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SUMMARY

We are concerned with the numerical simulation of wave motion in arbitrarily heterogeneous, elastic,
perfectly-matched-layer-(PML)-truncated media. We extend in three dimensions a recently developed two-
dimensional formulation, by treating the PML via an unsplit-field, but mixed-field, displacement-stress
formulation, which is then coupled to a standard displacement-only formulation for the interior domain, thus
leading to a computationally cost-efficient hybrid scheme. The hybrid treatment leads to, at most, third-order
in time semi-discrete forms. The formulation is flexible enough to accommodate the standard PML, as well
as the multi-axial PML.

We discuss several time-marching schemes, which can be used à la carte, depending on the application: (a)
an extended Newmark scheme for third-order in time, either unsymmetric or fully symmetric semi-discrete
forms; (b) a standard implicit Newmark for the second-order, unsymmetric semi-discrete forms; and (c)
an explicit Runge–Kutta scheme for a first-order in time unsymmetric system. The latter is well-suited for
large-scale problems on parallel architectures, while the second-order treatment is particularly attractive for
ready incorporation in existing codes written originally for finite domains.

We compare the schemes and report numerical results demonstrating stability and efficacy of the proposed
formulations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of elastic waves in unbounded heterogeneous media has important applica-
tions in various fields, such as seismology [1], soil-structure interaction [2], seismic imaging [3],
and site characterization [4]. To keep the computation feasible, one needs to limit the extent of
the computational domain. This entails considering appropriate conditions at the truncation bound-
aries such that, under ideal conditions, the boundaries become invisible to the outgoing waves.
Perfectly-matched-layers (PMLs) appear to be among the best choices for domain truncation owing,
especially, to their ability to handle heterogeneity. From a practical standpoint, implementing PML
in existing codes is also easier than competitive alternatives [5, 6]. The PML is a buffer zone that
enforces attenuation of propagating and evanescent waves. The PML’s properties vary gradually,
from a perfectly matched interface through a progressively attenuative medium to, usually, a fixed
termination at the buffer zone’s end.‡

*Correspondence to: Loukas F. Kallivokas, The Institute for Computational Engineering and Sciences, The University of
Texas at Austin, Austin, TX, USA.

†E-mail: loukas@mail.utexas.edu
‡Other termination conditions are also possible, including local non-reflecting boundary conditions [7, 8].

Copyright © 2014 John Wiley & Sons, Ltd.
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The PML was first introduced by Bérenger for electromagnetic waves [9]. Later, it was interpreted
as a mapping of the physical coordinates onto the complex space, referred to as complex coordinate
stretching [10–12]. The interpretation allowed the further development and adoption of the PML
in elastodynamics [13, 14], for the linearized Euler equations [15], for Helmholtz equations [5], in
poroelasticity [16], and elsewhere.

Bérenger’s original development, and many other early formulations, was based on field-splitting,
which partitions a physical variable into components parallel and perpendicular to the truncation
boundary; this technique alters the structure of the underlying differential equations and results in
a manyfold increase of the number of unknowns. Gedney proposed an unsplit formulation for elec-
tromagnetic waves, citing preservation of the Maxwellian structure, and computational efficiency
among the main advantages [17]. Abarbanel and Gottlieb showed that Bérenger’s split-form is only
weakly well-posed§ and therefore is prone to instability [19]. This motivated the development of
strongly well-posed unsplit formulations [20]; however, it turned out that the dynamical system asso-
ciated with the unsplit form suffers from degeneracy at quiescent state, which renders the scheme
unstable, and further manipulation of the equations is necessary to ensure stability [21].

In elastodynamics, Duru and Kreiss [22] proposed a well-posed discretely stable unsplit formu-
lation and mentioned that the first-order split-form is only weakly hyperbolic [23].¶ Among other
unsplit formulations, we refer to [24–26] where the authors’ motivation stemmed primarily from
exploring alternative forms, rather than address stability. All these developments used finite dif-
ferences for spatial discretization and exploited explicit time-stepping. Among unsplit-field finite
element developments, Basu and Chopra [2] presented an almost displacement-only procedure that
relies on stress histories and needs the evaluation of an internal force vector at every time step, as
is typically carried out in plasticity, via an implicit time-marching scheme based on unsymmetric
matrices. Later, Basu [27] extended this work to three-dimensional problems, using mass-lumping
and explicit time-stepping. Martin et al. [28] developed a computationally efficient procedure that
couples a velocity-stress convolutional PML (CPML) in an ad hoc manner with a displacement-
only formulation in the interior domain for two-dimensional problems. The CPML formulation was
used to circumvent instabilities observed when waves travel along the interface between the PML
and the interior domain, when the standard PML stretching function is used. Recently, Kucukcoban
and Kallivokas [29] developed a symmetric displacement-stress formulation using mixed finite ele-
ments for the PML, coupled with standard displacement-only finite elements for the interior domain,
using the standard Newmark method for time integration. We remark that implicit time-stepping can
become challenging for large-scale three-dimensional problems and should be avoided if possible.

The literature on split-field elastodynamics is rich. This approach is particularly attractive
because, normally, it does not use convolutions or auxiliary variables. However, it almost always
results in using mixed schemes, that is, treating velocity and stress components (or a similar combi-
nation) as unknowns over the entire domain. Table I summarizes key developments in time-domain
elastodynamics based on four categories: split-field or unsplit-field formulation and finite difference
or finite/spectral element implementation.

Differences between various PML formulations are not only due to the split or unsplit formulation
and numerical implementation but also on the choice of coordinate stretching function. The classi-
cal stretching function has been criticized for allowing spurious growths in numerical simulations
in two dimensions, when waves impinge at grazing incidence on the PML interface. These growths
have been loosely attributed to a zero-frequency singularity in the classical stretching function and
have been reportedly alleviated by using a complex frequency-shifted (CFS) stretching function,
which removes the singularity [24]. However the CFS-PML loses its absorptive competence at low
frequencies [38]. Meza-Fajardo and Papageorgiou [37] proposed a multi-axial stretching approach
and demonstrated its successful performance for waves traveling through the PML at grazing inci-
dence as well as for problems involving anisotropy. In [39, 40], it was reported that the multi-axial
perfectly matched layer (M-PML) is not perfectly matched at the interface; however, later on, Meza-
Fajardo and Papageorgiou showed that the M-PML is indeed perfectly matched in Bérenger’s sense

§See [18] for definition of well-posedness and hyperbolicity.
¶Strong hyperbolicity is a desirable property and guarantees well-posedness.
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Table I. PML developments in time-domain elastodynamics.

Split-field Unsplit-field

FD Chew and Liu [13] Wang and Tang [26]
Hastings et al. [30] Drossaert and Giannopoulos [24]
Liu [31] Komatitsch and Martin [25]
Collino and Tsogka [14] Duru and Kreiss [22]

FE/SE Collino and Tsogka [14] Basu and Chopra [2]
Bécache et al. [32] Martin et al. [28]
Festa and Nielsen [33] Basu [27]
Komatitsch and Tromp [34] Kucukcoban and Kallivokas [29]
Cohen and Fauqueux [35]
Festa and Vilotte [36]
Meza-Fajardo and Papageorgiou [37]

FD, finite difference; FE/SE, finite element/spectral element.

and it provides domain truncations that are at least as accurate as the classical PML, when the latter
is stable [41]. In a more recent study, Ping et al. [42] have shown results according to which M-
PML may perform less accurately than the classical PML. Our own experience, both in 2D and 3D
simulations, is also more in accordance with Ping et al. [42]. It also seems that the original M-PML
development is mathematically inconsistent because of the improper definition of the Jacobian of
the transformation. We discuss this issue in Section 7. Herein, we opt for classical stretching func-
tions for their simplicity, satisfactory performance when parametrized carefully, and their accuracy
in low frequencies, which is important in site characterization problems [4]. We also discuss how
our formulation can accommodate the multi-axial stretching through simple modifications.

In this article, we report on the development and parallel implementation of an unsplit-field
displacement-stress PML formulation, using mixed finite elements for the PML, and coupled with
standard displacement-only finite elements in the interior domain for three-dimensional problems
in arbitrary heterogeneous elastic media. This hybrid treatment leads to optimal computational cost
and allows for ready incorporation of the PML in existing standard finite element codes, by simply
assembling matrices corresponding to the PML buffer. Using spectral elements, we render the mass
matrix diagonal and exploit explicit time-stepping via the Runge–Kutta method. We also present
an alternative formulation, which results in a fully symmetric discrete form, at the expense of uti-
lizing an implicit time-marching scheme. We discuss how the standard Newmark scheme can also
be used for time integration. This work builds and improves upon recent developments [29, 43] in
two-dimensional elastodynamics.

2. COMPLEX COORDINATE STRETCHING

In this section, we briefly review the key features of the PML. Part of the material discussed here is
not new; however, it is provided to allow for context and completeness.

