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S U M M A R Y
We discuss an inverse source formulation aimed at focusing wave energy produced by ground
surface sources to target subsurface poroelastic formations. The intent of the focusing is to
facilitate or enhance the mobility of oil entrapped within the target formation. The underlying
forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroe-
lastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness
of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of
perfectly matched layers. The inverse source algorithm is based on a systematic framework of
partial-differential-equation-constrained optimization. It is demonstrated, via numerical exper-
iments, that the algorithm is capable of converging to the spatial and temporal characteristics
of surface loads that maximize energy delivery to the target formation. Consequently, the
methodology is well-suited for designing field implementations that could meet a desired oil
mobility threshold. Even though the methodology, and the results presented herein are in two
dimensions, extensions to three dimensions are straightforward.
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1 I N T RO D U C T I O N

Efficient extraction of trapped particles from the pores of geological formations has important implications, among others, in enhanced
oil recovery (EOR), purification of aquifers, transport of colloidal particles at waste disposal sites, etc. Traditionally, EOR has been the
battleground for research and development of innovative methodologies for removal of crude oil particles from reservoirs. Propelled by
the ever increasing oil demand and decrease in production from known reservoirs (IEO 2013), EOR methods aim at extraction of part of
the original oil in place (OOIP), usually deemed irrecoverable by conventional recovery methods. Water or gas flooding, commonly used in
conventional oil recovery, is unable to overcome the strong capillary forces governing fluid motion in the narrow pores, and leaves about
30–50 per cent of the OOIP behind (Lake 1989). EOR methods attempt removal of the trapped oil particles by injection of materials not
normally present in reservoirs (solvents, polymers and steam). However, EOR processes involving infusion of chemicals suffer from low sweep
efficiency problems in the low permeability areas, whereas thermal EOR (steam injection) faces challenges due to heat loss. Despite these
challenges, EOR methods that use most of the infrastructure already in place at a (depleted) reservoir have been shown to be economically
viable and effective (Lake 1989). Yet, significant reservoir capacity remains untapped, and alternative approaches maximizing recovery remain
desirable.

Since seismic waves traveling through porous geological formations have been observed to stimulate fluid flow (Steinbrugge & Moran
1954; Smimova 1968; Voitov et al. 1972), it has been conjectured (Beresnev & Johnson 1994; Kostrov & Wooden 2002; Roberts &
Abdel-Fattah 2009) that vibrations induced by wave sources placed on or below the ground surface can be used for EOR purposes instead
of, or in addition to, the aforementioned methods. The wave-based, or seismic EOR methods, as they are commonly referred to, use various
types of wave sources (e.g. Vibroseis trucks and/or wellbore hydraulic pumps) to illuminate the target formation. Since elastic waves suffer
energy loss via radiation damping, intrinsic and apparent attenuation, a distant target formation may not receive the amount of wave energy
required to effect the removal of trapped particles. Thus, a successful field implementation of a wave-based EOR method is contingent upon:
(i) a reliable estimate of the magnitude of the motion threshold required for discharging the trapped particles, and (ii) the ability of (artificial)
wave sources to generate sufficiently strong wave motion in the reservoir. These requirements necessitate pore-scale analysis of the fluid
motion in narrow pores, when subjected to mechanical vibrations, as well as reservoir-scale wave motion studies.

The purpose of the pore-scale dynamics studies is twofold: they improve our understanding of the mechanisms responsible for the
release of trapped particles, and they quantify the threshold motion needed for the removal of trapped particles. Kostrov & Wooden (2002)
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suggested two candidate mechanisms for vibration-based EOR: (i) dislodgement of oil droplets adhering to the pore wall into the flow of
fluid, (ii) coalescence of two or more oil droplets into a bigger droplet having higher mobility. Roberts & Abdel-Fattah (2009) studied the
release of in situ particles from Fontainebleau sandstone, induced by applying low frequency (26 Hz) stress stimulation in the laboratory.
They reported enhanced particle release compared to that induced by flowing deionized water, and suggested three underlying mechanisms:
(i) enhanced flushing or squeezing out of particles trapped in dead-end pores; (ii) forced particle detachment; and (iii) exposing of new
detachment sites on the pore wall. Beresnev & Deng (2010) analysed the motion of a non-wetting fluid-blob in a sinusoidally varying 1-D
channel under the assumption of two-phase core-annular Poiseuillean flow. They studied the relative motion between the channel wall and
an oil droplet for various excitation frequencies to arrive at the threshold acceleration values, for which, the oil blob is squeezed through a
narrow constriction in the channel. Deng & Cardenas (2013) improved the model suggested in Beresnev & Deng (2010) and reported values
of threshold acceleration that conform more closely to computational fluid dynamics (CFD) simulations. Beresnev et al. (2011) conducted
laboratory experiments to determine the threshold acceleration, and reported that the threshold value observed in experiments was about
3–4 times smaller than that predicted by CFD simulations. In Kurlenya & Serdyukov (1999), the authors reported significant and long-term
changes in the properties and the composition of fluids in the oil producing strata due to partial degassing when subjected to a vibro-seismic
field of low intensity (10−7–10−6 W m−2). In Steinbrugge & Moran (1954), Smimova (1968) and Voitov et al. (1972), the authors have
reported a sustained improvement in oil production after seismic events took place in the vicinity of the reservoirs. Beresnev & Johnson
(1994) and Manga et al. (2012) have communicated details of many laboratory and field tests reporting enhancement of oil particle removal
caused by subjecting test specimen, and even reservoirs, to mechanical vibrations. The pore-scale observations suggest that wave stimulation
can be utilized for discharging trapped particles from pores of geological formations, provided the excitation is capable of delivering motion
that exceeds the mobility threshold.

