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ABSTRACT

This paper discusses a mathematical and numerical modeling
approach for identification of an unknown optimal loading time
signal of a wave source, atop the ground surface, that can maximize
the relative wave motion of a single-phase pore fluid within
fluid-saturated porous permeable (poroelastic) rock formations,
surrounded by non-permeable semi-infinite elastic solid rock
formations, in a one-dimensional setting. The motivation stems from
a set of field observations, following seismic events and vibrational
tests, suggesting that shaking an oil reservoir is likely to improve oil
production rates. This maximization problem is cast into an inverse-
source problem, seeking an optimal loading signal that minimizes
an objective functional – the reciprocal of kinetic energy in terms
of relative pore-fluid wave motion within target poroelastic layers.
We use the finite element method to obtain the solution of the
governing wave physics of a multi-layered system, where the wave
equations for the target poroelastic layers and the elastic wave
equation for the surrounding non-permeable layers are coupled
with each other. We use a partial-differential-equation-constrained-
optimization framework (a state-adjoint-control problem approach)
to tackle the minimization problem. The numerical results show that
the numerical optimizer recovers optimal loading signals, whose
dominant frequencies correspond to amplification frequencies, which
can also be obtained by a frequency sweep, leading to larger
amplitudes of relative pore-fluid wave motion within the target
hydrocarbon formation than other signals.
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1. Introduction

1.1. Vibrational stimulation for enhanced oil recovery

Persistent global demand for hydrocarbon energy sources, coupled with the difficulties
associatedwith the exploration and exploitation of new hydrocarbon reserves, has renewed
emphasis on improving the efficiency of oil recovery from existing reservoirs by using
enhanced oil recovery methods.[1] In order to recover any oil still remaining in an existing
reservoir, EOR methods, such as gas- and polymer-flooding, are usually employed.[2,3]
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Figure 1. Themobilization of trapped oil droplets in pore space by the vibration of the pore wall surface.

The wave-based EOR method has been proposed as one cost-effective EOR method.
The key idea behind the wave-based EOR method is that traveling waves, however they
may be generated, could ‘shake’ a reservoir sufficiently tomobilize the remaining oil, which
could then be recovered by conventional means. Wave sources typically used in the wave-
based EOR includeVibroseis equipments atop the ground surface,[4–7]wellbore hydraulic
pumps,[8] or wellbore seismic vibrators.[9,10] All sources are capable of generating,
directly or indirectly, elastic waves. The wave-based EOR is considered to be as effective
as conventional EOR methods because elastic waves can indiscriminately illuminate the
entire volume of an oil reservoir, whereas, due to the heterogeneity of a typical reservoir,
gas- or chemical-flooding can hardly sweep it in its entirety.

The feasibility of the wave-based EOR is supported by a set of field observations
showing that elastic waves induce increased production of the remaining oil.[11–24] It
has been also reported that the seismic waves increase permeability within hydrocarbon
formations. Elkhoury et al. [25] presented that seismic waves can alter the permeability
of aquifers. The laboratory tests that use fluid flow oscillation of a very low frequency
(0.05Hz) showed that permeability within a fractured rock can be improved by vibrational
stimulation.[26] Geballe et al. [27] and Manga et al. [28] suggested that unblocking pore
spaces, by vibrationally breaking colloidal deposits ormobilizing droplets trapped in pores,
contribute to the change of permeability.

As one suggested predominant mechanism of the wave-based EOR, the movement
of the pore walls can mobilize oil droplets trapped in pore spaces.[29–32] That is, the
vibration of pore walls can dislodge the trapped droplets and coalesce them into larger
ones, allowing them to be mobilized and flow (see the illustration in Figure 1). A set
of experimental studies support this mechanism.[22,30,33–41] In addition, Iassonov and
Beresnev [42] developed a threshold capillary-trapping model: an inertial force, induced
by the elastic wave on a trapped oil droplet, should exceed a threshold level in order for the
trapped oil droplet to overcome the capillary force. Subsequent experiments [43,44] and
numerical simulations [45–47] presented that the acceleration of the rock matrix should
be in the order of 0.1 m/s2 or more to induce oil mobilization. Jeong et al. [48,49] showed
that a fleet of sufficiently strong wave sources should be employed to generate such large
acceleration of rock matrix because wave response attenuates quickly with respect to the
traveling distance, largely due to geometric and intrinsic attenuations.

On the other hand, it has been argued that reservoir shaking can lead to oscillatory cross-
flow at the interfaces between low and high permeability areas in a highly heterogeneous
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reservoir or in a fractured reservoir.[50–55] In a heterogeneous reservoir, the elastic
waves induce pore-pressure oscillation between layers of different permeability [50,52]
Such pressure oscillation could effectively coax out bypassed oil from the low to high
permeability areas. In a fractured reservoir, the direct application of hydraulic wave sources
to a fracture can induce periodic pressure gradient at the interface wall between a fracture
and its surrounding rock matrix such that the transport of bypassed oil from the rock
matrix to the fracture space is facilitated.[48,51,53–56]

1.2. Inverse-source problems for the wave-based EOR

To examine the possibility of maximizing the outcome of the wave-based EOR, we have
investigated the feasibility of identifying unknown optimal source conditions that can
maximize desired metrics for the wave-induced EOR. To this end, we have formulated the
associated mathematical problem as an inverse-source problem.1 [48,49,61,62] That is, for
a known geostructure, containing a target formation (reservoir), one seeks to determine
the input excitations that willmaximize desired outcomes, e.g. wave energy at the reservoir,
while minimizing undesired metrics, e.g. vibrational disturbance in surrounding forma-
tions. The geostructure is considered arbitrarily heterogeneous as the target hydrocarbon
rock formations are surrounded by non-permeable rock formations. Sources are deployed
on the ground surface (if needed, within the wellbore for a deep reservoir). Due to the
semi-infinite extent of the physical domain, an absorbing boundary condition is used
to truncate the physical domain in order to render it finite and, thus, computationally
feasible.[5,63–65]

In our inverse-source problem studies, we have sought to maximize a desired metric by
casting the problem asminimization of themetric’s reciprocal.We have used the apparatus
of partial-differential-equation(PDE)-constrained-optimization [66] in order to resolve the
minimization problem with respect to a large set of control parameters, i.e. variables
used for the parameterization of unknown optimal time signals of multiple wave sources.
In mathematical terms, we defined a Lagrangian, comprising a reciprocal functional
describing the metric sought to be maximized, augmented by the side-imposition of the
problem’s governing physics PDEs. Satisfaction of the first-order optimality conditions
leads to a triad of state, adjoint, and control problems. We numerically resolved the state
and adjoint problems, and used the control problem to update control parameters until
convergence. Jeong et al. [61] presented a source-inversion method for identifying an
unknown optimal loading time signal of a ground surface wave source, leading to focusing
of kinetic energy or maximization of acceleration of the solid rock matrix in a selected
formation in a one-dimensional elastic solid setting. The numerical optimizer identifies
optimal loading time signals with strong dominant frequency components that coincide
with the exact or analytically-computed amplification frequencies. It was shown that there
are a set of amplification frequencies that lead to large rock wave motion in the targeted
formation. A different set of amplification frequencies can also selectively maximize the
wave energy within the target layer, while the adjacent formations stay relatively dormant
(i.e. wave energy focusing). The source-inversion approach continued in a more realistic
two-dimensional elastic wave setting,[49,62,67–70] showing that focusing wave energy
into a hydrocarbon reservoir is feasible by employing the optimal locations and excitation
time signals of the wave sources that can maximize desired metrics (such as wave energy
within targeted reservoir formations) and minimize undesired metrics (e.g. vibrational
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Figure 2. Targeted fluid-saturated porous permeable rock formations embedded within a one-
dimensional semi-infinite non-permeable elastic solid media system; truncated at depth x = L, subject
to a surface excitation.

