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a b s t r a c t 

We are concerned with imaging the spatially varying Lamé parameters of semi-infinite, arbitrarily het- 

erogeneous solids, when probed by elastic waves in the time domain. We use a full-waveform inver- 

sion approach to tackle the inverse medium problem, and seek the Lamé distributions that minimize the 

misfit between measured and computed responses, subject to the governing PDEs. As is commonly the 

case, the resulting inverted profiles of the second Lamé parameter ( μ) are of better quality than those 

of the first ( λ). To improve the resolution of both Lamé parameters, we discuss the use of three robus- 

tifying schemes, namely, source-frequency continuation, regularization factor continuation, and a search 

direction-biasing scheme. We demonstrate with numerical experiments the effect the schemes have on 

the inversion process and conclude with an application of the robustified full-waveform method to a 

challenging adaptation of the Marmousi2 model. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The identification of parameters describing the behavior of

physical or engineered systems based on their response to stim-

uli is of fundamental interest in various fields of science and en-

gineering. In the context of solids, many of the early attempts

focused on the vibrational response (natural frequencies, modes,

strains, etc) to guide condition assessment and infer system pa-

rameters (e.g. Gladwell, 1984; Juang and Pappa, 1985; Salawu,

1997 ). More broadly, parameter identification is an inverse medium

problem, where the spatially distributed medium properties are

the unknown parameters to be identified using a process that ac-

counts for the sources/input/stimuli and the response/output of the

probed medium, while adhering to a mathematical model for de-

scribing its physical behavior. 

To date, the most intensely pursued inverse medium problem

pertains to the imaging of the subsurface, owing to the economic

significance of the driving application (oil exploration). Early in-

version attempts approached the subsurface as a single-parameter

medium to simplify or constrain the inversion process. A reason-

able next step was to model the subsurface as an elastic medium,
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hus giving rise to an inverse medium problem where two spa-

ially distributed parameters are sought. But, even under fully elas-

ic conditions, joint inversion for the elastic properties of the sub-

urface, i.e., of an arbitrarily heterogeneous semi-infinite medium,

emains, by and large, an open problem. While most developments

ocus on the geophysical probing application of deep earth forma-

ions, fundamentally the problem is that of a semi-infinite elastic

olid probed with elastic waves: the applications range from dam-

ge detection in composite structures at various scales, to site char-

cterization of the near-surface deposits, to skin cancer detection

nd elastography. 

Many a technique have been developed in the pursuit of elas-

ic solid subsurface imaging: migration velocity analysis approach

MVA) ( Clément et al., 1995; Chavent and Jacewitz, 1995; Plessix

t al., 1999 ) is a good example, based on a decomposition of the

ought properties into slow-varying (background) and fast-varying

omponents (reflectivity), where, however, each component is de-

ermined separately. The background component necessitates a

ravel-time inversion, whereas the reflectivity component requires

 prestack migration, thus increasing the complexity and overall

omputational cost of the approach. More recently, full-waveform

nversion (FWI) schemes ( Bunks et al., 1995; Pratt et al., 1996; Shin

nd Min, 2006; Brenders and Pratt, 2007 ) have been developed,

elying typically on a least-squares (or other norm) data fitting

rocess, where simultaneous inversion, instead of the staggered

VA approach, is attempted for the elastic parameters. Examples
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nclude Pratt (1999) , Pratt and Shipp (1999) , Operto et al. (2004) ,

ao et al. (2007) , and Choi et al. (20 05, 20 08) who explored full-

aveform inversion using either real or synthetic data sets to re-

onstruct complicated subsurface structures. Both single parame-

er FWI ( Bunks et al., 1995; Shin and Min, 2006; Bamberger et al.,

979; Epanomeritakis et al., 2008; Kang and Kallivokas, 2011; Mé-

ivier et al., 2014 ) and dual-parameter FWI ( Clément et al., 1995;

arantola, 1984; Kallivokas et al., 2013; Fathi et al., 2015 ) have been

eveloped and continue to be refined. 

As in all inverse problems, solution multiplicity is a challenge,

nd it remains a difficulty in full-waveform approaches as well

 Symes, 2008 ). Typically, to alleviate the multiplicity, regulariza-

ion techniques, such as Tikhonov ( Tikhonov, 1963 ), or Total Vari-

tion ( Rudin et al., 1992 ) are used. However, despite the adoption

f regularization techniques, robust solutions to the joint inversion

emain challenging. Furthermore, for elastic solids, one has several

hoices for defining the spatially-distributed parameter pair to in-

ert for: the two Lamé parameters, Young’s modulus and Poisson’s

atio, bulk and shear moduli, P- and S-wave velocities or slow-

esses ( Brossier et al., 2009; Virieux and Operto, 2009 ), etc. Irre-

pective of the choice of the pair of target inversion parameters,

o single pair has been shown to result in superior resolution over

nother, under joint inversion conditions ( Epanomeritakis, 2004 ). 

