can compute the solid and
fluid displacement (velocity and acceleration)field in the poroelastic in-
clusion by solving the spatio-temporally descretized forward problem,
which is similar to the one given by Eq. (12). We remark that the global
mass, damping and stiffness matrices for the composite domain are dif-
ferent than those for the elastic domain, and that the vector of un-
knowns (y) now contains the nodal seepage displacements, as well, i.e.,

y ¼ ~w1 ~w2 ~ua1 ~ua2 ~ureg
b1

~ureg
b2




 


~uPML
b1

~uPML
b2

~S11 ~S22 ~S12
h iT

: ð25Þ

Next, we illustrate the uncertainty quantification procedure for the
poroelastodynamic system. We use a synthetically created geological
formation model, whose geometrical properties are given in Fig. 5a.
Table 5
Material properties for the elastic layers in the composite elastic-poroelastic geological
formation model (Fig. 5(a)).

Layer λbi
(MPa) μbi

(MPa) ρ kg/m3

L1 416.67 625.00 1800
L2 694.44 1041.67 2000
L3 972.22 1458.33 2200
L4 1250.00 1875.00 2400
The material properties of the heterogeneous elastic host and the
poroelastic inclusion are given in Tables 5 and 6.

We excite the composite solid using three horizontally polarized
surface loads whose spatial description is given by Eq. (8), and whose
center lines are located at η1=−7.00m,η2=−5.00m,η3=0.00m.
Temporally, we use fi(t)=(50kN/m2)sin[2π(52)t] , i=1,2 ,3 (load
case C). Our goal is to perform sensitivity and uncertainty analysis to
quantify the uncertainty in energy delivery to the pore fluid due to the
uncertainty in thematerial parameters. Here, we define amotionmetric
in terms of the time-averaged kinetic energy of the fluid particles to
measure wave energy delivery:

KEf
inc ¼

Z
Ωa

Z T

0

1
2
ρ f _u f tð Þ � _u f tð Þ½ �dt dΩ=T ¼

Z T

0

1
2
_~u
f
tð ÞTM f

inc
_~u f tð Þdt=T :

ð26Þ

Furthermore, we choose the Lamé parameters for the elastic
(λb1

, … ,λb4
,μb1

, … ,μb4
) and poroelastic (λs ,μ s) solids, as well as

the first Lamé parameter for the pore fluid (λf) as the system param-
eters. We assume that the values of other material constants
are known with confidence. Thus, for the case of composite solid
(Fig. 5(a)),

q ¼ q1 q2…qN½ �T ¼ λb1 λb2…λs λ f μb1 μb2…μs

h iT
: ð27Þ

Next, we perform the sensitivity analysis outlined in Section 4 to
compute the derivatives of the motion metric with respect to the
system parameters. The results are given in Table 7. Once again, we
observe that the fluid motion is more sensitive to the value of the
second Lamé parameters for the second layer (L2) and for the target
inclusion (T).
Table 8
Cv values for different material parameters (scenario 2 in Fig. 9).

qi Cv qi Cv

λb1
0.05 μb1

0.05
λb2

0.10 μb2
0.10

λb3
0.15 μb3

0.15
λb4

0.20 μb4
0.20

λs 0.17 μ s 0.17
λf 0.17 - -



Fig. 9. Results of uncertainty analyses for the composite (elastic-poroelastic) geological
formation model (load case C), scenario 1: uncertainty analysis using Cυ = 0.2 for all
system variables, scenario 2: uncertainty analysis using the Cυ values given in Table 8.

Fig. 10. The effect of treating system parameters as deterministic variables, scenario 1: un-
certainty analysis treating all Lamé parameters as random variables, scenario 2: uncertainty
analysis when the first Lamé parameters for all layers are treated as deterministic variables,
and scenario 3: uncertainty analysiswhen the second Laméparameter for thefirst layer (μb1)
is treated as a deterministic variable.
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Lastly, we study the motion metric probabilistically by assuming
that the material properties are uncorrelated random variables
described by standard normal PDFs. We assume that the Lamé pa-
rameter values given in Tables 5 and 6 are the mean values. We com-
pute probabilities of failure to attain threshold values of the motion
metric (KEincf ) for different Cυ values. The results are plotted in
Fig. 9. It can be observed in Fig. 9 that P½KEincðqÞ bKEth� reduces
with the value ofKEth for given values of Cυ. Furthermore, we observe
that for a given value of kinetic energy (KEth), P½KEincðqÞ bKEth� in-
creases as the values of Cυ increase.
7. Discussion

In this work, we outlined a systematic framework to assess the reli-
ability of wave energy delivery to subsurface formations. We demon-
strated the uncertainty quantification procedure using a synthetically
created, layered geo-formation (Fig. 5(a)).We remark that themethod-
ology is independent of the optimality of the source characteristics, the
spatial dimensionality of the problem (as long as the governing equa-
tions remain second-order in time), the type of probability distributions
used to model the uncertainty, and the degree of correlation between
the system variables.