On the other hand, at reservoir scale, various sources of attenuation, as well as equipment limitations, impose restrictions on the magnitude
of wave energy delivered to the target formation by wave motion actuators. Assessing the wave sources’ ability to impart sufficiently strong
motion requires reservoir-scale wave motion modeling. Jeong et al. (2011a) studied the wave motion induced by wellbore fluid-pressure
oscillations in homogeneous and fractured reservoirs, and reported that wellbore action alone is not sufficient to cause exploitable oil mobility.
However, they suggested that a fleet of surface sources (Vibroseis), with suitable spatiotemporal characteristics, may be able to produce
sufficiently strong motion.

Thus, if the material properties of the reservoir and its surrounding formations are assumed known, the question becomes what should
be the source frequency content and the source locations that maximize the wave motion in the target reservoir? To address the frequency
content part of the question, in a rather simplistic manner, one could, conceivably, conduct a frequency sweep of monochromatic sources
in search of an energy maximum at the target formation. However, conducting a combined sweep for both source locations and frequency
content is, from a computational perspective, prohibitively expensive.

Alternatively, one could pose the problem as an inverse source problem, where the spatiotemporal source characteristics are sought,
such that a predetermined motion metric in the target (e.g. kinetic energy) be maximized. The problem is akin to the inverse medium
problem arising in exploration geophysics (Bamberger et al. 1979; Tarantola 1984; Bunks et al. 1995; Epanomeritakis et al. 2008; Kallivokas
et al. 2013), where minimization of the misfit between experimentally collected and computationally obtained data is used to determine the
properties of subterranean formations, subject to the underlying physics. Here too, the inverse source problem is similarly formulated as a
constrained minimization problem, where minimization of the objective functional is tantamount to maximization of a motion metric in the
target formation, and the governing physics are side-imposed as constraints. Jeong et al. (2011b) used the inverse source problem approach
for optimizing the frequency content of surface sources, when the reservoir was modeled as an elastic inclusion. Since the motion of a trapped
oil blob relative to the solid channel wall is used to define the extraction threshold in pore-scale studies (e.g. Deng & Cardenas 2013), in
this article we extend previous work to account for a poroelastic target, while also simultaneously searching for both frequency content and
optimal source location. To this end, we use Biot’s equations of poroelastodynamics (Biot 1956) for the target and Navier’s equations of
motion for the elastic host. The elastic domain is truncated by perfectly matched layers (PMLs) to achieve a physically faithful simulation
of the wave mechanics in the computational domain. We note that the development herein is cast in two spatial dimensions under plane
strain assumptions. The formulation is, however, directly extensible to three dimensions. Field implementation aiming at either 2-D or 3-D
conditions are feasible, and, based on the results reported herein, they are promising for enhancing mobility.

In the following, we describe the details of the formulation, the inverse source framework, the numerical implementation, and report
numerical results that demonstrate the ability of the optimizer to suggest source locations and construct associated excitations, which can
focus energy in the target formation.

2 T H E F O RWA R D P RO B L E M

2.1 Strong form

We consider the problem of wave propagation in a 2-D, heterogeneous, composite (elastic-poroelastic) halfspace. The forward problem
consists of finding the displacement field in the domain of interest, given the boundary conditions and any applied excitations. We intend to
use finite elements for the numerical solution of the forward problem. This choice, in turn, necessitates the truncation of the semi-infinite
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Figure 1. Problem definition.

domain: we use hybrid PMLs (Kucukcoban & Kallivokas 2013) to achieve a physically faithful simulation of wave propagation within the
computational domain.