In this paper, we are concerned with robustifying the ap-

lication of full-waveform inversion, and discuss three schemes

hose combination improves the resolution of the reconstructed

rofiles of the spatial distributions of the Lamé parameters in

 surface-probed semi-infinite solid. Specifically, we discuss a

earch-direction biasing scheme, a regularization factor continua-

ion scheme, and a source-frequency continuation scheme, hence-

orth referred to as RS1, RS2, and RS3, respectively. RS2 was first

eported in Na and Kallivokas (2008) , and used in combination

ith RS3 in Kang and Kallivokas (2011) for a 2D scalar full-

aveform inversion problem, i.e., in order to invert for a single

patially distributed inversion parameter. While the combined use

f RS2 and RS3 was sufficient to reduce the solution multiplicity

n the scalar case, as we reported in Kang and Kallivokas (2011) ,

he mere extension of their use to the vector wave case fails to

roduce acceptable profiles: typically, in the elastic case, one of

he two elastic parameters is recovered more accurately than the

ther, as will be shown. To alleviate the resolution mismatch be-

ween the two elastic parameters, we discuss a search-direction bi-

sing scheme (RS1), first introduced in Kucukcoban (2010) , which,

s will be shown, in combination with RS2 and RS3 lends robust-

ess to the inversion. The three schemes were also used to robus-

ify the inversion in 3D full-waveform inversion applications using

ynthetics ( Fathi et al., 2015; Fathi, 2015 ) or field data ( Fathi et al.,

016 ). There are two key differences between the 2D case treated

erein and the 3D cases reported earlier: a. The 3D case results in

quations of motion implicating four temporal orders (from zero to

hird order), whereas the 2D case engages only three orders. This

s due to the treatment of the unbounded domain via Perfectly-

atched-Layers (PMLs), which force a rise in the temporal order

n 3D compared to 2D, thus requiring specialized time integrators,

hich are not necessary in 2D. The 2D case, as will be shown, re-

ults in a classic second-order semi-discrete system that benefits

rom standard integrators. b. The 3D inversion case was treated

ithin a discretize-then-optimize framework, where the discrete

roblem is side-imposed to a misfit functional; by contrast, here

e follow an optimize-then-discretize approach, which is simpler

nd allows greater flexibility in the choice of the discretization

cheme. 

This article is organized as follows: we first review the mod-

ling of the time-domain response of a semi-infinite elastic solid

sing a hybrid, symmetric, variational formulation for a PML-

runcated plane-strain elastic medium. Next, we discuss the math-
matical framework of the full-waveform inversion using the three

obustifying schemes for the simultaneous reconstruction of the

patially-distributed Lamé parameters ( λ and μ). We demonstrate

he performance of the robustifying schemes in detail with numer-

cal experiments, and conclude with an application involving the

hallenging Marmousi2 benchmark problem ( Versteeg, 1994 ). 

. Problem definition 

We are concerned with the reconstruction of the material

roperties of an arbitrarily heterogeneous two-dimensional semi-

nfinite medium using surficial measurements of its response to

nown dynamic excitations applied on its surface, as schematically

hown in Fig. 1 (a) and (b). To account for the unboundedness of

he physical domain in a computational model, the domain is trun-

ated through the introduction of PMLs, i.e., buffers surrounding

he truncated domain within which outgoing waves are forced to

apidly decay. Then, the goal is to recover the spatial distribution of

he Lamé parameters λ( x ) and μ( x ) in the PML-truncated domain

 Fig. 1 (b)). Our approach is based on the PDE-constrained opti-

ization apparatus, and thus involves casting the forward problem

s a constraint ( Kallivokas et al., 2013 ). We review first the forward

odel for completeness; details can be found in Kucukcoban and

allivokas (2013) . 

. Full-waveform inversion 

.1. The forward problem 

An efficient approach for forward wave simulations in 2D PML-

runcated elastic media has been introduced in Kucukcoban and

allivokas (2013) . By contrast to preceding developments,

ucukcoban and Kallivokas (2013) combines a displacement-only

ormulation for the interior domain �ID , with a mixed-field for-

ulation for the PML buffer zone �PML , where both displacements

nd stresses are unknowns: this hybrid approach is computa-

ionally optimal (See Kucukcoban and Kallivokas (2011) for a

omprehensive review of PMLs). 

The wave motion in the PML-truncated domain is governed by

he system of PDEs and associated conditions shown below. Find

 ≡ u ( x , t ) in � = �ID ∪ �PML and S ≡ S ( x , t ) in �PML such that: 

iv 
{
μ

[∇u + ( ∇u ) 
T 
]

+ λ( div u ) I 
}

+ f = ρü in �ID × J , (1a) 

iv 
(

˙ S T ˜ �e + S T ˜ �p 

)
= ρ( a ̈u + b ̇ u + cu ) in �PML × J , (1b) 

 : 
(
a ̈S + b ̇ S + cS 

)
= 

1 

2 

[
(∇ 

˙ u ) ̃  �e + 

˜ �e (∇ 

˙ u ) T + (∇u ) ̃  �p 

+ 

˜ �p (∇u ) T 
]

in �PML × J , (1c) 

ubject to silent initial conditions, and the following boundary and

nterface conditions: 

μ
[∇u + (∇u ) T 

]
+ λ( div u ) I 

}
n = g n on �ID 

N × J , (2a) 

( ̇ S T ˜ �e + S T ˜ �p ) n = 0 on �PML 
N × J , (2b) 

 = 0 on �PML 
D × J , (2c) 

 

ID = u 

PML on �I × J , (2d) 
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Fig. 1. (a) A heterogeneous semi-infinite domain probed by surface sources; (b) configuration of a PML-truncated computational domain. 
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{
μ

[∇ u + (∇ u ) T 
]
+ λ( div u ) I 

}
n = −

(
˙ S T ˜ �e + S T ˜ �p 

)
n on �I × J , 

(2e)

where u is the displacement vector, ˙ S is the stress tensor, I de-

notes the identity tensor, f is the load vector, and ρ is the mass

density. D is the fourth order compliance tensor, a colon (:) de-

notes tensor inner product, and a dot ( ̇ ) denotes differentiation

with respect to time of the subtended function. ˜ �e and 

˜ �p are

the stretch tensors associated with evanescent and propagating

waves, respectively. a, b , and c are products of certain elements of

the stretch tensors ( Kucukcoban and Kallivokas, 2013; 2011 ). More-

over, �I is the interface boundary between the interior and PML

domains. � is bounded by �PML 
D ∪ �PML 

N ∪ �ID 
N . Moreover, g n de-

notes prescribed surface tractions on �ID 
N 

, and J = (0 , T ] denotes

the time interval of interest. The hybrid approach couples two

initially-uncoupled sets of governing equations via the continuity

of displacements and tractions at the interface �I between �ID and

�PML . 

Upon discretization, we obtain the following semi-discrete form

using standard finite element approximants: 

M ̈d + C ̇

 d + Kd = F , (3)

where M, C, K are symmetric system matrices, d is the vector

of nodal unknowns (comprising displacements in �ID ∪ �PML , and

stresses only in �PML ), and F is the vector of applied forces. To

resolve the second-order time integration in (3) , we employ the

classical Newmark- β approach ( Hughes, 1987 ), using the average

acceleration scheme. 