disturbance within adjacent formation areas). Following the preceding source-inversion
studies, in this paper, we are concerned with maximizing the pore fluid wave motion
within a more realistic target, that of a poroelastic formation. Specifically, this work aims
at maximizing the relative motion of the pore fluid with respect to the solid matrix because
the relative motion of a trapped oil droplet with respect to the solid channel is used to
define the extraction threshold in pore-scale studies.[47]

As a prototype, we will consider a porous permeable rock formation, saturated by
a single-phase fluid, that is surrounded by non-permeable elastic rock formations of the
semi-infinite extent in the one-dimensional setting. To obtain thewave behavior of the pore
fluid and rockmatrix within poroelasticmedia, we numerically address the wave equations
for poroelastic solids fully saturated by a single-phase fluid.[71–76] We adopt the u–w
finite element formulation,[73,75,76] which was verified against analytical solutions.[74]
It should be noted that, in realistic reservoir settings, reservoir formations are fully or
partially saturated by multi-phase fluids, i.e. oil, gas, and water.[77–82] Despite the gap
between the presented prototype setting and the realistic one in a hydrocarbon reservoir,
this work can provide insight into the following questions:

• Is it feasible to identify wave source conditions, such as loading time signals, that can
maximize the relative wave motion of the pore fluid in poroelastic formations using
the PDE-constrained optimization framework? Do the source-inversion results yield
the essential characteristics of the optimal wave sources?

The answers to the questions from this work could provide proof of concept and scale
to more realistic settings. In summary:

• This paper describes a state-adjoint-control triplet approach for the identification of
an unknown wave source’s optimal loading signal, that can maximize the relative
wave motion of a single-phase pore fluid within a target poroelastic formation
surrounded by non-permeable elastic solid formations of semi-infinite extent. As
will be shown, the developed numerical optimizer results in loading signals, whose
dominant frequencies coincide with the amplification frequencies that correspond to
the maximum relative wave motion of the pore fluid.
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parameters,

Figure 3. Schematic of parameterization of the unknown excitation f (t) using quadratic shape functions.

2. Problem definition

2.1. Governingwave physics

We consider wave motion in target fluid-saturated porous permeable elastic solid (poroe-
lastic) layers that are surrounded by non-permeable elastic solid layers (see Figure 2). The
semi-infinite extent of the original domain is truncated through the introduction of an
absorbing boundary at some depth x = L. The propagation of waves within the coupled
system (� = (0, L)) is governed by the following PDEs (for brevity, the space and time
dependency of the variables and coefficients are dropped):

∂

∂x

(
(λ+ 2μ)

∂ua
∂x

)
− ρ

∂2ua
∂t2
= 0, x ∈ � \�p, t ∈ (0,T], (1)

∂

∂x

(
(λ+ 2μ+ α2Q)

∂ub
∂x
+ αQ

∂w
∂x

)
− ρ

∂2ub
∂t2
− ρf

∂2w
∂t2
= 0,

x ∈ �p, t ∈ (0,T], (2)
∂

∂x

(
αQ

∂ub
∂x
+ Q

∂w
∂x

)
− 1

k
∂w
∂t
− ρf

∂2ub
∂t2
− ρf

n
∂2w
∂t2
= 0,

x ∈ �p, t ∈ (0,T]. (3)

Equation (1) is the equation of motion for a compressional wave in the elastic solid
layers (x ∈ (� \ �p)), i.e. (0, xp) and (xp+Npls , L). Equations (2) and (3) are the coupled
wave equations for poroelastic solid layers (x ∈ �p), i.e. (xp, xp+Npls), fully saturated by
a single-phase fluid2 [71–75]; Equation (2) is the equation of motion for the solid-fluid
mixture [74]; Equation (3) is Darcy’s law for the solid-fluid mixture.[74,83]

In (1)–(3), x denotes location, and t denotes time; xi denotes the x-directional depth of a
boundary or an interface atop the i-th layer, whereby xp and xp+Npls denote the locations of
the two interfaces between the non-permeable elastic solid layers and the poroelastic layers;
the subscript p denotes the layer index of the top poroelastic formation; and the subscript
Npls denotes the total number of the poroelastic layers. T denotes the total observation
duration. ua(x, t) denotes the displacement of the non-permeable elastic solid formations;
ub(x, t) denotes the displacement of the solid rock matrix of the poroelastic formations;
andw(x, t) denotes the relative displacement of pore-fluid motion with respect to the rock
matrix. The material parameters, used in (1)–(3), are defined as follows:
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Elastic wave equation (1)

• λ: Lamé’s first parameter of elastic solid, λ = νE
(1+ν)(1−2ν)

,
• μ: Shear modulus of elastic solid, μ = E

2(1+ν)
,

• E: Elastic modulus of elastic solid,
• ν: Poisson’s ratio of elastic solid,
• ρ: Mass density of elastic solid,

Biot’s wave equations (2) and (3)

• λ: Lamé’s first parameter of solid rock matrix, λ = νE
(1+ν)(1−2ν)

,
• μ: Shear modulus of solid rock matrix, μ = E

2(1+ν)
,

• E: Elastic modulus of solid rock matrix,
• ν: Poisson’s ratio of solid rock matrix,
• ρ: Mass density of fluid-solid mixture, i.e. ρ = (1− n)ρs + nρf ,
• ρs: Mass density of solid rock matrix,
• ρf : Mass density of pore fluid,
• k: Fluid mobility, i.e. k = k̄/η, as shown in [83],
• k̄: Permeability,
• η: Viscosity of pore fluid,
• n: Porosity,
• α: Biot’s material parameter, i.e. α = 1− KD

KS
, where n ≤ α ≤ 1,

• Q: Biot’s material parameter, i.e. Q = 1/
(

n
Kf
+ α−n

KS

)
, where 0 < Q ≤ ∞,

• KD: Bulk modulus of drained solid rock matrix, i.e. KD = E
3(1−2ν)

,
• KS: Bulk modulus of undrained solid rock matrix, i.e. Ks = KD/(1− α),
• Kf : Bulk modulus of pore fluid.