2.1. Key idea

The key idea in constructing a PML is based on analytic continuation of solutions of wave
equations. This amounts to mapping the spatial coordinates onto the complex space, using the, so-
called, stretching functions. For instance, 1D outgoing waves propagate according to uout.x; t/ D
e�ik.x�ct/, where k is the wave number and c denotes wave speed. After applying the mapping||

x 7! a.x/C 1
i!
b.x/, we obtain uout

PML.x; t/ D e
�ik.a.x/�ct/e�b.x/=c , where the latter term enforces

spatial attenuation. A similar argument also holds for evanescent waves.
In practice, the PML has a limited thickness (Figure 1). Therefore, reflections (i.e., incoming

waves) develop when outgoing waves hit the rigid boundary of the PML layer. In our 1D example,

||a.x/; b.x/ are positive, monotonically increasing functions of x.
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Figure 1. A PML truncation boundary in the direction of coordinate s.

uinc
PML.x; t/ D e

ik.a.x/Cct/eb.x/=c . And, because b.x/ is positive, monotonically increasing function
of x, where x decreases for incoming waves, reflected waves also get attenuated. Hence, the PML
attenuates both outgoing and incoming waves.

We briefly discuss the principal components required for constructing a PML. Considering
Figure 1, let s denote the coordinate variable normal to the interface of the interior domain with the
PML. For the interior domain, it holds 0 < s < s0, whereas for the PML s0 < s < st ; LPML denotes
the thickness of the PML layer, and ns is the outward unit normal at the interface, pointing away
from the interior domain. The physical coordinate s is mapped (or ‘stretched’) to Qs within the PML
region according to

s 7! Qs D so C

Z s

so

�s.s
0; !/ ds0; (1)

where ! denotes circular frequency and �s is the, so-called, stretching function.
The classical PML results from choosing the stretching function according to

�s.s; !/ D ˛s.s/C
1

i!
ˇs.s/; (2)

where ˛s is the scaling function and stretches the coordinate variable s, whereas ˇs is the attenua-
tion function and enforces the amplitude decay of propagating waves.** For evanescent waves, ˛s
improves amplitude decay by elongating the real coordinate variable s. For the interface to be ‘invis-
ible’ to the waves entering the PML (perfect matching), ˛sjsDs0 D 1 and ˇsjsDs0 D 0. Moreover,
˛s and ˇs are positive, non-decreasing functions of s. Finally, applying the fundamental theorem of
calculus to (1), there results

d Qs

ds
D

d

ds

Z s

so

�s.s
0; !/ ds0 D �s.s; !/: (3)

Hence, we obtain the following derivative rule between the stretched coordinate system and the
physical coordinate system

d.�/

d Qs
D

1

�s.s; !/

d.�/

ds
: (4)

**In our 1D example, we used the notation a.x/ D
R x
0 ˛.x

0/dx0 and b.x/ D
R x
0 ˇ.x

0/dx0.
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The PML governing equations are naturally written in the stretched coordinate system. We
frequently use (4) to express the PML equations in the physical coordinate system.

2.2. Choice of stretching functions

The main requirements for the stretching functions are as follows: (a) perfect matching at the inter-
face; (b) positive non-decreasing variability; and (c) a gradual and smoothly varying profile. The last
requirement is particularly important for numerical discretization, because, for adequate resolution,
a sharply varying profile requires a finer mesh than a smoother profile. A widely adopted form that
satisfies these requirements is given in terms of polynomials, as in

˛s.s/ D 1C ˛o

�
.s � so/ns

LPML

�m
; so 6 s 6 st ; (5a)

ˇs.s/ D ˇo

�
.s � so/ns

LPML

�m
; so 6 s 6 st ; (5b)

where ˛0 and ˇ0 are user-tunable parameters that control amplitude decay and m denotes
polynomial degree.

For one-dimensional problems, before discretization, ˇ0 can be shown to be

ˇ0 D
.mC 1/ cp

2LPML
log

�
1

R

�
; (6)

where R is the amount of reflection from the outer PML boundary and cp is the P-wave velocity.
In practice, however, selecting appropriate values for ˛0 and ˇ0 is not straightforward. The choice
depends on the problem at hand, mesh resolution, and it, typically, needs a few experiments to be
optimized. We remark that the performance of the PML relies heavily on its careful parameterization
[7, 29].

We also worked with the following trigonometric profiles that are smoother than polynomials;
however, we did not observe any compelling improvement.

˛s.s/ D 1C
˛o

2

�
1C sin

�
�

�
js � soj

LPML
�
1

2

���
; so 6 s 6 st ; (7a)

ˇs.s/ D
ˇo

2

�
1C sin

�
�

�
js � soj

LPML
�
1

2

���
; so 6 s 6 st : (7b)

3. THREE-DIMENSIONAL UNSPLIT-FIELD PML

The linear elastic wave equation, in the absence of body forces, can be written as the following
system:

divST D � Ru; (8a)

S D �
�
ruC .ru/T

�
C �.div u/I; (8b)

where (8a) represents conservation of linear momentum and (8b) is the combined constitutive and
kinematic equations; S represents the Cauchy stress tensor, u is the displacement vector, � denotes
mass density of the medium, � and � are the two Lamé parameters, I is the second-order identity
tensor, and a dot .P/ denotes differentiation with respect to time of the subtended variable.

To derive the corresponding PML equations, we first Fourier-transform (8) with respect to the
time variable. Writing the resulting differential equations in the stretched coordinate system affords

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:165–198
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the sought-after spatial decaying property. These equations can then be expressed in the physi-
cal coordinate system by using (4). Finally, exploiting the inverse Fourier transform results in the
corresponding time-domain equations.

3.1. Frequency-domain equations

In this section, we present a PML formulation in the frequency domain. We take the Fourier
transform of (8) with respect to the time variable; there results

div OST D .i!/2� Ou; (9a)

OS D �
h
r OuC .r Ou/T

i
C � .div Ou/ I; (9b)

where a caret (ˆ) denotes the Fourier transform of the subtended variable, and spatial and frequency
dependency of the variables are suppressed for brevity. We focus on (9a) first and express it in the
stretched coordinate system by replacing x; y, and ´ with Qx; Qy, and Q́ , respectively. For clarity, we
use the unabridged notation:

@ OSxx
@ Qx
C
@ OSyx
@ Qy
C
@ OS´x
@ Q́
D .i!/2� Oux; (10a)

@ OSxy
@ Qx
C
@ OSyy
@ Qy
C
@ OS´y
@ Q́
D .i!/2� Ouy ; (10b)

@ OSx´
@ Qx
C
@ OSy´
@ Qy
C
@ OS´´
@ Q́
D .i!/2� Ou´; (10c)

where Sij and ui denote stress tensor and displacement vector, respectively. Equation (10) can be
expressed in the physical (unstretched) coordinate system by using (4); thus, we obtain

1

�x

@ OSxx
@x
C

1

�y

@ OSyx
@y
C

1

�´

@ OS´x
@´
D .i!/2� Oux; (11a)

1

�x

@ OSxy
@x
C

1

�y

@ OSyy
@y
C

1

�´

@ OS´y
@´
D .i!/2� Ouy ; (11b)

1

�x

@ OSx´
@x
C

1

�y

@ OSy´
@y
C

1

�´

@ OS´´
@´
D .i!/2� Ou´: (11c)

Multiplying (11) by �x�y�´ results in

div
�
OSTƒ

	
D .i!/2� �x�y�´ Ou; (12)

where the stretching tensor ƒ is defined as

ƒ D

2
4 �y�´ 0 0

0 �x�´ 0

0 0 �x�y

3
5 D

2
4 ˛y˛´ 0 0

0 ˛x˛´ 0

0 0 ˛x˛y

3
5

C
1

.i!/

2
4 ˛yˇ´ C ˛´ˇy 0 0

0 ˛xˇ´ C ˛´ˇx 0

0 0 ˛xˇy C ˛yˇx

3
5

C
1

.i!/2

2
4 ˇyˇ´ 0 0

0 ˇxˇ´ 0

0 0 ˇxˇy

3
5 D ƒe C 1

i!
ƒp C

1

.i!/2
ƒw :

(13)
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We remark that within the interior domain, ƒe reduces to the identity tensor, whereas ƒp and
ƒw vanish identically. Substituting (13) and (2) in (12), rearranging and grouping similar terms,
results in

div
�
OSTƒe C

1

i!
OSTƒp C

1

.i!/2
OSTƒw

�
D �

�
.i!/2a OuC i!b OuC c OuC

d

i!
Ou
�
; (14)

where

a D ˛x ˛y ˛´;

b D ˛x ˛y ˇ´ C ˛x ˛´ ˇy C ˛y ˛´ ˇx;

c D ˛x ˇy ˇ´ C ˛y ˇ´ ˇx C ˛´ ˇy ˇx;

d D ˇx ˇy ˇ´:

(15)

Multiplying (14) by i!, we obtain

div
�
i! OSTƒe C OSTƒp C

1

i!
OSTƒw

�
D �

�
.i!/3a OuC .i!/2b OuC i!c OuC d Ou

�
: (16)

Next, we focus our attention on the combined constitutive and kinematic Equations (9b). By writ-
ing (9b) in the stretched coordinate system and by using (4) to express it in the physical coordinate
system, there results