To fix ideas, consider the case of a porous rock (oil reservoir) represented by a poroelastic inclusion �a, as shown in Fig. 1. The response
in �a is described, in general, by a solid and a fluid displacement field, ua, and uf , respectively. Herein, we favour the u–w formulation that
uses the seepage displacement w = φ(uf − ua), where φ is the porosity, to describe the fluid displacement field in �a (Schanz 2009). A
heterogeneous linear elastic solid occupying �reg, surrounds the poroelastic target inclusion �a. The response in �reg is described by the ub

displacement field. �reg is augmented by PMLs occupying �PML. The governing equations in � = �a ∪�reg ∪�PML, for time t ∈ J = (0, T ],
are given by:

div

[
Ga

(∇ua + ∇uT
a

)+
{(

Ka − 2

3
Ga + α2 R

φ2

)
div ua + α

R

φ2
div w

}
I

]
− ρaüa − ρ f ẅ = 0, x ∈ �a, (1a)

div

[{
α

R

φ2
div ua + R

φ2
div w

}
I

]
− ρ f üa − ρ f

1 + C1

φ
ẅ − 1

κ
ẇ = 0, x ∈ �a, (1b)

and,

div

[
Gb

(∇ub + ∇uT
b

)+
{(

Kb − 2

3
Gb

)
div ub

}
I

]
− ρbüb = 0, x ∈ �reg, (2a)

div
(
ṠT �̃e + ST �̃p

)− ρb (aüb + bu̇b + cub) = 0, x ∈ �PML, (2b)

D :
(
aS̈ + bṠ + cṠ

)− 1

2

[∇ub�̃p + �̃p (∇ub)T + ∇u̇b�̃e + �̃e (∇u̇b)T ] = 0, x ∈ �PML, (2c)

where an over-dot ( ˙ ), denotes a derivative of the subtended entity with respect to time, and a colon ( : ), represents tensor inner product.
In the above, and henceforth, we have suppressed the temporal and spatial dependencies for brevity. Eqs (1) are the poroelastodynamics
equations derived by Biot (1956), expressed in the, so-called, u–w formulation (Schanz 2009). The definitions for symbols representing
material constants in various parts of the computational domain are given in Table 1. In �a, ρa = (1 − φ)ρs + φρ f is the mass density of the
composite; κ = k/μ denotes the fluid mobility, where k is the absolute permeability and μ is the fluid viscosity. The factor C1 depends on the
geometry of the pores: C1 is related to the tortuosity of the fluid path, at, by the equation, C1 = 1 − at (Schanz 2009). Various approximations
for C1 can be found in the literature (Bourbié et al. 1987; Schanz 2009). Here, we use C1 = 1

2 (1 − 1
φ

). The boundary between the poroelastic
and the elastic region is denoted by �a. We assume that w · n−

a = 0 on �a, that is, there is no fluid flow from the poroelastic inclusion into the
elastic host. In �a, the coupling between the solid and the fluid can be characterized by two parameters (Schanz 2009),

R = φ2 K f K 2
s

K f (Ks − Ka) + φKs

(
Ks − K f

) , Q = φ ((1 − φ) Ks − Ka) K f Ks

K f (Ks − Ka) + φKs

(
Ks − K f

) . (3)

Biot’s effective stress coefficient, α, is given by,

α = 1 − Ka

Ks
= φ

(
1 + Q

R

)
. (4)
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Table 1. Symbols used for material properties in eqs (1) and (2).

Material Solid Fluid Saturated
property (grains) solid

Bulk �a Ks Kf Ka

modulus �reg Kb – –
�PML Kb – –

Shear �a Gs – Ga

modulus �reg Gb – –
�PML Gb – –

Mass �a ρs ρf ρa

density �reg ρb – –
�PML ρb – –

Eqs (2) are the elastodynamics equations for an elastic medium augmented by PMLs (Kucukcoban & Kallivokas 2013). In particular,
(2a) is the equilibrium equation, whereas (2b) is the combined constitutive law and kinematic condition equation. Eqs (2) introduce both
displacement and stress unknowns in the PML, that is, they give rise to a mixed formulation, in favour of reducing the temporal complexity:
as it can be shown, the resulting semi-discrete forms remain second-order in time. In eqs (2), S is the stress history tensor, given by,

S (x, t) =
[

S11 (x, t) S12 (x, t)