In a fluid-saturated poroelastic medium, the following equation holds:

σ(x, t) = σ ′(x, t)− αP(x, t), (4)

where σ(x, t) denotes total stress; σ ′(x, t) denotes effective stress; and P(x, t) denotes pore
pressure, where P(x, t) is positive for compression. σ(x, t) and P(x, t) are obtained from
the displacement fields ub(x, t) and w(x, t) via the following constitutive equations:

σ = (
λ+ 2μ+ α2Q

) ∂ub
∂x
+ αQ

∂w
∂x

, (5a)

P = −
(

αQ
∂ub
∂x
+ Q

∂w
∂x

)
. (5b)

In addition, the governing PDEs are subject to the following boundary and truncation
interface conditions:

(λ(0)+ 2μ(0))
∂ua
∂x

(0, t) = −f (t), t ∈ (0,T], (6)

∂ua
∂x

(L, t)+ 1
c(L)

∂ua
∂t

(L, t) = 0, t ∈ (0,T]. (7)

Equation (6) is the surface excitation boundary condition; (7) is the truncation inter-
face condition with c =

√
λ+2μ

ρ
. The governing wave physics also includes zero initial

conditions.
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The elastic wave equation (1), as well as the wave equations for the poroelastic layers (2)
and (3) are coupled via the following conditions at the interfaces between the elastic solid
layers and the poroelastic layers:

ua
∣∣
x−i
= ub

∣∣
x+i
, i = p,

ua
∣∣
x+i
= ub

∣∣
x−i
, i = (p+ Npls), (8a)

(λ+ 2μ)
∂ua
∂x

∣∣∣∣
x−i
= (λ+ 2μ+ α2Q)

∂ub
∂x
+ αQ

∂w
∂x

∣∣∣∣
x+i
, i = p,

(λ+ 2μ)
∂ua
∂x

∣∣∣∣
x+i
= (λ+ 2μ+ α2Q)

∂ub
∂x
+ αQ

∂w
∂x

∣∣∣∣
x−i
, i = (p+ Npls), (8b)

w
∣∣
xi
= 0, i = p and (p+ Npls). (8c)

Equations (8a) and (8b) are the rock matrix displacement and the total stress interface
continuity conditions, respectively. Equation (8c) denotes the zero relative displacement of
the pore fluid at the interfaces – (8c) is tantamount to the zero flux condition, i.e. ∂P

∂x = 0.
Although the aforementioned governing PDEs can accommodate arbitrary heterogene-

ity of the material parameters, we explicitly consider a multi-layered system. For multi-
layered elastic solidmedia, there hold the following continuity conditions of displacements
and tractions at the interfaces between the mutually-adjacent elastic solid layers (i.e.
interface indices: i = (2, . . . , (p− 1)) and ((p+ Npls + 1), . . . ,Nls)):

ua
∣∣
x−i
= ua

∣∣
x+i

, (9a)

(λ+ 2μ)
∂ua
∂x

∣∣∣
x−i
= (λ+ 2μ)

∂ua
∂x

∣∣∣
x+i

, (9b)

where Nls denotes the total number of all layers in the system. In addition, the following
continuity conditions hold at the interfaces within poroelastic layers (i.e. interface indices:
i = (p+ 1), . . . , (p+ Npls − 1)) :

ub
∣∣
x−i
= ub

∣∣
x+i
, (10a)

w
∣∣
x−i
= w

∣∣
x+i
, (10b)

(λ+ 2μ+ α2Q)
∂ub
∂x
+ αQ

∂w
∂x

∣∣∣∣
x−i
= (λ+ 2μ+ α2Q)

∂ub
∂x
+ αQ

∂w
∂x

∣∣∣∣
x+i
, (10c)

αQ
∂ub
∂x
+ Q

∂w
∂x

∣∣∣∣
x−i
= αQ

∂ub
∂x
+ Q

∂w
∂x

∣∣∣∣
x+i
, (10d)

where (10a) and (10b) denote the continuity of rock matrix displacement and relative
displacement of pore fluid, respectively; (10c) denotes the continuity of total stress; and
(10d) denotes the continuity of pore pressure.
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2.2. Objective functional

We attempt to identify an optimal loading time signal that maximizes the kinetic energy3

only in terms of w(x, t), which is the relative displacement of the pore fluid with respect to
the solid rock matrix.

To this end, we minimize the following objective functional:

L = 1∫
�p

∫ T
0 ρf

(
∂w
∂t (x, t)

)2 dtdx . (11)

Equation (11) is a reciprocal form, of which denominator is the temporal integral of the
kinetic energy, in terms of w(x, t), that is spatially integrated over the poroelastic layers
(�p) – we omit 1

2 of the kinetic energy
ρf
2

(
∂w
∂t

)2 because such an omission does not affect
the optimized result of the loading time signal.

2.3. Wave source parameterization

We consider an unknown loading time signal f (t), for which arbitrary temporal variability
is allowed. To this end, f (t) is parameterized as:

f (t) =
nf∑
i=1

fiϕi(t) = fϕT(t), (12)

where ϕi(t) and fi denote the i-th shape function and discretized excitation parameter,
respectively; f is the vector of force parameters fi, and ϕ is the vector of shape functions
ϕi(t); and nf is the total number of parameters; we use quadratic shape functions as ϕi(t)
(Figure 3).

3. PDE-constrained optimization

This section presents a mathematical modeling approach for identification of the control
parameters that minimize the objective functional (11) subject to the governing wave
physics (1)–(10). To tackle such a PDE-constrained minimization problem with a large
set of control parameters, an augmented functional is constructed via the side-imposition
of the governing wave physics, using Lagrange multipliers, into the objective functional.
The first-order optimality conditions of the augmented functional lead to a triplet of state,
adjoint, and control problems.

3.1. Augmented functional

An augmented functional is built by side-imposing the governing PDEs (1), (2), and (3),
as well as the associated conditions (6) and (7) into the objective functional (11), by means
of Lagrange multipliers4 (λua(x, t), λub(x, t), λw(x, t), λ0(t), and λL(t)) as the following:

A =
{

1∫
�p

∫ T
0 ρf (

∂w
∂t )2dtdx

+
∫

�\�p

∫ T

0
λua

[
∂

∂x

(
(λ+ 2μ)

∂ua
∂x

)
− ρ

∂2ua
∂t2

]
dtdx
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+
∫

�p

∫ T

0
λub

[
∂

∂x

(
(λ+ 2μ+ α2Q)

∂ub
∂x
+ αQ

∂w
∂x

)

−ρ
∂2ub
∂t2
− ρf

∂2w
∂t2

]
dtdx

+
∫

�p

∫ T

0
λw

[
∂

∂x

(
αQ

∂ub
∂x
+ Q

∂w
∂x

)
− 1

k
∂w
∂t
− ρf

∂2ub
∂t2
− ρf

n
∂2w
∂t2

]
dtdx

+
∫ T

0
λ0(t)

[
(λ(0)+ 2μ(0))

∂ua
∂x

(0, t)+ f (t)
]
dt

+
∫ T

0
λL(t)

[
(λ(L)+ 2μ(L))

{
∂ua
∂x

(L, t)+ 1
c

∂ua
∂t

(L, t)
}]

dt
}
. (13)

In the augmented functional (13), the zero initial value conditions and the interface
conditions (8)–(10) are implicitly imposed. The dimensions of the Lagrange multipliers
λua , λub , λw , λ0, and λL are all identical to each other.

3.2. The first-order optimality conditions

To arrive at the minimum of A, the variations of A with respect to the state variables (ua,
ub, and w), the Lagrange multipliers (λua , λub , λw , λ0, and λL), and the control variable
ξ = fi – the value of a discretized force parameter used for the temporal approximation of
a loading signal as in (12) – should vanish as the first-order optimality conditions. That is,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δλuaA = 0
δλub

A = 0
δλwA = 0
δλ0A = 0
δλLA = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

: yields the state initial BVP,

⎧⎨
⎩

δuaA = 0
δubA = 0
δwA = 0

⎫⎬
⎭ : yields the adjoint final BVP,

δξA = 0 : yields the control problem.