OS D �

8̂<
:̂.r Ou/

2
64

1
�x

0 0

0 1
�y

0

0 0 1
�´

3
75C

2
64

1
�x

0 0

0 1
�y

0

0 0 1
�´

3
75 .r Ou/T

9>=
>;

C �

�
1

�x

@ Oux

@x
C

1

�y

@ Ouy

@y
C

1

�´

@ Ou´

@´

�
I:

(17)

Multiplying (17) by �x�y�´ results in

�x�y�´ OS D �
h
r OuƒCƒ.r Ou/T

i
C � div .ƒ Ou/ I; (18)

where the stretching tensor ƒ is defined in (13). Multiplying (18) by .i!/2 and using (13) and (2),
rearranging and grouping similar terms, we obtain

.i!/2a OS C i!b OS C c OS C 1

i!
d OS D �.i!/2

h
.r Ou/ƒe Cƒe .r Ou/

T
i

C � i!
h
.r Ou/ƒp Cƒp .r Ou/

T
i
C �

h
.r Ou/ƒw Cƒw .r Ou/

T
i

C �.i!/2 div .ƒe Ou/ I C � i! div


ƒp Ou

�
I C � div .ƒw Ou/ I:

(19)

Equations (16) and (19) constitute the corresponding frequency-domain momentum, and combined
constitutive and kinematic equations in the stretched coordinate system, respectively. They possess
the desired spatial decaying property.

3.2. Time-domain equations

In this section, we apply the inverse Fourier transform to (16) and (19) to obtain the correspond-
ing time-domain equations. This operation is rather simple because of the specific choice of the
stretching function (2). We use

F�1
�
Og.!/

i!

�
D

Z t

0

g.�/d�; (20)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:165–198
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where F�1 denotes the inverse Fourier-transform operator†† and g.t/ is a sufficiently regular
function. By applying the inverse Fourier transform to (16) and (19), we obtain

div
�
PSTƒe C STƒp C

�Z t

0

ST d�
�
ƒw

�
D � .a«uC b RuC c PuC du/ ; (21a)

a RS C b PS C cS C d
�Z t

0

Sd�
�

D �
h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp Cƒp .r Pu/
T C .ru/ƒw Cƒw .ru/T

i
C �

�
div .ƒe Ru/C div



ƒp Pu

�
C div.ƒwu/

�
I: (21b)

The set of integro-differential equations (21) can be expressed as a set of only partial differ-
ential equations, upon introducing auxiliary variable S.x; t /, which may be interpreted as stress
history [43, 44]:

S.x; t / D
Z t

0

S.x; �/d�: (22a)

Clearly,

PS.x; t / D S.x; t /; RS.x; t / D PS.x; t /; «S.x; t / D RS.x; t /: (22b)

By substituting (22) in (21), we obtain

div
�
RSTƒe C PSTƒp C STƒw

	
D � .a«uC b RuC c PuC du/ ; (23a)

a«SC b RSC c PSC dS

D �
h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp Cƒp .r Pu/
T C .ru/ƒw Cƒw .ru/T

i
C �

�
div .ƒe Ru/C div



ƒp Pu

�
C div .ƒwu/

�
I: (23b)

Equations (23) constitute the corresponding time-domain PML momentum, and combined
constitutive and kinematic equations.

4. HYBRID FINITE ELEMENT IMPLEMENTATION

In this section, we discuss an efficient finite element technique for transient elastodynamics in PML-
truncated domains. We use a method-of-lines approach, where we exploit a Galerkin method for
spatial discretization, thus obtaining a third-order, continuous-in-time system of ordinary differential
equations. Various methods exist for time integration of such systems. We discuss three techniques
that seem suitable in practical applications.

4.1. Spatial discretization

The PML Equation (23) can be used both for the interior domain and the PML buffer zone, because
by construction, they reduce to (8) in the interior domain. This unified treatment amounts to con-
sidering stress and displacement components as unknowns in both the interior domain and the PML
buffer zone. While feasible in principle, as is carried out in most PML formulations to date, we
opt for a hybrid treatment, originally developed in [29] for 2D problems, where the interior domain

††In general, F�1
h
Og.!/
i!

i
D
R t
0 g.�/d� �� Og.0/ı.!/, but it can be shown that because, by construction, the overall

development excludes ! D 0, the inverse transform reduces to (20) [43].

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:165–198
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Figure 2. The PML-truncated semi-infinite domain.

is treated with a standard displacement-only formulation, coupled with the PML equations in the
buffer zone. This approach results in substantial reduction in computational cost compared with
mixed formulations cast over the entire domain. It also makes the modification of existing interior-
domain elastodynamic codes straightforward, because one needs to only add the PML-related forms,
whereas for the most part, the general structure of such codes remains intact.

Accordingly, find u.x; t / in �RD [ �PML and S.x; t / in �PML (see Figure 2 for domain and
boundary designations), where u and S reside in appropriate function spaces and

div
°
�
h
r PuC .r Pu/T

i
C � .div Pu/ I

±
C Pb D �«u in�RD � J;

(24a)

div
�
RSTƒe C PSTƒp C STƒw

	
D � .a«uC b RuC c PuC du/ in�PML � J;

(24b)

a«SC b RSC c PSC dS

D �
h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp Cƒp .r Pu/
T C .ru/ƒw Cƒw.ru/T

i
C �

�
div .ƒe Ru/C div



ƒp Pu

�
C div.ƒwu/

�
I in�PML � J:

(24c)

The system is initially at rest and subject to the following boundary and interface conditions:°
�
h
r PuC .r Pu/T

i
C � .div Pu/ I

±
nC D Pgn on�RD

N � J; (25a)�
RSTƒe C PSTƒp C STƒw

	
n� D 0 on�PML

N � J;

(25b)

u D 0 on�PML
D � J;

(25c)

uC D u� on� I � J; (25d)°
�
h
r PuC .r Pu/T

i
C � .div Pu/ I

±
nC C

�
RSTƒe C PSTƒp C STƒw

	
n� D 0 on� I � J; (25e)

where temporal and spatial dependencies are suppressed for brevity; �RD denotes the interior (reg-
ular) domain, �PML represents the region occupied by the PML buffer zone, � I is the interface
boundary between the interior and PML domains, �RD

N and �PML
N denote the free (top surface)

boundary of the interior domain and PML, respectively, and J D .0; T 	 is the time interval of
interest. In (24a), b denotes body force per unit volume.

We remark that the temporal differentiation in (24a) is necessary for the boundary integrals that
result from the weak form of (24a) and (24b) to cancel out; this is manifested in (25e) and enforces
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the balance of tractions at the interface of the interior domain and the PML. Moreover, (25d) implies
continuity of displacements at the interface; (25a) specifies tractions .gn/ on the top surface of the
interior domain, and (25b) implies traction-free boundary condition on the top PML surface. We
consider fixed boundaries for the PML on the sides and at the bottom, as indicated by (25c); other
possibilities also exist, but they seem to have little influence on performance [7, 8].

Next, we seek a weak solution, corresponding to the strong form of (24) and (25), in the Galerkin
sense. Specifically, we take the inner products of (24a) and (24b) with (vector) test function w.x/
and integrate by parts over their corresponding domains. Incorporating (25d)–(25e) eliminates the
interface boundary terms and results in (26a). Next, we take the inner product of (24c) with (tensor)
test function T.x/; there results (26b). There are other possibilities for deriving a weak form that
corresponds to the strong form (24) and (25). We refer in [45] for further details.

Accordingly, find u 2 H1.�/ � J and S 2 L2.�/ � J, such thatZ
�RD

rw W
°
�
h
r PuC .r Pu/T

i
C � .div Pu/ I

±
d�C

Z
�PML

rw W
�
RSTƒe C PSTƒp C STƒw

	
d�

C

Z
�RD

w � �«u d�C
Z

PML

w � � .a«uC b RuC c PuC du/ d� D
Z
�RD
N

w � Pgn d� C
Z
�RD

w � Pb d�;

(26a)Z
�PML

T W
�
a«SC b RSC c PSC dS

	
d�

D

Z
�PML

T W �
h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp Cƒp .r Pu/
T C .ru/ƒw Cƒw.ru/T

i

C T W �
�
div .ƒe Ru/C div



ƒp Pu

�
C div.ƒwu/

�
I d�; (26b)

for every w 2 H1.�/ and T 2 L2.�/, where gn 2 L2.�/ � J and b 2 L2.�/ � J. Function spaces
for scalar-valued .v/, vector-valued .v/, and tensor-valued .A/ functions are defined as

L2.�/ D

²
v W

Z
�

jvj2dx <1
³
; (27a)

L2.�/ D
®
v W v 2 .L2.�//3

¯
; (27b)

L2.�/ D
®
A W A 2 .L2.�//3�3

¯
; (27c)

H 1.�/ D

²
v W

Z
�



jvj2 C jrvj2

�
dx <1; vj�PML

D
D 0

³
; (27d)

H1.�/ D
®
v W v 2 .H 1.�//3

¯
: (27e)

In order to resolve (26) numerically, we use standard finite-dimensional subspaces. Specifically,
we introduce finite-dimensional subspaces„h � H1.�/ and ‡ h � L2.�/, with basis functions ˆ
and ‰ , respectively. We then approximate u.x; t / with uh.x; t / 2 „h� J and S.x; t / with Sh.x; t / 2
‡ h � J, as detailed in (28)

uh.x; t / D

2
64
ˆT.x/ ux.t/

ˆT.x/ uy.t/

ˆT.x/ u´.t/

3
75 ; (28a)

Sh.x; t / D

2
64
‰T.x/ Sxx.t/ ‰T.x/ Sxy.t/ ‰T.x/ Sx´.t/

‰T.x/ Syx.t/ ‰T.x/ Syy.t/ ‰T.x/ Sy´.t/

‰T.x/ S´x.t/ ‰T.x/ S´y.t/ ‰T.x/ S´´.t/

3
75 : (28b)
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Figure 3. Partitioning of submatrices in (31b).