3.2. The inverse problem 

We consider the sources and the response collected at receivers

on the solid’s top surface as known. We formulate the inverse

problem initially as a misfit minimization problem, where the mis-

fit is defined as the difference between the measured response at

the receivers and a computed response, where the latter is ob-

tained using trial distributions of the material parameters λ( x ) and

μ( x ). 

Referring to Fig. 1 (b), let �m 

denote the part of the surface �ID 
N 

occupied by measuring stations (receivers), and let u m 

( x , t ) denote

the measured displacement response to a known excitation. Let N r 

denote the total number of receivers on the surface, and let u ( x , t )
e the computed response corresponding to a trial material profile.

hen, the misfit least-squares minimization problem can be cast

s: 

min 

λ,μ
F := 

1 

2 

N r ∑ 

j=1 

∫ T 

0 

∫ 
�m 

( u − u m 

) 
2 δ(x − x j ) d�m 

dt + R (λ, μ) , 

(4)

ubject to ( 1a –1c ) and ( 2a –2e ). F denotes the objective functional,

omprising the misfit functional augmented by the regularization

unctional. In (4) , R could either adhere to a Tikhonov (TN) scheme

 Tikhonov, 1963 ), 

 (λ, μ) = 

R λ

2 

∫ 
�

∇λ · ∇λ d� + 

R μ

2 

∫ 
�

∇μ · ∇μ d�, (5)

r to a Total Variation (TV) ( Rudin et al., 1992 ) scheme: 

 (λ, μ) = R λ

∫ 
�

( ∇λ · ∇λ+ ε) 
1 
2 d�+ R μ

∫ 
�

( ∇μ · ∇μ+ ε) 
1 
2 d�. 

(6)

 λ and R μ are user-defined regularization factors for λ and μ, re-

pectively. We cast the constrained optimization problem (4) with

he aid of a Lagrangian L , whereby the misfit functional F is

ugmented with the side-imposition of the governing PDEs and

oundary conditions via Lagrange multipliers, per: 

 

(
u , S , θu 1 , θu 2 , θs , θb1 , θb2 , λ, μ

)
= 

1 

2 

N r ∑ 

j=1 

∫ T 

0 

∫ 
�m 

( u − u m 

) 
2 δ(x − x j ) d�m 

dt + R (λ, μ) 

+ 

∫ 
�ID 

∫ T 

0 

θu 1 ·
[
div 

{
μ

[∇u + (∇u ) T 
]

+ λ( div u ) I 
}

+ f − ρü ] dtd�

+ 

∫ 
�PML 

∫ T 

0 

θu 2 ·
[
div 

(
˙ S T ˜ �e + S T ˜ �p 

)
− ρ( a ̈u + b ̇ u + cu ) 

]
dtd�

+ 

∫ 
�PML 

∫ T 

0 

θs : 

{ 

D : 
(
a ̈S + b ̇ S + cS 

)
− 1 

2 

[
(∇ 

˙ u ) ̃  �e + 

˜ �e (∇ 

˙ u ) T 

+(∇u ) ̃  �p + 

˜ �p (∇u ) T 
]}

dtd�

+ 

∫ 
�ID 

N 

∫ T 

0 

θb1 ·
{(

μ
[∇u + (∇u ) T 

]
+ λ( div u ) I 

)
n − g n 

}
dtd�

+ 

∫ 
�PML 

∫ T 

0 

θb2 ·
[(

˙ S T ˜ �e + S T ˜ �p 

)
n 

]
dtd� (7)
N 
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R

μ

s∫

R
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ith 

 = 0 on �PML 
D × J , (8a) 

 

+ = u 

− on �I × J , (8b) 

μ
[∇ u + (∇ u ) T 

]
+ λ( div u ) I 

}
n = −( ̇ S T ˜ �e + S T ˜ �p ) n on �I × J , 

(8c) 

 (x , 0) = 0 , ˙ u (x , 0) = 0 in �, (8d) 

 (x , 0) = 0 , ˙ S (x , 0) = 0 in �. (8e) 

In the above, { u , S } are the state variables (s), { θu1 , θu2 , θs ,

b1 , θb2 } are the adjoint variables (m), and { λ, μ} are the con-

rol variables (c). Thus, the inverse medium problem is cast as a

DE-constrained least-squares misfit optimization problem, similar

o Epanomeritakis et al. (2008) , Kang (2010) , Kucukcoban (2010) ,

ang and Kallivokas (2011) , Kallivokas et al. (2013) , and

athi et al. (2015) . Next, we seek to satisfy the stationarity of L
y requiring that the first variations of L vanish, i.e., 

L = 

[ 

δm 

L 

δs L 

δc L 

] 

= 0 . (9) 

he 1st optimality condition ( δm 

L ), results in the state (or forward)

roblem , identical to the one given by ( 1a –2e ). The state prob-

em is solved using the hybrid approach described in Section 3.1 .

he 2nd optimality condition ( δs L ) results in the following adjoint

roblem : 

iv 

[ 
μ(∇ θu 1 + ∇ θu 1 

T 
) + λ div θu 1 I 

] 
= ρ ¨θu 1 in �ID × J , (10a) 

iv 

(
− ˙ θs ̃

 �e + θs ̃
 �p 

)
= ρ

(
a ¨θu 2 − b ˙ θu 2 + c θu 2 

)
in �PML × J , 

(10b) 

 : 

(
a ̈θs − b ˙ θs + c θs 

)
= − ˜ �e 

(
∇ 

˙ θu 2 

)T 

+ ̃

 �p 

(∇ θu 2 

)T 
in �PML × J ,

(10c) 

ubject to { 

μ
(
∇ θu 1 + ∇ θu 1 

T 
)

+ λ div θu 1 I 
} 

n = 

N r ∑ 

j=1 

( u − u m 

) δ(x − x j ) 

on �m 

× J , (11a) 