3.2.1. The first optimality condition
As the first optimality condition, the variation ofAwith respect to the Lagrangemultipliers
λua , λub , λw , λ0, and λL should vanish for arbitrary variations δλua , δλub , δλw , δλ0, and
δλL. To this end, one must satisfy the state problem, which is identical to the governing
wave physics described in (1)–(10).

3.2.2. The second optimality condition
The second optimality condition requires the variation of A with respect to the state
variables (ua, ub, and w) to vanish, i.e. δuaA + δubA + δwA = 0, for arbitrary variations
δua, δub, and δw. Such a vanishing variation recovers the following adjoint problem (for
brevity, the explicit derivation of the adjoint problem is not shown in this paper):



INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 841

The adjoint problem:

∂

∂x

(
(λ+ 2μ)

∂λua
∂x

)
− ρ

∂2λua
∂t2
= 0, x ∈ � \�p, t ∈ [0,T), (14)

∂

∂x

(
(λ+ 2μ+ α2Q)

∂λub
∂x
+ (αQ)

∂λw

∂x

)
− ρ

∂2λub
∂t2
− ρf

∂2λw

∂t2
= 0,

x ∈ �p, t ∈ [0,T), (15)
∂

∂x

(
αQ

∂λub
∂x
+ Q

∂λw

∂x

)
+ 1

k
∂λw

∂t
− ρf

∂2λub
∂t2
− ρf

n
∂2λw

∂t2
− Eρf

∂2w
∂t2
= 0,

x ∈ �p, t ∈ [0,T), (16)

where the coefficient E is defined as the following:

E = −2(∫
�p

∫ T
0 ρf [ ∂w∂t ]2dtdx

)2 . (17)

The adjoint problem is subject to the following final-value conditions:

λua(x,T) = 0,
∂λua
∂t

(x,T) = 0, x ∈ � \�p, (18a)

∂λub
∂t

(x,T) = −Eρf

ρf − ρ
n

∂w
∂t

(x,T), x ∈ �p, (18b)

∂λw

∂t
(x,T) = ρEρf

ρf
(
ρf − ρ

n
) ∂w

∂t
(x,T), x ∈ �p, (18c)

as well as the following boundary and truncation interface conditions:

(
λ(0)+ 2μ(0)

) ∂λua
∂x

(0, t) = 0, t ∈ [0,T), (19)

∂λua
∂x

(L, t)− 1
c(L)

∂λua(t)
∂t

(L, t) = 0, t ∈ [0,T). (20)

Similarly to the state problem, the adjoint PDE (14) is coupled with the other adjoint
PDEs (15) and (16) via the following conditions at the interfaces between the poroelastic
layers and the elastic solid layers:

λua
∣∣
x−i
= λub

∣∣
x+i
, i = p,

λua
∣∣
x+i
= λub

∣∣
x−i
, i = p+ Npls, (21a)

(λ+ 2μ)
∂λua
∂x

∣∣∣
x−i
= (λ+ 2μ+ α2Q)

∂λub
∂x
+ (αQ)

∂λw

∂x

∣∣∣
x+i
, i = p,

(λ+ 2μ)
∂λua
∂x

∣∣∣
x+i
= (λ+ 2μ+ α2Q)

∂λub
∂x
+ (αQ)

∂λw

∂x

∣∣∣
x−i
, i = p+ Npls, (21b)

λw
∣∣
xi
= 0, i = p and p+ Npls. (21c)
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Equations (21a), (21b), and (21c) replicate, respectively, the rockdisplacement-continuity
(8a), the total stress-continuity (8b), and the zero relative-fluid-displacement (8c) condi-
tions of the state problem.

In addition, for a multi-layered system, the adjoint problem is subject to the following
continuity conditions at the interfaces between the mutually-neighboring elastic solid
layers (i.e. the interface indices: i = 2, . . . , (p− 1) and (p+ Npls + 1), . . . ,Nls):

λua
∣∣
x−i
= λua

∣∣
x+i
, (22a)

(λ+ 2μ)
∂λua
∂x

∣∣∣
x−i
= (λ+ 2μ)

∂λua
∂x

∣∣∣
x+i
, (22b)

as well as the following continuity conditions at the interfaces between the mutually-
adjacent poroelastic layers (i.e. the interface indices: i = (p+ 1), . . . , (p+ Npls − 1)):

λub
∣∣
x−i
= λub

∣∣
x+i
, (23a)

λw

∣∣∣
x−i
= λw

∣∣∣
x+i
, (23b)

(λ+ 2μ+ α2Q)
∂λub
∂x
+ αQ

∂λw

∂x

∣∣∣∣
x−i
= (λ+ 2μ+ α2Q)

∂λub
∂x
+ αQ

∂λw

∂x

∣∣∣∣
x+i
, (23c)

αQ
∂λub
∂x
+ Q

∂λw

∂x

∣∣∣∣
x−i
= αQ

∂λub
∂x
+ Q

∂λw

∂x

∣∣∣∣
x+i

. (23d)

Equations (22a) and (22b) replicate the continuity conditions of the displacement and
stress between elastic solid layers, respectively, shown in (9a) and (9b). Equations (23a)–
(23d) replicate the continuity conditions of the displacement of rock matrix, the relative
displacement of pore fluid, the total stress, and the pore pressure between poroelastic
layers, respectively, shown in (10a)–(10d).

It should be noted that the governing differential operators of the adjoint PDEs are
identical to those of the state PDEs,while the adjoint problemdiffers from the state problem
with respect to the following points. First, the body force term Eρf

∂2w
∂t2 in (16), as well as the

final value conditions (??) drive the adjoint problem, whereas the state problem is driven
by the surface excitation. Second, the adjoint problem is a final BVP such that the sign
of the time derivative in the truncation condition (20) of the adjoint problem is reversed
compared with that of the truncation condition (7) of the state problem (an initial BVP).

3.2.3. The third optimality condition
We consider the vanishing variation of the augmented functionalAwith respect to a scalar
variable ξ , tantamount to a parameter fi – adiscretized force parameter of the force function
f (t) (see (12)). To this end, δξA = ∂A

∂ξ
is required to vanish. Such a vanishing variation

condition leads to the following control equation (for brevity, the explicit derivation of the
control problem is not shown in this paper):

The control problem:

δξA( = ∇ξA) =
∫ T

0
λua(0, t)

∂f (t)
∂ξ

dt = 0. (24)
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It should be noted that δξA( = ∇ξA) is equivalent to the gradient of the objective func-
tional ∇ξL, since the side-imposed constraints to the augmented functional A vanish at
the stationary point owing to the satisfaction of the state problem. To obtain the excitation
parameters, we use a gradient-based minimization process and

∫ T
0 λua(0, t)

∂f (t)
∂ξ

dt, in the
control equation (24), as the reduced gradient.