In a similar fashion, we approximate the test functions, w.x/ with wh.x/ 2 „h and T.x/ with
Th.x/ 2 ‡ h; therefore,

wh.x/ D

2
4wTxˆ.x/

wTyˆ.x/
wT´ˆ.x/

3
5 ; (29a)

Th.x/ D

2
4 TTxx‰.x/ TTxy‰.x/ TTx´‰.x/

TTyx‰.x/ TTyy‰.x/ TTy´‰.x/
TT´x‰.x/ TT´y‰.x/ TT´´‰.x/

3
5 : (29b)

Incorporating (28)–(29) into (26) results in the following semi-discrete form:

M«dC C RdCK PdCGd D Pf; (30)

where spatial and temporal dependencies are suppressed for brevity and system matrices,
M;C;K;G, and vectors d and f, are defined as

M D
�
NMRD C NMa 0

0 Na

�
; C D

�
NMb

NAeu
� NAT

el
Nb

�
; (31a)

K D
�
NKRD C NMc

NApu
� NAT

pl
Nc

�
; G D

�
NMd

NAwu
� NAT

wl
Nd

�
; (31b)

d D
�

U †
�T
; f D

�
NfRD 0

�T
; (31c)

where subscript RD refers to the interior (regular) domain and MRD;KRD, and fRD correspond to
the standard mass matrix, stiffness matrix, and vector of nodal forces in the interior domain, respec-
tively, and a bar indicates their extension to encompass all the displacement degrees-of-freedom‡‡;
U and † is the vector of nodal displacements and stresses, respectively. Moreover, U is partitioned
such that its first entries belong solely to the interior domain, followed by those on the interface
boundary between the interior domain and the PML buffer, and finally those that are located only
within the PML. The rest of the submatrices in (31) correspond to the PML buffer zone (see Figure 3
for a schematic partitioning and Appendix A.1 for submatrix definition ; the dotted line in Figure 3
separates displacement from stress degrees-of-freedom).

We remark that the upper-left corner blocks of M and K correspond to the mass and stiffness
matrices of a standard displacement-only formulation, as depicted in Figure 3. This implies that in
order to accommodate PML capability into existing codes, one needs to account for the submatrices
on the lower-right blocks of M;C;K; and G.

The matrix M has a block-diagonal structure ((A.2a)–(A.2c)); thus, it can be diagonalized if one
employs spectral elements, which then enables explicit time integration of (30): this is discussed in
Section 5.

‡‡This is merely a formalism to arrive at a unified, yet informative, matrix representation. For instance, we take KRD and
extend it by adding zero entries corresponding to the U components of the PML buffer. This makes the matrix–vector
operation NKRD U meaningful, where, now, U contains the displacement degrees-of-freedom of the entire domain.
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Notice that the semi-discrete form (30) is not symmetric. In fact, a block-diagonal structure for
M comes at the price of losing symmetry. Alternatively, one may preserve symmetry of the matrices
in the semi-discrete form at the expense of losing the block-diagonal form of M and thus the ability
for explicit time integration. We discuss this alternative formulation in Section 6.

4.2. Discretization in time

In this section, we discuss various possibilities of integrating the semi-discrete form (30) in time.
One may apply a time-marching scheme directly to (30), which is third-order in time, or exploit a
more common scheme by first expressing (30) as a second-order or first-order in time system, via
the introduction of auxiliary vectors.

Time integration can be accomplished by working with either (30) or one of its second-order or
first-order system counterparts, or, alternatively, one may (analytically) integrate (30) in time first,
to obviate the temporal differentiation of the forcing vector. Assuming the system is initially at rest,
there results

M RdC C PdCKdCG Nd D f; (32a)

Nd D
Z t

0

d.�/jPML d�; (32b)

where Nd is the vector of history terms. Equation (32) can be integrated via an extended Newmark
method as outlined in Appendix B.2. The scheme is implicit and requires matrix factorization.

We remark that Nd contains displacement and stress degrees-of-freedom that are associated with
the PML buffer only; therefore, its size is much smaller than d (Figure 3).

Alternatively, (32) can be expressed as a second-order system

M RdC C PdCKdCG Nd D f; (33a)
PNd D djPML: (33b)

In matrix notation, (33) reads

�
M 0
0 0

�" Rd
RNd

#
C

�
C 0
0 I

�" Pd
PNd

#
C

�
K G
�I 0

� �
d
Nd

�
D

�
f
0

�
; (34)

where now a standard Newmark scheme may be utilized to integrate (34); or alternatively

�
M 0
0 I

�" Rd
RNd

#
C

�
C 0
�I 0

�" Pd
PNd

#
C

�
K G
0 0

� �
d
Nd

�
D

�
f
0

�
; (35)

where the resulting system can be integrated explicitly, provided that M is diagonal, as we discuss
in Section 5.

One may also express (32) as a first-order system

d

dt

2
4 x0

x1
Mx2

3
5 D

2
4 0 I 0

0 0 I
�G �K �C

3
5
2
4 x0

x1
x2

3
5C

2
4 0

0
f

3
5 ; (36)

where x0 D Nd; x1 D d, and x2 D Pd. Various standard explicit schemes could then be used, provided
that M is diagonal [46]. Here, we favor an explicit fourth-order Runge–Kutta (RK-4) method. Based
on various numerical experiments we performed, we found out that, for the RK-4, 
t < 0:8�x

cp
ensures stability on uniform grids, where 
x is the minimum distance between two grid points and
cp is the maximum compression wave velocity over an element. If, for a certain choice of time
step, a simulation with displacement-only finite elements is stable, then the associated simulation

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 101:165–198
DOI: 10.1002/nme



TIME-DOMAIN HYBRID PML FORMULATIONS 177

Table II. Legendre–Gauss–Lobatto quadrature rule.

Element Location of nodes Location of integration points Weights

Quadratic ˙1:0 ˙1:0 1/3
0.0 0.0 4/3

involving the PML is also stable with the same time step. In other words, the introduction of the
PML does not impose a more onerous time step choice than an interior elastodynamics problem
would require.

5. SPECTRAL ELEMENTS AND EXPLICIT TIME INTEGRATION

Hyperbolic initial value problems are, in general, advanced in time by using explicit methods [18,
47]. This obviates the need for solving a large linear system, typically encountered in implicit
schemes. Moreover, explicit schemes naturally lend themselves to parallel computation, which is
essential when dealing with large-scale simulations in three-dimensional problems. In this section,
we discuss how the matrix M in the semi-discrete form (30) may be diagonalized, thus enabling
explicit time-stepping via the techniques discussed in Section 4.2.

The simplest way of obtaining (discrete) diagonal mass-like matrices is by mass-lumping, as
was done in [27, 48] where the authors used linear elements.§§ To achieve high-order accuracy,
however, one may use nodal spectral elements, where numerical integration (quadrature rule) is
based on the same nodes that polynomial interpolation is carried out [49, 50]. This results in
(discrete) diagonal mass-like matrices, which are high-order accurate, depending on the degree
of the interpolating polynomial. Herein, we use quadratic hexahedral elements (27 noded) with
Legendre–Gauss–Lobatto quadrature rule (Table II).

An m point Legendre–Gauss–Lobatto rule integrates polynomials of degree up to and includ-
ing 2m�3, exactly [49]. However, to compute mass-like matrices, one needs to integrate terms
with ˆˆT -like components, where ˆ is the vector of Lagrange interpolating polynomials
(Appendix A.1). Having m interpolation nodes results in polynomials of degree m�1. The tensor
products then involve terms of degree 2m�2; thus, the approach relies on under-integration in order
to return a (discrete) diagonal mass-like matrix. Herein, we use the Legendre–Gauss–Lobatto rule
to compute all the submatrices presented in (31).

We remark that integration of mass-like matrices must be carried out consistently. This means
that the same quadrature rule must be used to compute MRD;Mi ;Ni ; i D a; b; c; d in (31), thus
rendering all these matrices diagonal. Choosing a scheme that diagonalizes the mass-like matrix M
in (31), whether done by conventional mass-lumping or via spectral elements, while not applying
the same scheme uniformly to all mass-like matrices, will result in instabilities, as it has also been
reported in [27, 51].