− ˙ θs ̃
 �e + θs ̃

 �p 

)
n = 0 on �PML 

N × J , (11b) 

u 2 = 0 on �PML 
D × J , (11c) 

u 1 = θu 2 on �I × J , (11d) 

{ 

μ
(
∇ θu 1 + ∇ θu 1 

T 
)

+ λ div θu 1 I 
} 

n 

= −
(
− ˙ θs ̃

 �e + θs ̃
 �p 

)
n on �I × J , (11e) 

u 1 (x , T ) = 0 , ˙ θu 1 (x , T ) = 0 in �ID , (11f) 
u 2 (x , T ) = 0 , ˙ θu 2 (x , T ) = 0 in �PML , (11g) 

s (x , T ) = 0 , ˙ θs (x , T ) = 0 in �PML . (11h) 

We note that, as usual, the adjoint problem is a final-value prob-

em: it is driven by the misfit. We also note that the operators im-

licated in the adjoint PDEs are identical to the state operators,

odulo the sign reversal for the terms implicating first-order time

erivatives. By construction, the adjoint equations are also hybrid

nd PML-endowed, with ( θu1 , θu2 ) and θs playing a role analogous

o u and S of the state problem, respectively. 

Owing to the similarity of the operators implicated in the state

nd adjoint problems, we obtain the following semi-discrete form ,

here the superscript ‘ad’ stands for the adjoint problem. 

 

ad d̈ 

ad + C 

ad ˙ d 

ad + K 

ad d 

ad = F ad , (12) 

here M 

ad , C 

ad , K 

ad are the mass-like, damping-like, stiffness-like

ystem matrices, d 

ad is the vector of nodal unknowns (comprising

u and θs ), and F ad is the load vector. The adjoint problem matrices

re the same as those resulting from the state problem, modulo a

ign reversal for the damping matrix; that is 

 

ad = M , C 

ad = −C , K 

ad = K . (13) 

he above equalities lead to cost-effective im plementations since

he assembly process for the adjoint problem is avoided. To re-

olve the time integration, we employ a Newmark- β-like scheme

n which time marching is reversed ( Kucukcoban, 2010 ). The 3rd

ptimality condition ( δc L ) results in the following two boundary-

alue control problems: 

λ- control problem : 

− R λ
λ −
∫ T 

0 

( div θu 1 )( div u ) dt = 0 in �ID , (14a) 

ubject to 
 

�ID 
N 

∇λ · n d� = 0 on �ID 
N , (14b) 

 λ∇λ · n = −
∫ T 

0 

θu 1 · ( div u ) n dt on �I . (14c) 

- control problem : 

− R μ
μ −
∫ T 

0 

∇ θu 1 : 
(∇u + ∇u 

T 
)

dt = 0 in �ID , (15a) 

ubject to 
 

�ID 
N 

∇μ · n d� = 0 on �ID 
N , (15b) 

 μ∇μ · n = −
∫ T 

0 

θu 1 ·
(∇u + ∇u 

T 
)
n dt on �I . (15c) 

In writing ( 14a –14c ) and ( 15a –15c ), we adopted the TN scheme

or regularizing the solutions. If the TV regularization were to be

sed instead, the first terms in (14a) and (15a) should be replaced

y: 

− R λ ∇ ·
[ 
( ∇λ · ∇λ + ε) 

− 1 
2 ∇λ

] 
−

∫ T 

0 

(
div θu 1 

)
( div u ) dt = 0 in �ID , (16) 
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Fig. 2. A PML-truncated semi-infinite domain in two dimensions. 

Fig. 3. Excitation time signal and its Fourier spectrum. 
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− R μ ∇ ·
[ 
( ∇μ · ∇μ + ε) 

− 1 
2 ∇μ

] 
−

∫ T 

0 

∇ θu 1 : 
(∇u + ∇u 

T 
)

dt = 0 in �ID . (17)

3.2.1. The inversion process 

Similar to Epanomeritakis et al. (2008) and Kang and Kalli-

vokas (2011) , a reduced-space method is used to solve for the sta-

tionarity of L , in which the coupled system of PDEs are solved in

the reduced space of the control variables. The procedure is iter-

ative: we start with an assumed initial spatial distribution of the

control parameters ( λ and μ) and solve the state problem ( 1a –2e )

for the state variables u and S . Then, we solve the adjoint prob-

lem ( 10a –11h ) to obtain the adjoint variables θu and θs based on

the state solutions. Then, we satisfy the first and second optimality

conditions, that is, the gradient of the Lagrangian becomes 

∇L = 

[ 

0 

0 

δc L 

] 

⇒ ∇ c L = δc L . (18)

The term ( δc L ) is the reduced gradient ( ∇ c L ), and can be incorpo-

rated into a gradient-based scheme to update the control/material

parameters. 

3.2.2. Material parameter updates 

The first and second optimality conditions are automatically

satisfied once the state and adjoint problems are solved. How-

ever, the third optimality condition is satisfied exactly only for the

true/target material profile. Other profiles result in non-vanishing

control equations: (14a) and (15a) for the TN case or (16) and

(17) for the TV case. We iteratively update the control parameters
 λ and μ) so that the misfit between the measured and computed

esponses reduces to a preset tolerance, thereby allowing the third

ptimality condition to be satisfied. To this end, we use a conju-

ate gradient method with inexact line search and make use of the

nformation stored in the reduced gradient ( ∇ c L ). 

The continuous forms of the associated reduced gradients can

e expressed, in the TN case, as 

 λL = −R λ
λ −
∫ T 

0 

( div θu 1 )( div u ) dt in �ID , (19)

 μL = −R μ
μ −
∫ T 

0 

∇ θu 1 : 
(∇u + ∇u 

T 
)

dt in �ID , 

(20)

hereas, in the TV case, they become 

 λL = −R λ ∇ ·
[ 
( ∇λ · ∇λ + ε) 

− 1 
2 ∇λ

] 
−

∫ T 

0 

( div θu 1 )( div u ) dt, 

(21)

 μL = −R μ ∇ ·
[ 
( ∇μ · ∇μ + ε) 

− 1 
2 ∇μ

] 
−

∫ T 

0 

∇ θu 1 : 
(∇u + ∇u 

T 
)

dt. (22)

n the above, the reduced gradients are restricted to �ID . In the

mplementation, ∇ λL and ∇ μL are evaluated at each nodal point. 