4. Numerical implementation

Satisfaction of the first-order optimality conditions, upon discretization, gives rise to a
Karush–Kuhn–Tucker (KKT) system.[84,85] Stationarity can be achieved by solving the
state, adjoint, and control problems either as a fully-coupled problem (a full-space solution
approach), or via a reduced-space approach. Since the computational cost associated with
a full-space approach is rather significant,[86] here, we solve the KKT system by projecting
the state and adjoint variables into the space of the control variables. Such a reduced-space
solution approach entails the following steps: (a) first, the state problem is solved for an
initial guess of the excitation; (b) the adjoint problem is then solved using, as driver, the
acceleration field of the pore-fluidmotionw(x, t) of the state problem (per (16)); (c) finally,
updates to the control parameters, defining the trial form of the excitation, are obtained via
a gradient-based scheme that uses the control equation (24) as the reduced gradient: at each
iteration, the control equation provides the search-direction for the parameter updating.
Here, a conjugate-gradient(CG) scheme [87,88] is usedwith an inexact line-searchmethod.
The numerical optimizer repeats the above procedure, (a)–(c), to iteratively solve for the
control parameters that satisfy the vanishing control equation (the detailed procedure is
described in Algorithm 1). The details of the numerical implementation of the state and
adjoint solvers are described as follows.

Algorithm 1 Optimization algorithm

1: Set TOL=10−8, α = 0.9 and β = 1.1
2: Set k = 0 and Initial Force Parameters f(0)
3: ComputeL(k)
4: while (e > TOL) do

5: Solve the Discrete Form of the State Problem, (40), and Save the State Variables
6: Solve the Discrete Form of the Adjoint Problem, (41), and Save the Adjoint Variables
7: Compute the Search-Direction g Using the Reduced Gradient (42) and the Conjugate-Gradient Scheme
8: Reduce the Step Length θ(k) if the Updating of the Control Parameters with θ(k)g does not Sufficiently

Decrease the Value ofL:
9: while (L(f(k) + θ(k)g) > L(f(k) − 1

2 θ(k)∇L(f(k))) do

10: θ(k) ← αθ(k)

11: end while
12: Update Excitation Parameters, as f(k+1) = f(k) + gθ(k), and ComputeL(k+1)
13: Compute the Iterative Norm, e =

∣∣L(k+1)−L(k)
∣∣∣∣L(k)

∣∣ :

14: θ(k+1) ← βθ(k) and k← k + 1

15: end while
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4.1. State problem semi-discrete form

This subsection presents the u−wmixed finite element formulation [73,75,76,89] used for
tackling the governing wave equations (1)–(3). The elastic wave equation (1) is multiplied
by a test function s(x) and integrated over the elastic solid media (x ∈ (x1, xp)) that is
situated atop the poroelastic layers. Then, integration by parts with respect to x gives rise
to the weak form:∫ xp

x1

∂s
∂x

(
(λ+ 2μ)

∂ua
∂x

)
dx +

∫ xp

x1
sρ

∂2ua
∂t2

dx = s(λ+ 2μ)
∂ua
∂x

∣∣∣∣
xp
− sf (t)

∣∣
x1

. (25)

Similarly, for the elastic solid media (x ∈ (xp+Npls , L)) that is located below the poroe-
lastic layers, there arises the following weak form:

∫ L

xp+Npls

∂s
∂x

(
(λ+ 2μ)

∂ua
∂x

)
dx +

∫ L

xp+Npls
sρ

∂2ua
∂t2

dx

= − s
(λ+ 2μ)

c
∂ua
∂t

∣∣∣∣
x=L
− s(λ+ 2μ)

∂ua
∂x

∣∣∣∣
xp+Npls

. (26)

Similarly, by using the test function s(x), one obtains the weak form of the first equation
(2) for the poroelastic layers (x ∈ (xp, xp+Npls)):∫ xp+Npls

xp

∂s
∂x

(
(λ+ 2μ+ α2Q)

∂ub
∂x
+ (αQ)

∂w
∂x

)
dx

+
∫ xp+Npls

xp
s
(

ρ
∂2ub
∂t2
+ ρf

∂2w
∂t2

)
dx

= s
(

(λ+ 2μ+ α2Q)
∂ub
∂x
+ (αQ)

∂w
∂x

)∣∣∣∣
xp+Npls

− s
(

(λ+ 2μ+ α2Q)
∂ub
∂x
+ (αQ)

∂w
∂x

)∣∣∣∣
xp

. (27)

We, in turn, obtain the weak form of the second equation (3) for the poroelastic layers
(x ∈ (xp, xp+Npls)) by using another test function v(x) as follows:

∫ xp+Npls

xp

∂v
∂x

(αQ)
∂ub
∂x

dx +
∫ xp+Npls

xp

∂v
∂x

Q
∂w
∂x

dx

+
∫ xp+Npls

xp
v
[
1
k

∂w
∂t
+ ρf

∂2ub
∂t2
+ ρf

n
∂2w
∂t2

]
dx = 0. (28)

We introduce the spatial approximation of the test functions s(x) and v(x), as well as
the trial functions u(x, t) and w(x, t) as:

s(x) = sT�(x), v(x) = vT�(x),
u(x, t) = �T(x)u(t), w(x, t) = �T(x)w(t), (29)
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where s and v denote the vectors of nodal solutions of s(x) and v(x), respectively; u(t) and
w(t) denote the vectors of nodal solutions of u(x, t) andw(x, t) at time t, respectively.Here,
it should be noted that, by virtue of the continuity conditions (8a), ua(x, t) and ub(x, t)
are merged into u(x, t). �(x) and �(x) are the vectors of shape functions for the spatial
approximation of the trial and test functions. Owing to the finite element approximation,
the summation of the weak forms (25), (26), and (27) yields the following time-dependent
semi-discrete form:

Kuuu + Kuww + Cuu
∂u
∂t
+Muu

∂2u
∂t2
+Muw

∂2w
∂t2
= fu, (30)

where the specific forms of the matrices are:

Kuu =
∫

�\�p

(λ+ 2μ)
∂�

∂x
∂�T

∂x
dx +

∫
�p

(λ+ 2μ+ α2Q)
∂�

∂x
∂�T

∂x
dx,

Kuw =
∫

�p

(αQ)
∂�

∂x
∂�T

∂x
dx, Cuu = (λ+ 2μ)

c
�(L)�T(L),

Muu =
∫

�

ρ��Tdx, Muw =
∫

�p

ρf ��Tdx,

fu = �(0)f (t). (31)

Similarly, the weak form (28) changes to the following time-dependent discrete form:

Kwuu + Kwww + Cww
∂w
∂t
+Mwu

∂2u
∂t2
+Mww

∂2w
∂t2
= 0, (32)

where the specific forms of the matrices are:

Kwu =
∫

�p

(αQ)
∂�

∂x
∂�T

∂x
dx, Kww =

∫
�p

Q
∂�

∂x
∂�T

∂x
dx,

Cww =
∫

�p

1
k
��Tdx,

Mwu =
∫

�p

ρf ��Tdx, Mww =
∫

�p

ρf

n
��Tdx. (33)

Then, (30) and (32) lead to the following time-dependent discrete form of the state
problem:

M
∂2q(t)
∂t2

+ C
∂q(t)
∂t
+ K q(t) = fst, (34)

where

M =
[
Muu Muw
Mwu Mww

]
, C =

[
Cuu 0
0 Cww

]
,

K =
[
Kuu Kuw
Kwu Kww

]
, q(t) =

[
u(t)
w(t)

]
, fst =

[
fu
0

]
. (35)
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Figure 4. Four layered semi-infinite coupled-poroelastic-elastic-layers system truncated at depth x =
1800 m.