6. A SYMMETRIC FORMULATION

In Section 3, we discussed a non-symmetric PML formulation that can be integrated explicitly
in time. In this section, we discuss an alternative formulation that results in a symmetric semi-
discrete form, which would require an implicit time-integration scheme due to a non-diagonal mass-
like matrix. The key difference with the Section 3 formulation is the handling of the combined
constitutive and kinematic equations. To this end, we keep the equilibrium equation in (8a) intact
but express (8b) in a different form.

§§By contrast to classical Galerkin finite elements, a finite difference formulation automatically yields diagonal mass-like
matrices; see [46] for instance.
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Similar to what was performed in [52], we start with the constitutive and kinematic equations in
the time domain

S D CŒE 	; (37a)

E D 1

2

�
ruC .ru/T

�
; (37b)

where E is the strain tensor and C is the fourth-order constitutive tensor. For an isotropic medium,
CŒE 	 D 2�E C �.trE/I. Taking the Fourier transform of (37), there results

OS D C
h
OE
i
; (38a)

OE D 1

2

h
r OuC .r Ou/T

i
: (38b)

By writing (38b) in the stretched coordinate system and by using (4), we obtain

OE D 1

2

8̂<
:̂.r Ou/

2
64

1
�x

0 0

0 1
�y

0

0 0 1
�´

3
75C

2
64

1
�x

0 0

0 1
�y

0

0 0 1
�´

3
75 .r Ou/T

9>=
>; : (39)

Multiplying (39) by �x�y�´ results in

�x�y�´ OE D
1

2

h
.r Ou/ƒCƒ.r Ou/T

i
: (40)

By multiplying (40) by .i!/2 and by using (13) and (2), we obtain

.i!/2a OE C i!b OE C c OE C 1

i!
d OE D 1

2
.i!/2

h
.r Ou/ƒe Cƒe .r Ou/

T
i

C
1

2
i!
h
.r Ou/ƒp Cƒp .r Ou/

T
i

C
1

2

h
.r Ou/ƒw Cƒw .r Ou/

T
i
:

(41)

Equation (41) constitutes the corresponding frequency-domain kinematic equation in the
stretched coordinate system. Taking the inverse Fourier transform of (38a) and (41), there results

S D CŒE 	; (42a)

a RE C b PE C cE C d
�Z t

0

Ed�
�
D
1

2

h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp

Cƒp .r Pu/
T C .ru/ƒw Cƒw.ru/T

i
:

(42b)

By combining the resulting constitutive Equation (42a) with the kinematic Equation (42b) and by
using the auxiliary variables introduced in (22), we obtain

D
h�
a«SC b RSC c PSC dS

	i
D
1

2

h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp

Cƒp .r Pu/
T C .ru/ƒw Cƒw.ru/T

i
;

(43)
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where D is the compliance tensor .E D DŒS	/. Equation (43) constitutes the PML combined
constitutive and kinematic equations, which is equivalent to (23b).

Next, similar to what we did in Section 4.1, we take the inner product of (43) with (tensor) test
function T.x/ 2 L2.�/; there results

Z
�PML

T W D
�
a«SC b RSC c PSC dS

	
d�

D
1

2

Z
�PML

T W
h
.r Ru/ƒe Cƒe .r Ru/

T C .r Pu/ƒp Cƒp .r Pu/
T C .ru/ƒw Cƒw.ru/T

i
d�:

(44)
Upon discretization of (26a) and (44) via (28)-(29), we obtain a semi-discrete form

Ms
«dC Cs RdCKs

PdCGsd D Pf; (45)

with the following definition for system matrices:

Ms D

�
NMRD C NMa 0

0 �Na

�
; Cs D

�
NMb
NAe

NATe �Nb

�
; (46a)

Ks D

�
NKRD C NMc

NAp
NATp �Nc

�
; Gs D

�
NMd

NAw
NATw �Nd

�
; (46b)

d D
�

U †
�T
; f D

h
NfRD 0

T
i
; (46c)

where a bar denotes matrix extension to encompass all the displacement degrees-of-freedom;
Mi ; i D a; b; c; d are PML matrices defined in (A.2b), and Ni ; i D a; b; c; d;Ai ; i D e; p;w

are defined in (A.7) and (A.8), respectively. Moreover, similar to what we did in Section 4.2, (45)
can be expressed similarly to (32) by taking into account (32b) therefore obviating the temporal
differentiation of the forcing term:

Ms
RdC Cs PdCKsdCGs

Nd D f: (47)

System matrices defined in (46a)–(46b) are now symmetric and indefinite by contrast to (31a)–
(31b). They can become positive definite if one multiplies their lower blocks by a minus sign, at the
expense of losing symmetry. We refer to [29, 53] for details.

We remark that Na in M is a block penta-diagonal matrix; this entails an implicit time-integration
scheme for the semi-discrete form. The extended Newmark method discussed in Section 4.2 could
then be used for time-stepping, which necessitates factorization of a symmetric matrix.

7. GENERALIZATION FOR M-PML

The aforementioned derivations are based on using the classical stretching function (2), where
stretching is enforced only in the direction perpendicular to the PML interface. It has been reported
that, in two dimensions and under certain parameterizations, this stretching function creates spurious
growths when waves travel along the interface, thus leading to numerical instability. In an attempt
to stabilize the PML (in 2D), Meza-Fajardo and Papageorgiou [37] proposed coordinate stretching
in all directions within the PML buffer, leading to the, so-called, M-PML.

Herein, we show that by making minimal modifications, our framework can also accommodate
the M-PML. We focus on the ‘right’ PML buffer zone first, that is, the volume contained in x0 6
x 6 xt (see Figure 1 with s replaced by x); extending the ideas to the zones where two or three
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layers intersect is straightforward and can be accomplished by using superposition. We stretch the
physical coordinates according to

Qx D x0 C

Z x

x0

�
˛x.x

0/C
1

i!
ˇx.x

0/

�
dx0; (48a)

Qy D y0 C

Z y

y0

�
˛y.x/C

1

i!
ˇy.x/

�
dy0; (48b)

Q́ D ´0 C

Z ´

´0

�
˛´.x/C

1

i!
ˇ´.x/

�
d´0: (48c)

where ˛y ; ˛´; ˇy , and ˇ´ are functions of x only and are defined as

˛y.x/ D 1C %˛o

�
.x � xo/nx

LPML

�m
; ˇy.x/ D %ˇx.x/; (49a)

˛´.x/ D 1C %˛o

�
.x � xo/nx

LPML

�m
; ˇ´.x/ D %ˇx.x/; (49b)

where % is a proportionality constant and nx is the outward unit normal at the interface, similar to
ns in Figure 1; ˛x and ˇx are defined in (5). We remark that ˛y ; ˛´; ˇy , and ˇ´ would have been
identically zero in the right buffer had we used the classical stretching. Applying the fundamental
theorem of calculus to (48) results in

�x WD
@ Qx

@x
D ˛x.x/C

1

i!
ˇx.x/; (50a)

�y WD
@ Qy

@y
D ˛y.x/C

1

i!
ˇy.x/; (50b)

�´ WD
@ Q́

@´
D ˛´.x/C

1

i!
ˇ´.x/: (50c)

These are the stretching functions the authors used in [41]. However, the definition of the stretched
gradient operator in Equation (3) in [41] requires additional terms, which the authors had not
included. For example, the derivative with respect to Qx should read

@. /

@ Qx
D
@. /

@x

@x

@ Qx
C
@. /

@y

@y

@ Qx
C
@. /

@´

@´

@ Qx
(51a)

D
1

�x

@. /

@x
�
�yx

�x�y

@. /

@y
�
�´x

�x�´

@. /

@´
; (51b)

instead of the expression given in [41], which reads

@. /

@ Qx
D

1

�x

@. /

@x
: (52a)

In (51), the cross-derivative terms are defined as

�yx WD
@ Qy

@x
D

�
@

@x
˛y.x/C

1

i!

@

@x
ˇy.x/

�
.y � y0/; (53a)

�´x WD
@ Q́

@x
D

�
@

@x
˛´.x/C

1

i!

@

@x
ˇ´.x/

�
.´ � ´0/: (53b)

In other words, it seems that in [37, 41], the authors have not accounted properly for the
Jacobian. Thus, there are at least two possible forms of the M-PML: the uncorrected form in [37,
41] and the corrected form, which accounts for the cross-derivatives. Interestingly, the numerical
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experiments we performed in two dimensions with the corrected form yielded small but non-
negligible reflections from the interface. By contrast, the uncorrected form yielded better results,
despite its unsound mathematical foundation. This has led us to adopt the approach taken in [37,
41]; accordingly, the equation pertaining to the conservation of linear momentum in the stretched
coordinate system becomes

div
�
OSTƒ

	
� OST divƒ D .i!/2� �x�y�´ Ou; (54)

which results in the following strong form:

div
�
RSTƒe C PSTƒp C STƒw

	
�
�
RST divƒe C PST divƒp C ST divƒw

	
D � .a«uC b RuC c PuC du/ :

(55)

The structure of the formulation pertaining to the combined constitutive and kinematic equation
in the stretched coordinate system remains unaltered. Hence, for accommodating the M-PML, one
only needs to replace (24b) in the strong form of the equations with (55), which, in turn, changes
the definition of submatrices Aeu;Apu, and Awu in (31). The new definition of these submatrices
for the M-PML case is given in Appendix A.3.