We cast the iterative evolution of λ and μ in the context of the

onjugate gradient method ( Fletcher and Reeves, 1964 ) as 

k +1 = λk + αλ
k d 

λ
k , μk +1 = μk + αμ

d 

μ
, (23)
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Fig. 4. Simultaneous inversion for the Lamé parameters without robustifying schemes; convergence after 278 iterations (TN), and 280 iterations (TV). 
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here k = 1 , 2 , . . . , (αλ
k 
, αμ

k 
) are the step lengths for λ and μ,

nd (d 

λ
k 
, d 

μ
k 
) are the associated search directions. An Armijo-like

ine search for both λk and μk is used. However, instead of en-

orcing sufficient decrease on the Lagrangian L , we favor the use

f the objective functional F instead, simply because the side-

mposed PDEs vanish in a weak sense and minimizing L becomes

early equivalent to minimizing F (we have found this to be a

ore robust choice than enforcing the Armijo condition on the
agrangian). Thus, we force sufficient decrease in the objective

unctional F by 

 

(
λk +1 , μk +1 

)
−F 

(
λk , μk 

)
≤ min 

{
δλαλ

k (g 

λ
k ) 

T d 

λ
k , δ

μαμ
k 
(g 

μ
k 
) T d 

μ
k 

}
,

(24) 

here αk is chosen to be the largest of { α, αρ, αρ2 , . . . } , where

> 0 is an initial step length, ρ ∈ (0, 1) is a contraction factor,

nd δ ∈ (0, 1) is a constant parameter (in practice, δ is chosen
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Fig. 5. Cross-sectional profiles for simultaneously inverted Lamé parameters without robustifying schemes; convergence after 278 iterations (TN), and 280 iterations (TV). 

Fig. 6. Variation of response misfit during simultaneous inversion process without robustifying schemes. 
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d  
to be quite small, e.g. δλ = δμ = 10 −10 ). g λ
k 

and g 
μ
k 

are the dis-

crete reduced gradients at λk and μk , respectively. If the inequality

(24) is not satisfied, a backtracking procedure is followed by con-

tracting the associated step size ( αλ
k 

and/or αμ
k 

) by ρ until the suf-

ficient decrease condition is satisfied. Specifically, the step sizes

for λk and μk are determined independently since each has its

own search direction. Once we achieve adequate reductions in the

objective functional (4) , we update the material property vectors

λk and μk , and progress to the next iteration. We summarize the

inversion process in Algorithm 1 in Appendix A . 

4. Robustifying schemes 

As noted, imposing regularization over the control parameters

helps only partially to alleviate the ill-posedness and associated
olution multiplicity in joint inversion. To further assist the opti-

izer, we discuss next three robustifying schemes. 

.1. Biased search directions (RS1) 

Most simultaneous inversion schemes for the elastic properties,

rrespective of the choice of parameters, i.e., whether cast in terms

f the pair of P- and S-wave velocities, the slownesses, or bulk

nd shear moduli, etc., result in reconstructions of dissimilar qual-

ty for one of the two parameters. This is indeed the case here as

ell with the pair of our choice – the Lamé parameters. A plau-

ible explanation is this: the updates for μ are driven by gradi-

nt operators in the μ-control problem (see time integral in either

20) or (22) ), whereas, by contrast, the updates on λ are based on

ivergence operators in the λ-control problem ( (19) or (21) ). The
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Fig. 7. Simultaneous inversion for the Lamé parameters using the biased -directions RS1 scheme; convergence after 70 iterations (TN), and 180 iterations (TV). 
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radient operator incorporates richer information on the spatial

ariability of u ( x , t ) than the smoothing divergence operator. As

 result, μ evolves towards the target profile faster than λ. We

ropose a scheme where the search directions of λ are biased by

he search directions of μ during the early stages of the inver-

ion process. The key idea behind this is to let λ know about the

patial structure of μ and update itself with a similar pattern; af-

er all, the physics dictate that both λ and μ profiles should look
imilar: since the spatial update pattern of μ is embedded in a

 -dimensional unit search direction vector, we use a weighted av-

rage of unit λ- and μ-search directions for the evolution of λ. To

mplement, an extra step is inserted in Algorithm 1 after line 12 to

efine the new biased search direction: 

 

λ
k ← 

∥∥d 

λ
k 

∥∥[ 

W 

d 

μ
k ∥∥d 

μ
k 

∥∥ + (1 − W ) 
d 

λ
k ∥∥d 

λ
k 

∥∥
] 

(25) 
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Fig. 8. Cross-sectional profiles obtained using the biased -directions RS1 scheme. 

Fig. 9. Gaussian pulses and their Fourier spectra. 

Fig. 10. A PML-truncated horizontally-layered semi-infinite domain in two dimensions. 
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Fig. 11. Simultaneously inverted Lamé parameters using TN regularization; 10 Hz 

source (105 iterations); 20 Hz source (124 iterations); 30 Hz source (145 iterations); 

and 40 Hz source (189 iterations). 
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Fig. 12. Simultaneously inverted Lamé parameters using TV regularization; 10 Hz 

source (145 iterations); 20 Hz source (180 iterations); 30 Hz source (205 iterations); 

and 40 Hz source (255 iterations). 
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nitially, we assign full weight ( W = 1 ) to μ, but as iterations

volve, the weight is reduced down to zero ( W = 0 ), thereby let-

ing λ evolve on its own. Once the updates on μ vanish numer-

cally ( μ has converged), we fix μ, and continue the inversion

rocess with λ only. 