4.2. Adjoint problem semi-discrete form

Similarly to the state problem, by using the test functions s(x) and v(x), the weak forms of
the adjoint PDEs (14) to (16) are built. We then introduce the approximation of the test
functions s(x) and v(x) shown in (29), as well as the adjoint solutions λu(x, t) and λw(x, t)
as:

λu(x, t) = �T (x)λu(t), λw(x, t) = �T(x)λw(t), (36)

where λu(t) and λw(t) denotes the vector of the nodal solutions of λu(x, t) and λw(x, t),
respectively. Owing to the continuity condition (21a), λua(x, t) and λub(x, t) are merged
into λu(x, t). Then, similarly to the state problem, the weak forms of the adjoint problem
change to the following time-dependent discrete form of the adjoint problem:

M
∂2r(t)
∂t2

− C
∂r(t)
∂t
+ K r(t) = fadj, (37)

where the adjoint solution vector λ(t) is defined as the following:

r(t) =
[

λu(t)
λw(t)

]
. (38)

The specific forms of thematricesM,C, andK are identical to those for the state problem
already shown in (35); the force vector fadj is defined as:

fadj = −
[

0
E ∫

�p
ρf ��Tdx ∂2w

∂t2

]
, (39)

where the state solution vector w is obtained by solving (34).
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Figure 5. The Ricker pulse signal with a central frequency of f = ωr
2π = 15 Hz.

Figure 6.Comparisonof thenumerical solutionofu(x , t)of the coupled-poroelastic-elastic-layers system
(using n = 0.3 and α = 0.667) with that of the all-elastic-solid-layers system, 0.48 s ≤ t ≤ 0.64 s. The
green vertical lines indicate the interfaces between the layers.

4.3. Time integration and evaluation of the gradient

We resolve the semi-discrete forms (34) and (37) by using the implicit Newmark time
integration [90] with the average acceleration scheme (unconditionally stable). Accord-
ingly, the discrete solutions of the state and adjoint problems are obtained by solving the
following systems of equations:
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Figure 7. The numerical solution of u(x , t) and w(x , t) of the coupled-poroelastic-elastic-layers system
employing n = 0.3 and α = 0.667, 0.48 s≤ t ≤ 0.64 s.

[
M+ C

�t
2
+ K

(�t)2

4

]
∂2q(j+1)

∂t2

= fst(j+1) − C

[
∂q(j)

∂t
+ ∂2q(j)

∂t2
�t
2

]

− K

[
q(j) + ∂q(j)

∂t
(�t)+ ∂2q(j)

∂t2
(�t)2

4

]
, (40)

[
M+ C

�t
2
+ K

(�t)2

4

]
∂2r(j)
∂t2

= fadj(j) + C

[
∂r(j+1)

∂t
− ∂2r(j+1)

∂t2
�t
2

]

− K

[
r(j+1) − ∂r(j+1)

∂t
�t + ∂2r(j+1)

∂t2
(�t)2

4

]
, (41)

where �t is the time step; (j) and (j+ 1) denote evaluation of the nodal vectors at the j-th
and (j+ 1)-th time steps; and the time-line of the evaluation of solution in (41) is reversed
with respect to that of (40). It should be remarked that the systemmatrix in (40) is identical
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to that in (41) such that only one system matrix inversion is required for addressing both
the state and adjoint problems.

By using the discrete adjoint solution, the reduced gradient is evaluated as follows:

∇(ξ=fi)L =
∫ T

0
λua(0, t)

∂f (t)
∂fi

dt

=
∫ T

0
�T (0)λu(t)ϕi(t)dt. (42)

Equation (42) provides the search-direction information to the numerical optimizer for
updating the values of the control parameters.

4.3.1. Verification of the inversemodeling
We have thus far discussed the numerical implementation for solving the state and adjoint
problems, as well as evaluating the gradient of the objective functional. We verified the
derivation and implementation of the state, adjoint, and control problems by comparing
the values of the components of the gradient, computed by (42), with their counterpart
obtained by the finite difference scheme as:

∇fiL =
L∣∣

fi+�fi
− L∣∣

fi−�fi
2�fi

, (43)

where �fi denotes an incremental value of fi used for the finite difference scheme. The
comparison shows excellent agreement. We conduct the numerical experiments using the
numerical optimizer, implemented per the above discussion.

5. Numerical results

In this section, we first present the numerical solution of the forward problem for a multi-
layered system, where the wave equations for the poroelastic layers and the elastic wave
equation are coupled with each other. Secondly, it is shown that the presented numerical
optimizer leads to the optimal loading time signal of a wave source that can maximize the
kinetic energy in terms of the relative displacement of pore fluid, i.e.w(x, t). The dominant
frequencies of the optimized time signals recover the amplification frequencies of the pore-
fluid wavemotion within a target poroelastic layer, which can be also numerically obtained
by a frequency sweep.

5.1. Forwardwave solution

This section presents the forward numerical solution of the wave response within a
coupled-poroelastic-elastic-layers system, where the wave equations for the poroelas-
tic layers are coupled with the elastic wave equation. We obtain the numerical solu-
tion of the wave responses of the coupled-poroelastic-elastic-layers system, shown in
Figure 4, for which the material parameters are described in Table 1. We use realistic
values – corresponding to a typical hydrocarbon reservoir rock formation – of thematerial
parameters of the poroelastic layer. Linear elements are used for the approximation of both
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Figure 8. The numerical solution of σ(x , t) and P(x , t) of the coupled-poroelastic-elastic-layers system
employing n = 0.3 and α = 0.667, 0.48 s≤ t ≤ 0.64 s; P(x , t) is positive for compression.

u(x, t) and w(x, t), with an element size of 4 m. The total observation duration is T = 10
s, and the time step is �t = 0.001 s. The modified Ricker pulse loading, described in (44)
and Figure 5, is used with a central frequency of f = 15 Hz (Figure 5(b)).

f (t) = −50× (0.25η2 − 0.5)e(−0.25η2) − 13.0e−13.5

0.5+ 13.0e−13.5
[kN/m2], t ≤ t̄,

η = ωr t − 3
√
6, t̄ = 6

√
6

ωr
, (44)

where ωr = 2π f denotes the central frequency of the pulse signal.
The theoretical wave speed5 of the wavemotion u(x, t) in the third layer of this coupled-

poroelastic-elastic-layers system is v(theoretical)
p(poroelastic) = 1683.7m/s. The theoretical wave speed

value is fairly close to the one computed from the numerical solution: the finite element
solution, as illustrated in Figure 6, yields v(numerical)

p(poroelastic) = 1666.6 m/s, which is only 0.97%
smaller than the theoretical value (1683.7m/s). As seen in Figure 6, the wave speed
v(numerical)
p(poroelastic) = 1666.6 m/s, corresponding to u(x, t), within the poroelastic third layer
of the coupled-poroelastic-elastic-layers system is greater than its counterpart (1500 m/s)
of the elastic third layer (with the same values of E, ν, and ρs) of the all-elastic-solid-layers
system.6
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Figure 9.Comparisonof thenumerical solutionofu(x , t)of the coupled-poroelastic-elastic-layers system
employing ((n = α)→ 0) with that of the all-elastic-solid-layers system, 0.1 s≤ t ≤ 0.5 s.

Table 1. Rock properties of the 4-layered coupled-poroelastic-elasticlayers system.