8. NUMERICAL EXPERIMENTS

We present three numerical experiments to test the accuracy and efficacy of our hybrid formula-
tion. The first example involves a homogeneous half-space; the second one is a horizontally layered
medium with an ellipsoidal inclusion. The last example compares various formulations discussed
in Sections 4.2 and 6. We compare our results against an enlarged domain¶¶ solution with fixed
boundaries, obtained via a standard displacement-only formulation, which may be viewed as a ref-
erence solution. Because of the fixed boundaries of the enlarged domain model, reflection occurs at
these boundaries; hence, we limit the comparison time up to the arrival of the reflected waves to the
regular domain.

In the first two examples, we apply a surface traction on the medium, with a Ricker pulse time
signature, defined as

Tp.t/ D
.0:25u2 � 0:5/e�0:25u

2
� 13e�13:5

0:5C 13e�13:5
with 0 6 t 6 6

p
6

!r
; (56)

such that

u D !r t � 3
p
6; (57)

where !r.D 2�fr/ denotes the characteristic central circular frequency of the pulse. Here, we take
fr D 15 Hz, and the load has an amplitude of 1 kPa. The pulse time history and its corresponding
Fourier spectrum are shown in Figure 4.

In order to quantify the performance of our PML formulation, we consider two metrics: (a) time
history comparisons at selected nodes via evaluation of a time-dependent Euclidean norm of the
error, relative to the reference solution; and (b) decay of the total energy within the regular domain.

We define the time-dependent Euclidean norm of the relative error at a point x 2 �RD as

e.x; t / D
ku.x; t / � uED.x; t /k2

max
t
kuED.x; t /k2

; (58)

where uED.x; t / represents the enlarged domain solution and the Euclidean norm of a vector
u.x; t / D Œux.x; t /; uy.x; t /; u´.x; t /	T is defined as

ku.x; t /k2 D
q
.ux.x; t //

2 C


uy.x; t /

�2
C .u´.x; t //

2: (59)

¶¶Denoted by�ED, such that�RD � �ED.
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Figure 4. Ricker pulse time history and its Fourier spectrum.

The energy introduced into the system through the loading is carried via waves, which then enter
the PML buffer and attenuate. Therefore, an effective PML ought to result in the rapid decay of
energy. The total energy of the system can be computed at any time via

Et .t/ D
1

2

Z
�RD

�.x/
�
PuT.x; t / Pu.x; t /

�
d�C

1

2

Z
�RD

�
� T.x; t / �.x; t /

�
d�; (60)

where Pu denotes the velocity vector, and � and � are stress and strain vectors, respectively. We
compute and compare energy only within the regular domain. Moreover, Et .t/ can also be used
as a stability indicator because one expects that the total energy decays monotonically for a stable
formulation.

8.1. Homogeneous media

We consider a homogeneous half-space with shear wave velocity cs D 500 m/s, Poisson’s ratio
� D 0:25, and mass density � D 2000 kg=m3, which, after truncation, is reduced to a cubic compu-
tational domain of length and width 100 m � 100 m and 50 m depth. A 12.5-m thick PML is placed
at the truncation boundaries, as shown in Figure 5. Two excitations are considered: a vertical stress
load (vertical excitation) and a horizontal traction along the x-axis (horizontal excitation). The exci-
tations have the Ricker pulse temporal variation (Figure 4) and are applied on the surface of the
medium over a region (�1:25 m 6 x; y 6 1.25 m). We carry out the simulation for each excitation
separately. The interior and PML domains are discretized by quadratic hexahedral spectral elements
(i.e., 27-noded bricks and quadratic–quadratic pairs of approximation for displacement and stress
components in the PML) of size 1.25 m. For the PML parameters, we choose ˛o D 5; ˇo D 866 s�1,
and a quadratic profile for the attenuation functions, that is, m D 2. Using the fourth-order explicit
Runge–Kutta method, discussed in Appendix B.1, with a time step of 
t D 0:0006 s, we compute
the response for 2 s using the hybrid formulation corresponding to (36).

We also compute a reference solution, via a standard displacement-only formulation, for an
enlarged domain of size 440 m � 440 m � 220 m, with fixed boundaries, using the same element
type and size discussed earlier. For this example, P-wave velocity is cp D 866 m/s. Therefore, it
takes 0.45 s for the P-wave generated by the stress load, which is applied at the center of the sur-
face, to hit the fixed boundaries and return to the regular domain. We use the fourth-order explicit
Runge–Kutta method, with 
t D 0:0006 s for time-stepping and compute the response for 0.45 s.
Table III summarizes the discretization details of the two considered models.||||

||||We developed a code in Fortran, using Portable, PETSc [54] to facilitate parallel implementation.
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Figure 5. PML-truncated semi-infinite homogeneous media.

Table III. Discretization details of the hybrid PML and enlarged
domain models.

Elements Nodes Unknowns

Hybrid PML 500,000 4,080,501 24,228,426
Enlarged domain 21,807,104 175,449,825 521,884,704

Figure 6. Snapshots of total displacement taken at t D 0:111 s, 0.219 s (vertical excitation).

Figure 6 displays snapshots of the total displacement at two different times for the vertical exci-
tation. The left figure shows waves at an evolving stage, while the figure on the right demonstrates
absorption of waves in the PML region. Figure 7 shows the corresponding wave motion for the
horizontal excitation. No discernible reflections can be observed from the PML interface nor any
residuals from the fixed-end boundaries, indicating satisfactory performance of the PML.

We compare time histories of the hybrid PML formulation against the reference solution at
selected points. The location of these points are summarized in Table IV; the maximum relative
error at each of these sampling points, computed using (58), is presented in the fifth and the sixth
column, for the vertical and horizontal excitations, respectively. The relative error is very small and
demonstrates the efficacy and success of our approach.

Figures 8 and 9 display comparison of the two responses, due to the vertical and horizontal excita-
tion, at various sampling points. The agreement is excellent; the PML has effectively absorbed waves
with practically no reflections. The response is causal, effectively dies out at around t D 0:35 s at
all the considered points, and is free from spurious reflections.

Figure 10 shows the normalized error time history (58) due to the vertical excitation for two dis-
tinct locations: sp3 and sp8. Figure 11 shows the corresponding error time history for the horizontal
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6e-50
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Figure 7. Snapshots of total displacement taken at t D 0:147 s, 0.219 s (horizontal excitation).

Table IV. Relative error at sampling points between hybrid PML and enlarged domain solutions.

Sample x y ´ Error (homogeneous) Error (homogeneous) Error (heterogeneous)
point Vertical excitation Horizontal excitation Vertical excitation

sp1 0 0 0 1:17 � 10�12 8:77 � 10�13 4:61 � 10�10

sp2 C50 0 0 2:52 � 10�8 2:34 � 10�8 6:07 � 10�7

sp3 C50 0 �25 2:89 � 10�9 4:12 � 10�8 2:87 � 10�6

sp4 C50 0 �50 1:46 � 10�7 1:42 � 10�7 7:03 � 10�6

sp5 0 0 �50 9:86 � 10�9 2:51 � 10�9 1:41 � 10�5

sp6 C50 C50 0 3:26 � 10�7 2:16 � 10�7 1:86 � 10�6

sp7 C50 C50 �25 5:50 � 10�8 1:18 � 10�7 6:72 � 10�6

sp8 C50 C50 �50 5:08 � 10�7 5:25 � 10�7 6:44 � 10�6

excitation. Among all the considered locations, sp8 has the highest error, which is only 5:08� 10�7

for the vertical excitation and 5:25 � 10�7 for the horizontal excitation.
The total energy decay within the regular domain, because of the vertical excitation, is plotted

in Figure 12, both in standard and semi-logarithmic scale for various values of ˇo. Because of the
limited size of the enlarged domain model, we compare the enlarged domain solution with the set of
the PML solutions for various ˇo only up to 0.45 s, because for t > 0:45 s, the reflections from the
enlarged domain’s fixed boundaries would have traveled back to the regular domain. The agreement
is excellent, and no difference can be observed. For ˇo D 866 s�1, the total reduction in energy,
relative to its peak value, is 14 orders of magnitude. The decay is sharp and smooth, without any
discernible reflections, indicating the effectiveness and health of the PML. Figure 13 displays the
corresponding decay of energy curves due to the horizontal excitation. As can be seen from the
standard scale plot, most of the energy travels out of the interior domain quickly and gets absorbed
in the PML effectively.

To illustrate the stability of the formulation, we run the simulation for 50,000 time steps.
The total energy decay is displayed in Figure 14 and shows no numerical instability during the
simulation time.