.2. Regularization factor continuation (RS2) 

The amount of penalty placed on the gradients via the regu-

arization factors R λ and R μ is critical, since the inversion process

epends on the reduced gradients. Though there are various devel-

pments for choosing the regularization factor intelligently (e.g., L-

urve ( Hansen and O’Leary, 1993; McCarthy, 2003 )), a fixed value

or R λ and R μ can also be used. Here, we favor adjusting the reg-
larization factor dynamically so that it penalizes high-frequency

aterial oscillations initially, but as iteration grow, it relaxes the

mposed penalty in order to be able to refine the target reconstruc-

ions. To address the manner by which the regularization factors

re continuously updated, we first recast the continuous form of

he reduced gradients ( 19–22 ) as 

 i L = − R i K − F , (26) 

here the subscript i refers to either of the two control/material

arameters λ or μ, K corresponds to the part of the reduced gra-

ient stemming from the regularization, and F corresponds to the

art that originates in the side-imposed PDEs. Once discretized, K
nd F denote n -dimensional vectors with n being the number of

odal unknowns in �ID . Representing each vector as a product of
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Fig. 13. Cross-sectional profiles for simultaneously inverted Lamé parameters. 

Fig. 14. Variation of response misfit during the simultaneous inversion endowed with the source-frequency continuation scheme. 
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its magnitude by the associated unit vector, yields 

(∇ i L ) k = −‖ 

F ‖ 

[
R i 

‖ 

K ‖ 

‖ 

F ‖ 

n K 

+ n F 

]
, (27)

where ‖ ���‖ denotes the Euclidean norm, and n j is the unit vector

along j . Eq. (27) shows explicitly that the discrete reduced gradi-

ent, which drives the conjugate gradient method, is the weighted

average of the gradient information coming from the regulariza-

tion term ( K ), and the side-imposed PDEs ( F ). Depending on the

weight, i.e., the factor in front of n K 

, we decide on what should

control the search direction: having a weight that is too small

produces high-frequency fluctuations, and the inversion process

suffers from solution multiplicity. By contrast, placing too much

weight on the regularization smoothens the reconstructed mate-
ial profile by over-penalizing the gradients. Therefore, n K 

needs

o be scaled continuously so that it regularizes n F without hinder-

ng the overall search direction. This can be achieved by forcing n K 

o compete with n F throughout the entire inversion process, that

s, 

 i 
‖ 

K ‖ 

‖ 

F ‖ 

= ℘, (28)

here ℘ (0 ≤℘ ≤ 1) is a tuning parameter. The above can be recast

o choose R i as 

 i = ℘ 
‖ 

F ‖ 

‖ 

K ‖ 

, 0 ≤ ℘ ≤ 1 , (29)

t each iteration. By this continuation scheme, the regularization

actor can take a large value at the beginning of the inversion pro-
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Fig. 15. Truncated and scaled computational model of the Marmousi2 problem. 

Fig. 16. c p and c s - obtained from simultaneously inverted Lamé parameters us- 

ing TV regularization; 1.5 Hz source (490 iterations); 5 Hz source (1170 iterations); 

10 Hz source (920 iterations); 20 Hz source (1590 iterations). 
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s  
ess (to narrow down the initial feasibility space of the solution),

nd it is continuously reduced as iterations progress so as to en-

ble refinement of the reconstructions. 

.3. Source-frequency continuation (RS3) 

We start the probing with a signal having a low-frequency con-

ent, and increase the content frequency in subsequent iterations,

ntil convergence. The key idea is that a low-frequency excita-

ion typically allows for a rough resolution of the material pro-

le, whereas an excitation with higher-frequency components fine-

unes the profile. In practice, we need only a few probing signals

o arrive at a converged profile. Starting with the lowest source

requency, the inversion process is let to converge to a profile that

aptures the overall spatial variability of the material parameters

n a rather crude way. Next, we feed this coarse profile as an

nitial guess to the inversion process driven by the next higher

requency in the sequence, and let again the optimizer to arrive

t a converged profile. The process is repeated for all probing

ignals. 

. Numerical experiments 

To test the robustifying schemes, we discuss next numerical ex-

eriments, involving arbitrarily heterogeneous hosts and synthetic

ata. The first example is a fictitious medium that has material

roperties varying smoothly with depth. We use the first example

o discuss the effect of the biased search directions scheme (RS1).

xample 2 involves a horizontally-layered medium, and we use it

o discuss the effect of the source-frequency continuation scheme

RS3) in the presence of sharp layer interfaces. Lastly, Example 3

ackles the challenging Marmousi2 ( Martin et al., 2006 ) problem,

hich has been used extensively in the literature as a benchmark.

he regularization factor continuation scheme (RS2) is used in all

xamples. 

.1. Example 1 - effect of RS1+RS2 

We consider first a heterogeneous half-plane with constant

ensity ρ = 20 0 0 kg / m 

3 
and constant Poisson’s ratio ν = 0 . 25 (both

ssumptions are physically consistent for near-surface deposits).

e reduce the half-plane, through truncation, to a 45 m × 45 m

omputational domain, surrounded on its sides and bottom by a

 m-thick PML, as shown in Fig. 2 (a). The material profile varies

moothly with depth; specifically, we define the spatial variation
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Fig. 17. c p profiles obtained from simultaneously inverted Lamé parameters. 
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of the Lamé parameters as 

λ(y ) = μ(y ) = 80 + 0 . 45 | y | + 35 exp 

[
− ( | y | − 22 . 5) 2 

150 

]
(MPa) , 

(30)

The material interfaces were extended horizontally into the PML,

thereby, avoiding sudden material changes at the interface be-

tween the PML and the regular domain. The PML and regular

domains were discretized by square 0.5 m × 0.5 m 8-noded

serendipity elements. We used a quadratic-quadratic pair for the

displacements and stresses, whereas the material properties λ and

μ were approximated linearly. The discretization resulted in a 10-

cell-thick PML with a quadratic attenuation profile. 