The results of the first-order uncertainty analysis can be used to
estimate the relative error in the probability of failure to attain the
threshold KEth, when a material property is treated as a deterministic
variable (Madsen, 1988). As an illustration, we consider the uncertainty
analysis for load case A and Cυ = 0.2 (for all layers), and treat some of
the system parameters as deterministic variables at their mean values.
The results are plotted in Fig. 10. It can be seen in Fig. 10 that the uncer-
tainty analysis results show very small changes when the first Lamé
parameters (λb1 ,…λb4 ,λa) are treated as deterministic variables
(compare scenarios 1 and 2). On the other hand, treating the second
Lamé parameter for the first layer (μb1) as a deterministic variable
changes the probability by about 20%-90% (compare scenarios 1 and
3). Thus, neglecting the first Lamé parameters from the uncertainty
analysis has a negligible effect on the results, and hence, the computa-
tional cost of the uncertainty analysis can be reduced by lowering the
parameter space dimension from N to N/2.

The assumption about accurate knowledge of the interface
geometries can be relaxed by parameterizing interface geometries
and treating the geometric parameters as random variables. The
deterministic wave physics simulations can be performed for the
mean, or expected, interface geometries. The sensitivity of the mo-
tion metric to the value of each geometric parameter (and hence, a
particular geometry of the interface) can be calculated numerically.
Once the derivatives of the motion metric with respect to interface
parameters are computed, the uncertainty analysis can be performed
in the manner similar to the one presented here.

Next, we discuss a design procedure for the field implementation of
thewave-based enhanced oil recovery (EOR)method, as an example. In
general, the engineering design of wave-based EOR may involve decid-
ing the following: a) the number of wave sources, b) the capabilities of
wave sources (maximum amplitude, frequency range, etc.), c) the dura-
tion for which the stress wave stimulation is applied, d) the type of the
sources (down-hole or surface sources), and e) the frequency content
and locations of the sources. These characteristics can be designed
using the following steps:

1. Choose the number, type(s), and maximum amplitude of the wave
sources.

2. Obtain or estimate the mean values of the material properties of the
layers (and, possibly, the interface geometries) as well as the corre-
sponding variances for the layered geostructure of interest.

3. Define a suitablemotionmetric of the target layer to assess the inten-
sity of wave energy focusing and the efficiency of trapped (oil) parti-
cle removal.

4. Compute the optimal (or, advantageous) source characteristics
using: a) a simulation-based method (frequency sweep, inverse-
source, or, TR), and b) themean values of material properties and in-
terface geometries.

5. Perform the uncertainty analysis to compute the probabilities of fail-
ure to achieve threshold values of the motion metric.

6. Use the results of the uncertainty analysis and pore-scale dynamics
studies to decide the economic and engineering feasibility of the
EOR process.

7. If required, change the number, type(s), maximum amplitude of
sources, etc., and repeat steps 1 through 6

We remark that a similar approach can be used for contaminant
removal or applications where wave energy focusing to geological
formations is of importance, and/or the scheduling and optimizing
of hydraulic fracturing operations.
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8. Conclusions

The methodology discussed in this article provides a systematic
framework for quantifying the reliability of wave energy delivery to
subsurface formations. The results of our uncertainty analysis show
that the spatio-temporally optimal sources have a better chance of de-
livering stress wave stimulation to the targeted geological formation
than temporally optimal sources. The procedure discussed in this article
can be used to implement thewave-based enhanced oil recoverymeth-
od in the field.
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Appendix A. Derivatives of element matrices
(elastic target inclusion)

Here,we provide concise definitions of derivatives of elementmatri-
ces that form the global matrices in Eq. (17). We differentiate the con-
stituents of element matrices given in (Karve et al., 2015; Kucukcoban
and Kallivokas, 2013)with respect to Lamé parameters (λ or μ). The rel-
evant derivatives are given below:

∂Nik

∂λb
¼

Z
ΩPML

k
−1

4 μb þ λbð Þ2
ΨΨTdΩ; if i ¼ 1;

¼
Z
ΩPML

k
1

4 μb þ λbð Þ2
ΨΨTdΩ; if i ¼ 2;

¼ 0; if i ¼ 3;

∂Nik

∂μb
¼

Z
ΩPML

k
−2μ2

b−λ2
b−2λbμb

4 μ2
b þ λbμb

� �2 ΨΨTdΩ; if i ¼ 1;

¼
Z
ΩPML

k
−2μbλb−λ2

b

4 μ2
b þ λbμb

� �2 ΨΨTdΩ; if i ¼ 2;

¼
Z
ΩPML

k
−1
μ2
b

ΨΨTdΩ; if i ¼ 3;

whereΨ are the shape functions used to approximate the stress history
variables in the PML region.