We remark that we also used M-PML terminations to conduct this numerical experiment. While
the results are satisfactory in general, they are not as accurate as when using PML terminations. In
fact, for all the sampling points of Table IV, the relative error remained less than 1%, except at the
corner point sp8 where the relative error is about 5%. We do not report the M-PML-based results in
detail pending comprehensive investigations.

8.2. Heterogeneous media

In the second example, we study the performance of our hybrid PML formulation for a heteroge-
neous medium. We consider a 100 m � 100 m � 50 m layered medium with an ellipsoidal inclusion,
where a 12.5-m thick PML is placed at its truncation boundaries, as shown in Figure 15. The
properties of the medium are
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Figure 8. Comparison of displacement time histories between the enlarged and PML-truncated domain
solutions at the sp2; sp4; sp6, and sp8 sampling points (homogeneous case, vertical excitation).

cs.´/ D

8<
:
400 m/s; for � 20 m 6 ´ 6 0 m;
500 m/s; for � 50 m 6 ´ < �20 m;
600 m/s; for ellipsoidal inclusion;

(61)

with mass density � D 2000 kg=m3, and Poisson’s ratio � D 0:25; the ellipsoidal inclusion occupies

the region


x�25
15

�2
C
�
y�25
5

	2
C


´C20
5

�2 6 1. The material properties at the interfaces � I are
extended horizontally into the PML buffer. A vertical stress load, with the Ricker pulse temporal
signature, is applied on the surface of the medium over a region (�1:25 m 6 x; y 6 1.25 m). The
problem is discretized with quadratic hexahedral elements of size 1.25 m. The PML parameters are
taken as ˛o D 5; ˇo D 500 s�1, and m D 2. To resolve the motion, we use the first-order system
(36) and a fourth-order explicit Runge–Kutta method, with a time step of 
t D 0:00048 s.

Next, a reference solution is computed by using an enlarged domain, with size and spatial dis-
cretization properties similar to the previous example, and a time step of 
t D 0:00048 s. Table III
summarizes the spatial discretization details of the problem.

To assess the performance of our hybrid PML formulation, we compare displacement time his-
tories at selected locations against the enlarged domain solution. The sampling points, with their
corresponding relative error computed via (58) are summarized in the last column of Table IV. The
relative error values are higher than the previous example, which was a homogeneous medium,
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Figure 9. Comparison of displacement time histories between the enlarged and PML-truncated domain
solutions at the sp2 and sp8 sampling points (homogeneous case, horizontal excitation).

Figure 10. Relative error time history e.x; t / at various sampling points (homogeneous case, vertical
excitation).
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Figure 11. Relative error time history e.x; t / at various sampling points (homogeneous case, horizontal
excitation).

Figure 12. Total decay of energy within the regular domain for various values of ˇo (homogeneous case,
vertical excitation). (a) Standard scale and (b) logarithmic scale.

but still, they are very low. In fact, the highest relative error, which corresponds to sp8, is only
1:41 � 10�5, which is very small in practical applications.

Snapshots of the total displacement at two different times are displayed in Figure 16. The figure
on the left shows waves at an evolving stage, while the right figure indicates absorption of waves in
the PML buffer zone. Notice that no discernible reflections can be seen from the PML interfaces nor
any residuals from the fixed-end boundaries, a visual indication of satisfactory performance of the
PML for domains involving heterogeneous material properties. Figure 17 depicts the complex wave
pattern around the ellipsoidal inclusion on a cross-section through the domain situated at 20 m from
the surface going through the ellipsoid’s midplane.

Various components of displacement time histories for the enlarged domain and the hybrid PML
simulations are displayed in Figure 18 for selected sampling points. The agreement is excellent.
The response effectively dies out at around 0.45 s. The relative error time histories are shown in
Figure 19 and indicate satisfactory performance of the PML.

We compare the total energy decay within the regular domain between the PML and enlarged
domain solutions. Because of the size of the enlarged domain model, the energy can only be
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Figure 13. Total decay of energy within the regular domain for various values of ˇo (homogeneous case,
horizontal excitation). (a) Standard scale and (b) logarithmic scale.

Figure 14. Total decay of energy within the regular domain for ˇo D 866 s�1 (homogeneous case). (a)
Vertical excitation and (b) horizontal excitation.

Figure 15. PML-truncated semi-infinite heterogeneous media.
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Figure 16. Snapshots of total displacement taken at t D 0.111 s, 0.225 s.

Figure 17. Snapshots of total displacement taken at t D 0.233 s, 0.290 s, on the ´ D �20 m domain
cross-section.

computed up to 0.45 s. For the PML-truncated model, however, we allow the simulation to run for
2 s. The energy curves are presented in Figure 20. The agreement between the enlarged domain
solution and the PML curves is excellent. The reduction of the total energy is 14 orders of magni-
tude for ˇo D 500 s�1; energy decay is sharp and smooth, with no sign of reflections, signifying
satisfactory performance of the PML.

Finally, to illustrate the stability of the proposed scheme, we run the simulation for 125,000 time
steps. The decay of the total energy is shown in Figure 21 and shows no numerical instability during
the simulation time.

8.3. Comparison of various formulations

In the previous numerical experiments, we utilized explicit time-stepping using spectral elements,
which is well suited for solving large-scale problems on parallel computers. In this part, we com-
pare alternative formulations and various time-marching schemes, discussed earlier in Sections 4.2
and 6, using the same numerical experiment considered in [27]. Specifically, we use the standard
Newmark method for the second-order in time forms (34) and (35) using quadratic serendipity ele-
ments. Next, we apply the extended Newmark method to the symmetric form (47) discretized by
quadratic serendipity elements. We also compute the response of the system with explicit RK-4
scheme for both PML-truncated and an enlarged domain using quadratic spectral elements. The size
of the considered enlarged domain model allows simulation for up to 15 s, before reflections travel
back to the interior domain. Results for PML-truncated domain models, however, are computed for
30 s. The numerical experiments are summarized in Table V.

The problem consists of a half-space with shear wave velocity cs D 1 m/s, Poisson’s ratio � D
0:25, and mass density � D 1 kg=m3, which, after truncation, is reduced to a 1:2 m� 1:2 m� 0:2 m
regular domain, and 0:8-m thick PML is placed on the sides and at the bottom of the trunca-
tion boundaries, as shown in Figure 22. A uniform pressure, of the form considered in [2] (with
characteristic parameters td D 10 s, !f D 3 rad/s), as shown in Figure 23, is applied on the
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Figure 18. Comparison of displacement time histories between the enlarged and PML-truncated domain
solutions at the sp3; sp5; sp6, and sp7 sampling points (heterogeneous case).
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Figure 19. Relative error time history at various sampling points (heterogeneous case).
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Figure 20. Total decay of energy within the regular domain for various values of ˇo (heterogeneous case).
(a) Normal scale and (b) logarithmic scale.
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Figure 21. Total decay of energy within the regular domain for ˇo D 500 s�1 (heterogeneous case).

Table V. Test cases for comparing various formulations and their corresponding relative error.

Case Equation Time-stepping Element type Error (center) Error (corner)

UnSym-1 (34)-second order Standard Lagrangian 20-noded 1:73 � 10�5 2:31 � 10�4

Newmark
UnSym-2 (35)-second order Standard Lagrangian 20-noded 1:73 � 10�5 2:31 � 10�4

Newmark
Symmetric (47)-third order Extended Lagrangian 20-noded 1:73 � 10�5 2:31 � 10�4

Newmark
Explicit (36)-first order RK-4 Spectral 27-noded 5:03 � 10�6 1:80 � 10�5

Enld. dom. First order RK-4 Spectral 27-noded
(No PML)

surface over a region (�1 m 6 x; y 6 1 m). Quadratic elements of size 0:2 m are used for discretiz-
ing both the interior domain and the PML buffer (i.e., quadratic–quadratic pairs of approximation
for displacement and stress components in the PML). We consider ˛o D 10; ˇo D 20 s�1, and
m D 2 for the PML parameters and 
t D 0:05 s for temporal discretization.
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Figure 22. Quarter model of a PML-truncated semi-infinite homogeneous media.
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Figure 23. Surface load time history considered in Section 8.3 and its Fourier spectrum.
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Figure 24. Comparison of displacement time histories for various cases considered in Table V.

Considering the enlarged domain solution as benchmark, we compute the maximum relative error
given by (58) at the center and corner of the loading surface. These values are given in Table V and
are very small, considering that PML was discretized only with four elements. The largest relative
error is only 2:31 � 10�4. The relative error for the cases using Newmark schemes are slightly
greater than those using RK-4, as one would expect. The vertical component of the displacement
time history for the center and corner nodes is depicted in Figure 24; the agreement is remarkable.
Overall, all cases considered in Table V provide satisfactory results.
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9. CONCLUSIONS

We presented various time-domain formulations for elastic wave propagation in arbitrarily hetero-
geneous PML-truncated media. The main contribution of this paper over the earlier work [29] is the
extension to three dimensions of a hybrid formulation endowed with explicit time integration and
spectral elements. Our formulation is hybrid in the sense that it uses a displacement-stress formu-
lation for the PML buffer, coupled with a standard displacement-only formulation for the interior
domain, which results in optimal computational cost and allows for the ready incorporation of the
PML in existing codes. Moreover, the mixed finite element scheme for the PML buffer does not
require specialized elements for Ladyzhenskaya-Babuska-Brezzi (LBB)-type stability.