To recover the target material profiles depicted in Fig. 2 (c),

we apply Gaussian pulse point loads at every grid point (uni-

formly distributed with 0.25m spacing) on the surface of the

regular domain, with a maximum frequency of f r = 40 Hz and

amplitude of 50 kPa ( Fig. 3 ). A Gaussian pulse is defined as

T p (t) = −50 exp 

[
−(t − μ̄) 2 / ̄σ 2 

]
, where μ̄ and σ̄ denote the mean

and deviation of the Gaussian pulse. The receivers that measure

the displacement response u ( x , t ) were also located at every grid

point on the surface resulting in 179 receiver locations. Using a

time step of 0.001 seconds, we let the forward problem run for

1.0 second under the target material profile, but using a different

(refined) mesh, in order to obtain the synthetic data at the sensor

locations. 

First, we attempt blind simultaneous inversions following the

procedure described in Algorithm 1 but without using the RS1 (or

RS3). We start the inversion process with a homogeneous profile

that has both λ and μ set to 80 MPa. The top row in Fig. 4 de-

picts the target profiles, whereas the center and bottom rows cor-

respond to simultaneous two-parameter inversion results obtained

by using TN and TV regularization, respectively. We observe that μ
is recovered satisfactorily, but λ is not. The same observation can

be made from the cross-sectional profiles ( Fig. 5 ). Fig. 6 shows the

variation of the response misfit during the inversion process. 

Next, we apply the biased search-direction scheme, RS1 (25) .

We start with the same initial profile as previously used for blind

inversion. The result is shown in Fig. 7 . We remark that the spatial

variability of μ is captured much more accurately than the spa-

tial variability of λ. As evidenced also from the cross-sectional pro-

files depicted in Fig. 8 , the inversion scheme did an excellent job

in capturing the smoothly-varying target μ profile and quite satis-

factorily reconstructed the λ profile, a marked improvement over

the results shown in Fig. 4 (c) or (e). 
.2. Example 2 - effect of RS1+RS2+RS3 

In this example, we use a source-frequency continuation

cheme (RS3) according to which a few time signals with differ-

nt frequency content are used to probe the domain, thereby cre-

ting a set of, seemingly, uncoupled inversion problems. We start

he inversion process with a low-frequency source and feed the

onverged reconstructed λ and μ profiles as initial guesses to the

roblem excited with a higher-frequency source. This procedure

as repeated as many times as the number of independent sources

robing the domain: here, we considered four different Gaussian

ulses with maximum frequencies ranging from 10 Hz to 40 Hz, as

hown in Fig. 9 . 

As shown in Fig. 10 (a), we consider next a 45 m × 45 m lay-

red medium surrounded by 5 m-thick PML on its sides and bot-

om with constant density ρ = 20 0 0 kg / m 

3 
and constant Poisson’s

atio ν = 0 . 25 . We define the spatial variation of the Lamé param-

ters as 

(y ) = μ(y ) = 

{ 

80 MPa , for − 12 m ≤ y ≤ 0 m , 

101 . 25 MPa , for − 27 m ≤ y < −12 m , 

125 MPa , for − 50 m ≤ y < −27 m . 

(31)

s in Example 1, the material interfaces were extended horizon-

ally into the PML. The PML and domain parameterization (mesh,

ML thickness, etc.) are the same as in Example 1. 

Following the inversion procedure outlined in Algorithm 1 en-

owed with RS1 and RS2, we reconstruct the material profiles

hown in Figs. 11 and 12 using the TN and TV regularization

chemes, respectively. In each figure, the first row displays the re-

onstructed profiles when the domain was probed by a source sig-

al with f max = 10 Hz. These profiles were fed as an initial guess to

he next problem in the sequence, where the probing source now

ncreased to f max = 20 Hz. Upon inversion, we obtained the pro-

les presented in the second row. Continuing in this manner, we

btained the converged reconstructed profiles for λ and μ shown

n the last row corresponding to a source with f max = 40 Hz. The

ffect of source-frequency continuation is clearly visible: increasing

he source frequency results in refinement of the recovered pro-

les. Here, the refinement is in the form of localization and sharp-

ning of the layer interfaces, which has been achieved quite satis-

actorily under both TN and TV regularization schemes. 

Fig. 13 compares the inverted profiles with the target profile

t the x = 0 m, 7m, and 14m cross-sectional lines of the domain.

he agreement is excellent for the μ profiles, whereas the λ pro-

les seem to fluctuate around the target even with the proposed

iased-directions inversion algorithm. We are inclined to blame the

bjective functional being less-sensitive to λ, since varying λ has

 mild effect on the misfit provided that it captures, in an average



S. Kucukcoban, H. Goh and L.F. Kallivokas / International Journal of Solids and Structures 164 (2019) 104–119 117 

Fig. 18. c s profiles obtained from simultaneously inverted Lamé parameters. 
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Fig. 19. Variation of response misfit during simultaneous inversion process with 

source-frequency continuation (L - linear elements, Q - quadratic elements). 
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ense, the target profile. As stated in the earlier discussions, the TV

egularization scheme is expected to perform better than the TN

egularization in recovering the sharply -varying target profiles, and

ndeed, this is the case here, especially with the reconstructed μ
rofiles. One may sharpen the layer interfaces further by increas-

ng the source-frequency content. 

In Fig. 14 , the response misfit was reduced from its initial value

f 0 . 134 × 10 −2 down to 0 . 819 × 10 −7 and 0 . 662 × 10 −7 for the

N and TV regularizations, respectively; this corresponds to about

.006% and 0.005% of the initial misfit, respectively. Since the TV

egularization captures the sharp layer interfaces better, the final

alue of the corresponding misfit is lower than the one attained

y the TN regularization. 

.3. Example 3 - Marmousi2 model 

We try next to recover the velocity profiles of the highly-

eterogeneous Marmousi2 model ( Martin et al., 2006 ) shown in

ig. 15 . It is an elastic extension to the original acoustic Marmousi

odel defined in Versteeg (1994) . The synthetic data for the Mar-

ousi2 model are created for a 17km × 3.5km region. Here, we

pted for a reduced and scaled version of the Marmousi2 model to

educe the computational cost. To this end, we truncated the orig-

nal Marmousi2 domain down to a 3250 m × 2750 m domain, as

hown in Fig. 15 , and scaled the wave velocities to be in the range:

200 m / s ≤ c p ≤ 4700 m / s and 1600 m / s ≤ c s ≤ 2752 m / s , 

(32) 

here c p and c s denote the P-wave and S-wave velocities, respec-

ively.nd The truncated domain is obtained by extracting a box be-

ween 7736.25 m and 10986.25 m (horizontal) and 626.25 m and

376.25 m (depth) of the original Marmousi2 model. The density

s assumed to be constant and taken as ρ = 2500 kg/m 

3 . 