Layer 1 Layer 2 Layer 3 Layer 4
(poroelastic)

Length [m] 500 500 300 500
E [N/m2] 1.25× 1010 1.8× 1010 4.5× 109 3.2× 1010
ν 0.0 0.0 0.0 0.0
ρs [kg/m3] 2000 2000 2000 2000

ρf [kg/m3] 860
n 0.3
α 0.667
Q [N/m2] 2.2× 109

7.0× 108 KD [N/m2] 1.5× 109

Ks [N/m2] 1.5× 109

Kf [N/m2] 7.0× 108
η [cp] 5
k̄ [md] 100

Figure 7 shows the relative displacement field of the pore-fluid wave motion w(x, t).
We note that the amplitude of w(x, t) is nearly six orders of magnitude smaller than that
of u(x, t). Given such a low fluid mobility (k̄ = 100 md and η = 5 cp), the absolute fluid
displacement, i.e. u(x, t) + w(x, t), is almost identical to the rock matrix displacement
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Figure 10. Comparison of the numerical solution of u(x , t) of the coupled-poroelastic-elastic-layers
system employing ((n = α)→ 0) with that of the all-elastic-solid-layers system, 0.6 s≤ t ≤ 1.0 s.

Figure 11. A five-layered system of a semi-infinite extent truncated at depth x = 600 m, with a
poroelastic layer surrounded by non-permeable elastic solid layers.
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Figure 12. An optimized loading signal at different iteration steps; the loading signal is discretized by
using 100 quadratic shape elements for the observation time 5 s; the time signal is shown only up to 1 s.

u(x, t) [92]. Meanwhile, Figure 8 shows that the order of magnitude of the amplitude of
the pore pressure P(x, t) (computed by using (5b)) is as large as that of the total stress
field σ(x, t) within the poroelastic layer in this example. It should be also noted that
the continuity conditions of the solid displacement u(x, t) and the total stress σ(x, t) are
satisfied at the interfaces between the poroelastic layers (�p) and the elastic layers (�\�p),
and the relative displacement of fluid w(x, t) vanish at the interfaces. This observation
suggests that the interface conditions between �p and � \ �p are implemented correctly
in the presented forward wave solver. For the verification of the presented FEM solution of
the wave responses within the poroelastic layer, we compared the presented solution with
its analytical counterpart [74], showing excellent agreement.

To further verify the modeling of the coupled-poroelastic-elastic-layers system, we note
that the wave equations of the poroelastic layers (2) and (3) reduce to the equation of
motion for an elastic solid, (1), provided that the porosity n and Biot’s material parameter
α, in (2) and (3), are equal to each other and approach zero, i.e. (n = α) → 0. Thus,
the solution of the coupled-poroelastic-elastic-layers system, obtained by using (34) and
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Figure 13. An optimized loading signal at different iteration steps; a Ricker pulse signal with a 5 Hz
central frequency is used as an initial guess; the loading signal is discretized by using 100 quadratic
shape elements.

material parameters including (n = α) → 0, should match with that of a multi-layered
systemwhere all layers are occupied by elastic solids, provided that the two systems use the
same values of E, ν, and ρs of all layers. To test this hypothesis, we obtain the numerical
solution of the truncated four-layered coupled-poroelastic-elastic-layers system, whose
third layer is a poroelastic layer (Figure 4). We use the material properties in Table 1
except for very small values of n and α, i.e. n = α = 1 × 10−10, for the poroelastic
layer. As seen in Figures 9 and 10, the comparison of the numerical solution of the
coupled-poroelastic-elastic-layers system with that of the all-elastic-solid-layers system
shows excellent agreement.

5.2. Wave source optimal signals

This subsection presents numerical experiments of the identification of the optimal loading
time signals of a wave source, maximizing the kinetic energy in terms ofw(x, t) of the pore
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Figure 14. Optimal loading signals that are finally converged via the minimization of (11) and the
frequency spectra of the optimized loadings.

Table 2. Rock properties of the 5-layered subsurface formation system shown in Figure 11.

Layer 1 Layer 2 Layer 3 (poroelastic) Layer 4 Layer 5

Length [m] 100 100 200 100 100
E [N/m2] 4.0× 109 4.8× 109 1.0× 109 5.5× 109 6.0× 109
ν 0.2 0.2 0.2 0.2 0.2
ρs [kg/m3] 2000 2000 2000 2000 2000

ρf [kg/m3] 860
n 0.3
α 0.33
Q [N/m2] 2.2× 109

KD [N/m2] 5.6× 108

Ks [N/m2] 8.3× 108

Kf [N/m2] 7.0× 108
η [cp] 5
k̄ [md] 100

fluid within a target poroelastic formation. The third layer is the targeted oil-saturated
poroelastic formation, while the surrounding layers represent non-permeable elastic solid
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Figure 15. The distribution of the objective functional (11) with respect to frequencies f = 0.1–50 Hz for
a sinusoidal excitation f (t) = 50 sin (2π ft)kN/m2 atop the 5-layered subsurface formation model in
Figure 11; the optimization experiments recover a set of the amplification frequencies – 11.8, 19.0, 27.2,
and 42.6 Hz – corresponding to strong local minima.

formations. We use the five-layer subsurface formation model shown in Figure 11. The
material parameters of the formations are described in Table 2. We use a linear-linear
element pair of element size 1m for the spatial approximation of both solutions u(x, t)
and w(x, t). The objective functional (11) is minimized by using an initially-guessed
perturbation-like non-periodic time signal with duration equal to 5 s. We require that
the amplitude of each discretized force parameter (per (12)) does not exceed 50kN/m2.
Even though the excitation parameters do not exceed 50kN/m2, the interpolated loading
time signal can reach up to 60kN/m2 (see Figures 12 to 14).7 The total observation duration
is T = 5 s, and the time step for resolving the state and adjoint problems is �t = 0.001 s.

Figure 12(a) shows that theoptimizationprocess startswith an initially guessed sinusoidal-
like loading signal, temporally discretized by using 100 quadratic elements.

The triangular symbols shown in Figure 12(a) represent the discretized force parameters
utilized for the temporal approximation of a guessed loading time signal (we use these
symbols in all similar plots in Figures 12 to 14). Figure 12(b) shows that the frequency
spectrum of the guessed loading signal changes as the presented numerical optimizer
updates the values of the discretized force parameters. After 40 iterations, the optimizer
converges to the loading signal shown in Figure 12(c) with a strong dominant frequency of
11.8 Hz. It should be noted that the finally converged time signal shown in Figure 12(c) has
a frequency spectrum, which differs significantly from that of the initially guessed signal:
the optimization process begins by using a blind initial guess.

To explore the sensitivity of the converged signal to the initial guess, we repeated the
previous numerical experiment, starting with a Ricker pulse, with a central frequency of 5
Hz, instead of the sinusoidal-like pulse. Figure 13 summarizes the results. Notice that the
converged signal has frequency content similar to the one recovered with the sinusoidal-
like pulse: in particular, as it can be seen in Figure 12(c), the dominant frequency of the
converged signal’s spectrum is again 11.8 Hz, the same dominant frequency as in the
previous experiment. We conjecture that, as long as the spectrum of the initial guess is
broad enough to contain the formation’s amplification frequencies, the optimizer will
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converge to a signal that will be revealing the amplification frequencies (provided that the
mesh density can numerically support the frequencies).