The resulting semi-discrete form of the PML-truncated model is third-order in time. Several
alternatives for time marching were discussed that may suit various applications. In particular, we
discussed the following: (a) an explicit time-stepping scheme utilizing the Runge–Kutta method;
(b) time integration via the standard Newmark scheme by recasting the semi-discrete form into
a second-order system; and (c) applying an extended Newmark scheme to a fully symmetric
third-order in time semi-discrete form. Numerical experiments demonstrate stability, efficacy, and
satisfactory performance of the proposed schemes.

APPENDIX A: SUBMATRIX DEFINITIONS

Subscripts in the shape functions indicate derivatives.

A.1. Submatrices in Equation (31)

KRD D

Z
�RD

2
4Kxx Kxy Kx´

Kyx Kyy Ky´

K´x K´y K´´

3
5 d�;

Kxx D .�C 2�/ˆxˆ
T
x C �

�
ˆyˆ

T
y Cˆ´ˆ

T
´

	
;

Kxy D �ˆxˆ
T
y C �ˆyˆ

T
x ;

Kx´ D �ˆxˆ
T
´ C �ˆ´ˆ

T
x ;

Kyx D �ˆyˆ
T
x C �ˆxˆ

T
y ;

Kyy D .�C 2�/ˆyˆ
T
y C �
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ˆxˆ

T
x Cˆ´ˆ

T
´

	
;

Ky´ D �ˆyˆ
T
´ C �ˆ´ˆ

T
y ;

K´x D �ˆ´ˆ
T
x C �ˆxˆ

T
´ ;

K´y D �ˆ´ˆ
T
y C �ˆyˆ

T
´ ;

K´´ D .�C 2�/ˆ´ˆ
T
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�
ˆxˆ

T
x Cˆyˆ
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:

(A.1a)

MRD D

Z
�RD

� diag
�
ˆˆT ;ˆˆT ;ˆˆT

	
d�: (A.2a)

Mi D

Z
�RD

i � diag
�
ˆˆT ;ˆˆT ;ˆˆT

	
d�; i D a; b; c; d: (A.2b)

Ni D
Z

�PML

i diag
�
‰‰T ;‰‰T ;‰‰T ; 2‰‰T ; 2‰‰T ; 2‰‰T

	
d�; i D a; b; c; d: (A.2c)
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Ax4 D 2�ˆy‰T O�ix´; Ay4 D 2�ˆx‰T O�iy´; A´5 D 2�ˆx‰T O�iy´;
Ax5 D 2�ˆ´‰T O�ixy ; Ay6 D 2�ˆ´‰T O�ixy ; A´6 D 2�ˆy‰T O�ix´;
O�e
jk
D ˛j˛k; O�

p

jk
D ˛jˇk C ˇj˛k; O�w

jk
D ˇjˇk;

i D e; w; p; j; k D x; y; ´:
(A.5a)

fRD D

Z
�RDN

2
4ˆ gx.x; t /ˆ gy.x; t /
ˆ g´.x; t /

3
5 d� C

Z
�RD

2
4ˆ bx.x; t /ˆ by.x; t /
ˆ b´.x; t /

3
5 d�: (A.6a)

A.2. Submatrices for the symmetric formulation
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O�
p

jk
D ˛jˇk C ˇj˛k; O�wjk D ˇjˇk; j; k D x; y; ´:

(A.8a)
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A.3. Submatrices for M-PML

Aiu D
Z

�PML

2
64ˆx‰

T O�iy´ ˆy‰
T O�ix´ ˆ´‰

T O�ixy
ˆy‰

T O�ix´ ˆx‰
T O�iy´ ˆ´‰

T O�ixy
ˆ´‰

T O�ixy ˆx‰
T O�iy´ ˆy‰

T O�ix´

3
75 d�

C

Z
�PML

2
6664
ˆ‰T

@ O�iy´
@x

ˆ‰T
@ O�ix´
@y

ˆ‰T
@ O�ixy
@´

ˆ‰T
@ O�ix´
@y

ˆ‰T
@ O�iy´
@x

ˆ‰T
@ O�ixy
@´

ˆ‰T
@ O�ixy
@´

ˆ‰T
@ O�iy´
@x

ˆ‰T
@ O�ix´
@y

3
7775 d�;

i D e; w; p; O�ejk D ˛j˛k;
O�
p

jk
D ˛jˇk C ˇj˛k; O�wjk D ˇjˇk; j; k D x; y; ´:

(A.9a)

APPENDIX B: TIME-INTEGRATION SCHEMES

B.1. Fourth-order Runge–Kutta method

In Section 4.2, we discussed various time-marching schemes for integrating (32). Our preferred
scheme is the explicit fourth-order Runge–Kutta method (RK-4), outlined next.

Upon using spectral elements, with Legendre–Gauss–Lobatto quadrature rule, the mass-like
matrix M becomes diagonal; therefore, its inverse can be readily computed. We define the following
variables:

OC DM�1 C; OK DM�1 K; (B.1a)
OG DM�1 G; Of DM�1 f (B.1b)

Using the notation in (B.1), (36) becomes

d

dt

2
4 x0

x1
x2

3
5 D

2
4 0 I 0

0 0 I
� OG � OK � OC

3
5
2
4 x0

x1
x2

3
5C

2
4 0

0
Of

3
5 : (B.2)

The explicit RK-4 scheme entails computing the following vectors:

k10 D xn1;

k11 D xn2;

k12 D � OCxn2 � OKxn1 � OGxn0 C Of
n;

k20 D xn1 C

t

2
k11;

k21 D xn2 C

t

2
k12;

k22 D � OC
�

xn2 C

t

2
k12

�
� OK

�
xn1 C


t

2
k11

�
� OG

�
xn0 C


t

2
k10

�
C OfnC

1
2 ;

k30 D xn1 C

t

2
k21;

k31 D xn2 C

t

2
k22;

k32 D � OC
�

xn2 C

t

2
k22

�
� OK

�
xn1 C


t

2
k21

�
� OG

�
xn0 C


t

2
k20

�
C OfnC

1
2 ;

k40 D xn1 C
t k31;

k41 D xn2 C
t k32;

k42 D � OC


xn2 C
t k32

�
� OK



xn1 C
t k31

�
� OG



xn0 C
t k30

�
C OfnC1:

(B.3a)
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Finally, the solution at time step .nC 1/ can be updated via2
4 x0

x1
x2

3
5
nC1

D

2
4 x0

x1
x2

3
5
n

C

t

6

2
4 k10 C 2k20 C 2k30 C k40

k11 C 2k21 C 2k31 C k41
k12 C 2k22 C 2k32 C k42

3
5 : (B.4)

B.2. Extended Newmark method

In this part, we are concerned with the time integration of the following semi-discrete equation
discussed in Sections 4.2 and 6:

M RdC C PdCKdCG Nd D f; (B.5a)

Nd D
Z t

0

d.�/jPML d�: (B.5b)

We discuss an extension of the Newmark method [55] for time integration of this equation. The
scheme is implicit and can be applied to problems with either symmetric or unsymmetric matrices.
We start with Taylor series-like expansion of the following quantities:

NdnC1 D Ndn C
t dn C

t2

2
Pdn C

�
1

6
� ˛

�

t3 Rdn C ˛ 
t3 RdnC1; (B.6a)

dnC1 D dn C
t Pdn C
�
1

2
� ˇ

�

t2 Rdn C ˇ
t2 RdnC1; (B.6b)

PdnC1 D Pdn C .1 � �/
t Rdn C � 
t RdnC1; (B.6c)

where
t denotes the time step, superscripts .n/ and .nC 1/ indicate current and next time steps, ˇ
and � are the classic Newmark parameters, and ˛ is a new parameter. Substitution of (B.6) in (B.5)
at the .nC 1/th time step results in the following linear system of equations

OK RdnC1 D ORnC1; (B.7a)

where

OK DMC � 
t CC ˇ
t2 KC ˛ 
t3 G; (B.7b)

ORnC1 D fnC1

� C
h
Pdn C .1 � �/
t Rdn

i
�K

�
dn C
t Pdn C

�
1

2
� ˇ

�

t2 Rdn

�

�G
�
Ndn C
t dn C


t2

2
dn C

�
1

6
� ˛

�

t3 Rdn

�
:

(B.7c)

Upon solving for RdnC1 from (B.7a), NdnC1; dnC1, and PdnC1 can be updated using (B.6). Average-
acceleration and linear-acceleration schemes correspond to taking .˛; ˇ; �/ equal to



1
12
; 1
4
; 1
2

�
and


1
24
; 1
6
; 1
2

�
, respectively. Numerical results reported in Section 8.3 were computed using the average-

acceleration scheme.
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