As in previous examples, the material interfaces were extended

orizontally into the PML. The PML and interior domains were dis-

retized by quadrilateral elements with an element size of 25 m.

e used linear elements with low probing frequencies to reduce

he per-iteration time cost, and then, switched to quadratic ele-

ents with high probing frequencies to resolve the source loading

etter. We used a linear-linear (quadratic-quadratic) pair for the

isplacements and stresses, and linear approximations for the ma-

erial properties λ and μ. The discretization resulted in a 14-cell-

hick PML with a quadratic attenuation profile. 

Note that to recover the target velocity profiles shown in

ig. 15 , we still invert for the Lamé parameters and compute the

ssociated wave velocities to display the reconstructed profiles.

e use a source-frequency continuation scheme with six distinct
aussian pulses: f max = 1 . 5 , 3, 5, 10, 15, and 20 Hz to probe the

omain. The receivers were located at every grid point on the sur-

ace resulting in 259 receiver locations. Using a time step of 0.005

econds, we let the forward problem run for 8.0 seconds under the

arget material profile, but use a different (refined) mesh to gener-

te the synthetic data. 

Here we opted to use the TV regularization only. We initiated

he inversion process with a homogeneous medium that has

= μ = 10 0 0 0 MPa, and used the time signal associated with

he lowest source frequency ( f max = 1 . 5 Hz) to probe the domain.

ccordingly, we reconstructed the material profiles shown in

ig. 16 (a) and (b) corresponding to c p and c s , respectively. The

econstructed profiles capture the layering of the domain to some

xtent and were able to localize the high and low velocity regions.

hough the quality seems rather poor, we note that the minimum

avelength in this setting was 1067 m. To improve the resolution,

he source frequency is increased. To this end, we fed these

rofiles as an initial guess to the next problem, where the domain

as excited by a Gaussian pulse with f max = 3 Hz. Continuing

long the same lines with the source-frequency continuation

cheme, we increased the source frequency to f max = 5 Hz and

hen to 10 Hz, concluding with 20 Hz Gaussian pulses, fed the

revious reconstructed profiles as an initial guess, and obtained

he inverted profiles shown in Fig. 16 (c) and (d). The recon-

tructed profiles are depicted in Fig. 16 (g) and (h), where further

harpening of the material interfaces has been achieved. 

Figs. 17 and 18 compare the inverted profiles with the tar-

et profile at the x = 0 m, 500 m, and 10 0 0 m cross-sectional

ines of the domain. It is apparent from these figures that the ar-
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bitrary heterogeneity is recovered satisfactorily. Further improve-

ments around the material interfaces can be achieved by using

a finer computational grid with an increased source frequency.

Lastly, Fig. 19 depicts the variation of the response misfit with the

number of iterations. 

6. Conclusions 

We discussed algorithmic improvements to a full-waveform-

based inversion methodology for the reconstruction of the ma-

terial properties of elastic solids when probed by stress waves.

In particular, we focused on three robustifying schemes for al-

leviating the solution multiplicity associated with the underly-

ing inverse problem and for improving parameter reconstruction.

While the regularization factor continuation (RS2), and the source-

frequency continuation scheme (RS3) assisted the optimizer in

narrowing the initial solution space in a systematic manner, the

search-direction biasing scheme (RS1) had the greatest effect in

improving the resolution under joint inversion conditions. The nu-

merical results highlighted the effects of the robustifying schemes,

while the application of the developed inversion process to the

highly heterogeneous and challenging Marmousi2 model resulted

in a reconstructed profile in fairly good agreement with the target

distribution. 
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Appendix A. Inversion process algorithm 

The standard inversion process without robustifying schemes is

summarized in Algorithm 1 . 

Algorithm 1 Inversion process for material profile reconstruction. 

1: procedure MPR ( λo , μo ) � initial guesses

2: Choose ρ, δλ, δμ � e.g., ρ = 0 . 5 , δλ = δμ = 10 −10 

3: Set convergence tolerance t ol � e.g., t ol = 10 −12 

4: k ← 0 � k : iteration counter

5: Set F k ← tol + 1 � F k denotes F( λk , μk )

6: while { F k > tol } do 

7: Solve the state problem for (u , S ) � eq. (1a-2e)

8: Solve the adjoint problem for ( θu , θs ) � eq. (10a-11h)

9: Evaluate the discrete reduced gradients 

10: g λ
k 

← (∇ λL ) k � eq. (19) for TN, eq. (21) for TV

11: g 
μ
k 

← (∇ μL ) k � eq. (20) for TN, eq. (22) for TV

12: Compute the search directions d 

λ
k 

and d 

μ
k 

� eq. (20)

13: αλ ← s λ mean [ d 

λ
k 

] −1 � initial step size for λ

14: αμ ← s μ mean [ d 

μ
k 

] −1 � initial step size for μ

15: while 
{
F k +1 − F k > min 

[
δλαλ(g λ

k 
) T d 

λ
k 
, δμαμ(g 

μ
k 
) T d 

μ
k 

]}
do 

16: αλ ← ραλ if 
[
F k +1 − F k > δλαλ(g λ

k 
) T d 

λ
k 

]
17: αμ ← ραμ if 

[
F k +1 − F k > δμαμ(g 

μ
k 
) T d 

μ
k 

]
18: end while 

19: αλ
k 

← αλ

20: αμ
k 

← αμ

21: Update the material property vectors λk and μk � eq.

(23) 

22: k ← k + 1 

23: end while 

24: end procedure 
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