Figure 14 demonstrates that the optimization procedures using initially guessed signals,
discretized by using 100, 125, 200, and 250 elements, converge to time signals with
dominant frequencies, 11.8, 19.0, 27.2, and 42.6Hz, respectively. Each recovered frequency
corresponds to one of the strong local minima of the frequency-sweep distribution of the
value of the objective functional (Figure 15). Here, the frequency sweep is obtained by
using a time-harmonic excitation f (t) = 50 sin (2π ft)kN/m2 with a frequency f varying
from 0.1 to 50 Hz. Although the value of the objective functional, in the frequency sweep,
tends to decrease as the frequency increases, there are a set of amplification frequencies
corresponding to the strong local minima in the frequency sweep (Figure 15). These
optimization experiments show that the dominant frequencies of the recovered optimal
loading signals successfully recover the amplification frequencies, which can be otherwise
obtained by the frequency sweep. Thus, we suggest that this optimization scheme is capable
of recovering the essential characteristics of optimal wave sources for the wave-based EOR.

We remark that the minimization of the functional L of equation (11) is likely to
produce a sinusoidal-like signal with a strong dominant frequency component, as was, in
fact, shown in the numerical results. This is attributed to the one-dimensional character of
the problem we considered. Despite the presence of layering, and the multiple reflections
at the interface boundaries, in a one-dimensional setting there is only one propagation
direction. By contrast, in higher spatial dimensions, the propagation path would depend
on the heterogeneity of the formation, and transient signals that allow for the building of
constructive interference at the target formation cannot be excluded. Though monochro-
matic solutions can still arise as the global optimum for the wave source signal in two
or three dimensions, non-harmonic solutions are also possible. In short, in the problem
under consideration, the optimizer will always converge to a signal whose spectrum will
reveal strong discrete frequency components, whether the signal is monochromatic or not.

6. Conclusions

We described the mathematical and numerical modeling for identifying an unknown
surface wave source’s optimal loading signal that can maximize the relative wave motion
of a single-phase pore fluid within a target poroelastic formation surrounded by non-
permeable elastic solid formations of semi-infinite extent. At the heart of the modeling
is a PDE-constrained-optimization-based numerical optimization scheme. The numerical
experiments show that the suggested method can successfully recover optimal loading
signals, whose spectrum contains dominant frequencies that coincide with the formation’s
amplification frequencies, and induce larger wave pore fluid relative motion than other
signals. Thus, the optimization scheme is capable of recovering the essential temporal
characteristics for a wave-based EOR.

This work could be extended into the more complicated yet realistic three-dimensional
setting, where a fleet of downhole vibrators within horizontal wells, and/or ground surface
sources are deployed. Then, the optimal conditions (e.g. the spatial distribution, the
directions of excitational forces, and the loading time signals) of wave sources could
maximize the amount of the vibrationally-mobilized oil, which can be estimated using a
hystereticmodel [93]. Our theoretical formulation could also be used to study the effect of a
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fracture network (either naturally-existing or hydraulically-fractured) on the performance
of the wave-based EOR.

Nomenclature

Symbol Definition

x Location
t Time
xi Depth of a boundary or an interface atop the i-th layer
xp , xp+Npls The locations of the two interfaces between the non-permeable elastic solid layers and the poroelastic layers
p The layer index of the top poroelastic formation
L The depth of absorbing boundary
� Total coupled system= (0, L)

�p Poroelastic formations
ua(x, t) Displacement of the non-permeable elastic solid formations
ub(x, t) Displacement of solid rock matrix of the poroelastic formations
w(x, t) Relative displacement of pore-fluid motion
σ(x, t) Total stress
σ ′(x, t) Effective stress
P(x, t) Pore pressure
Npls Total number of the poroelastic layers
Nls Total number of all layers
T Total observation duration
E Elastic modulus of elastic solid or rock matrix of poroelastic solids
λ Lamé’s first parameter of elastic solid or rock matrix of poroelastic solids
μ Shear modulus of elastic solid or rock matrix of poroelastic solids
ν Poisson’s ratio of elastic solid or rock matrix of poroelastic solids
ρ Mass density of elastic solid or fluid-solid mixture
ρs Mass density of solid rock matrix
ρf Mass density of pore fluid
k Fluid mobility, i.e. k = k̄/η, as shown by [83]
k̄ Permeability
η Viscosity of pore fluid
n Porosity
α Biot’s parameter, i.e. α = 1− KD

KS
, where n ≤ α ≤ 1

Q Biot’s parameter, i.e.Q = 1/
(

n
Kf
+ α−n

KS

)
, where 0 < Q ≤ ∞

KD Bulk modulus of drained solid rock matrix, i.e. KD = E
3(1−2ν)

KS Bulk modulus of undrained solid rock matrix, i.e. Ks = KD/(1− α)

Kf Bulk modulus of pore fluid
vp Compressional wave velocity
s(x), v(x) Test functions
f (t) Applied force of a surface wave source
nf Number of parameters for temporal discretization of f (t)
fi The i-th discretized force parameter for temporal approximation of f (t)
ϕi(t) The i-th shape function for temporal approximation of f (t)
L Objective functional to be minimized
λua , λub , λw Lagrange multipliers
λ0 , λL Lagrange multipliers
A Lagrangian functional
δ Variational symbol
E(x) Coefficient of the body force term of the adjoint PDE (refer to (16) and (17))
ξ Control variable: ξ = fi
f(k) An array of force parameters at the k-th optimization iteration; see Algorithm 1
θ(k) Step length at the k-th optimization iteration
α,β Parameters of the optimization algorithm
f Frequency of the loading time signal of a surface wave source
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Notes

1. It should be noted that there have been source-inversion studies of different kinds reporting
on identification of unknown spatial and/or temporal profiles of sources to systems by using
sparsely-measured response of the system induced by the sources [57–60].

2. The coupledwave equations for poroelastic solids fully saturated by a single-phase fluid in the
three-dimensional and one-dimensional settings are shown in [74,75] and,[73] respectively.
The dimensional reduction from the three-dimensional equations to the one-dimensional
equations is straightforward and omitted in this paper.

3. The total kinetic energy of the pore fluid at x and t is ρf
2

(
∂u
∂t (x, t)+ ∂w

∂t (x, t)
)2. Sincewe are in-

terested in increasing the relative wave motion of the pore fluid, wemaximize ρf
2

(
∂w
∂t (x, t)

)2,
which is the kinetic energy only in terms of w(x, t), the relative fluid displacement.

4. In this paper, λ with a subscript denotes a Lagrange multiplier, whereas λ without any
subscript denotes the Lamé’s first parameter.

5. We use v(theoretical)
p(poroelastic) =

√
λ+2μ+α2Q

ρ
. If there is a high viscosity-coupling between the solid

rock matrix and the pore fluid within a poroelastic layer, then there is only one longitudinal
wave of the speed, i.e. v(theoretical)

p(poroelastic) =
√

λ+2μ+α2Q
ρ

, within the poroelastic layer [91].
6. We obtain the FEM solution of the wave response of the all-elastic-solid-layers system, whose

layering is identical to that of the coupled-poroelastic-elastic-layers system, except for the
third layer that is replaced by an elastic solid layer. For this elastic wave solution, we use,
again, the values of E, ν, and ρs for each layer shown in Table 1, the linear elements with
element size 4m, and �t of 0.001 s.

7. A modern Vibroseis can deliver dynamic pressure up to 60kN/m2 (or more) to the ground
surface [4].
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