For a finite element within the elastic target inclusion, the
derivatives of element mass, damping, and stiffness matrices are given
by:

∂Ma

∂λa
¼ ∂Ma

∂μa
¼ 0;

∂Ca

∂λa
¼ ∂Ca

∂μa
¼ 0;

∂Ka

∂λa
¼ Q a

11 Q a
12

Q a
21 Q a

22

� 	
;

∂Ka

∂μa
¼ 2Q a

11 þ Q a
22 Q a

21
Q a

12 2Q a
22 þ Q a

11

� 	
:

Derivatives of the element matrices for the regular domain are:

∂Mreg

∂λb
¼ ∂Mreg

∂μb
¼ 0;

∂Creg

∂λb
¼ ∂Creg

∂μb
¼ 0 ;

∂Kreg

∂λb
¼ Q reg

11 Q reg
12

Q reg
21 Q reg

22

� 	
;

∂Kreg

∂μb
¼ 2Q reg

11 þ Q reg
22 Q reg

12
Q reg

21 2Q reg
22 þ Q reg

11

� 	
:

In the PML region, derivatives of the element matrices can be com-
puted as:

∂MPML

∂γ
¼

0 0 0 0 0
0 0 0 0 0

0 0
−∂N1a

∂γ
∂N2a

∂γ
0

0 0
∂N2a

∂γ
−∂N1a

∂γ
0

0 0 0 0
−∂N3a

∂γ

2
66666666664

3
77777777775
;

∂CPML

∂γ
¼

0 0 0 0 0
0 0 0 0 0

0 0
−∂N1b

∂γ
∂N2b

∂γ
0

0 0
∂N2b

∂γ
−∂N1b

∂γ
0

0 0 0 0
−∂N3b

∂γ

2
66666666664

3
77777777775
;

∂KPML

∂γ
¼

0 0 0 0 0
0 0 0 0 0

0 0
−∂N1c

∂γ
∂N2c

∂γ
0

0 0
∂N2c

∂γ
−∂N1c

∂γ
0

0 0 0 0
−∂N3c

∂γ

2
66666666664

3
77777777775
;

where γ=λb or μb.

Appendix B. Derivatives of element matrices
(poroelastic target inclusion)

Here, we provide concise definitions of derivatives of element
matrices that form the global matrices for the composite (elastic-
poroelastic) domain. We differentiate the constituents of element ma-
trices given in (Karve and Kallivokas, 2015) with respect to Lamé pa-
rameters (λs, λf, or μ s). For a finite element within the poroelastic
target inclusion, the derivatives of elementmass and dampingmatrices
are given by:

∂Ma

∂λs
¼ ∂Ma

∂μs
¼ ∂Ma

∂λ f
¼ 0;

∂Ca

∂λs
¼ ∂Ca

∂μs
¼ ∂Ca

∂λ f
¼ 0: ðB:1Þ

The element stiffness matrix can be written as:

Ka ¼
MQ a

11;ww MQ a
12;ww αMQ a

11;wu αMQ a
12;wu

MQ a
21;ww MQ a

22;ww αMQ a
21;wu αMQ a

22;wu

αMQ a
11;uw αMQ a

12;uw 2μs þ D1ð ÞQ a
11;uu þ μsQ

a
22;uu μsQ

a
21;uu þ D1Q

a
12;uu

αMQ a
21;uw αMQ a

22;uw μsQ
a
12;uu þ D1Q

a
21;uu 2μs þ D1ð ÞQ a

22;uu þ μsQ
a
11;uu

2
6664

3
7775;

ðB:2Þ

where D1=λa+α2M, and Q ij ,pq
a are defined in (Karve and Kallivokas,

2015). The derivatives of the element stiffness matrix can be calculated
using,

∂λa

∂λs
¼ 1−α; ðB:3Þ

∂λa

∂μs
¼ −

2
3
α; ðB:4Þ

∂λa

∂λ f
¼ 0; ðB:5Þ

∂M
∂λs

¼ λ f

D
−

ϕλ f λs þ 2
3
μs


 �
D2 ; ðB:6Þ
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∂M
∂μs

¼
2
3
λ f

D
−

2
3
ϕλ f λs þ 2

3
μs


 �
D2 ; ðB:7Þ

∂M
∂λ f

¼
λs þ 2

3
μs

D
−

α−ϕð Þλ f λs þ 2
3
μs


 �
D2 ; ðB:8Þ

where D ¼ ðα−ϕÞλ f þ ϕðλs þ 2
3 μsÞ . Note that the derivatives of the

element matrices for the elastic host and for the PML region remain
the same as those given in Appendix A.

Appendix C. the Rackwitz-Fiessler algorithm

The Rackwitz-Fiessler algorithm for uncorrelated, normally distrib-
uted random variables (qi, i = 1,2,…,N) is given below.

Table C.9
The Rackwitz-Fiessler algorithm.
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