S21 (x, t) S22 (x, t)

]
=
∫ t

0
σ (x, τ ) dτ, (5)

where, σ is the Cauchy stress tensor. �̃e and �̃p are components of the stretching tensor, and a, b, c are coefficients defining complex
co-ordinate stretching in the PML region. Their detailed definitions are beyond the scope of this article and can be found in Kucukcoban &
Kallivokas (2013). D is the compliance tensor, so that the constitutive relation can be expressed as D : Ṡ = 1

2 (∇ub + ∇uT
b ). For t ∈ J, the

governing equations are subjected to the following boundary conditions:

ub = 0, x ∈ �PML
fixed , (6a)

[
Gb

(∇ub + ∇uT
b

)+
{(

Kb − 2

3
Gb

)
div ub

}
I

]
n = f, x ∈ �load, (6b)

[
Gb

(∇ub + ∇uT
b

)+
{(

Kb − 2

3
Gb

)
div ub

}
I

]
n = 0, x ∈ �free, (6c)

(
ṠT �̃e + ST �̃p

)
n = 0, x ∈ �PML

free , (6d)

interface conditions:

u+
b = u−

b , x ∈ �I, (7a)[
Gb

(∇ub + ∇uT
b

)+
{(

Kb − 2

3
Gb

)
div ub

}
I

]
n+

I = − (ṠT �̃e + ST �̃p

)
n−

I , x ∈ �I; (7b)

w · n−
a = 0, x ∈ �a, (7c)

ua = ub, x ∈ �a, (7d)

σ T
a n−

a = −σ T
b n+

a , x ∈ �a; (7e)

where,

σ a = Ga

(∇ua + ∇uT
a

)+ αR

φ2
(div w) I +

[
Ka − 2Ga

3
+ α2 R

φ2

]
(div ua) I, (7f)

σ b = Gb

(∇ub + ∇uT
b

)+
[(

Kb − 2

3
Gb

)
div ub

]
I; (7g)

and initial value conditions:

ua (x, 0) = 0, u̇a (x, 0) = 0, x ∈ �a, (8a)

ub (x, 0) = 0, u̇b (x, 0) = 0, x ∈ �reg ∪ �PML, (8b)

w (x, 0) = 0, ẇ (x, 0) = 0, x ∈ �a, (8c)

S (x, 0) = 0, Ṡ (x, 0) = 0, x ∈ �PML. (8d)
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The strong form of the forward problem can be stated as: given loads f(x, t), find w ∈ H1
w(�a) × J, ua ∈ H1

u(�a) × J, ub ∈ H1
u(�reg ∪

�PML) × J and S ∈ L2(�PML) × J, so that eqs (1) and (2) and boundary conditions (6)–(8) be satisfied, where, the pertinent function spaces
for a scalar f, a vector u and a tensor T are given by:

L2 (�) =
{

f :
∫

�

| f |2d� < ∞
}

, (9a)

L2 (�) =
{

u : u ∈ (L2 (�)
)2}

, (9b)

L2 (�) =
{

T : T ∈ (L2 (�)
)2×2

}
, (9c)

H 1
p (�) =

{
f :
∫

�

(| f |2 + |∇ f |2) d� < ∞
}

, (9d)

H1
u (�) =

{
u : u ∈ (H 1

p (�)
)2

, u = 0 if x ∈ �PML
fixed

}
, (9e)

H1
w (�) =

{
u : u ∈ (H 1

p (�)
)2

, u · n−
a = 0 if x ∈ �a

}
. (9f)

Next, we formulate the problem’s weak form.

2.2 Weak form

We follow a conventional Galerkin approach: for example, we multiply eq. (1a) by a vector test function va, and eqs (2a) and (2b) by a
vector test function vb, integrate by parts on their corresponding domains, and add the resulting equations. Eq. (1b) is multiplied by a vector
test function q and integrated over �a. Furthermore, we multiply eq. (2c) by a tensor test function T, and integrate over �PML. After some
simplifications, using the boundary conditions (6) and interface conditions (7), we arrive at the following weak form:∫

�a

{
∇va :

[
Ga

(∇ua + ∇uT
a

)+ α
R

φ2
(div w) I+

(
Ka − 2Ga

3
+ α2 R

φ2

)
(divua) I

]
+ va · (ρaüa) + va · (ρ f ẅ)

}
d�

+
∫

�reg

{
∇vb :

[
Gb

(∇ub + ∇uT
b

)+
(

Ks − 2Gb

3

)
(divub) I

]
+ vb · ρbüb

}
d�

+
∫

�PML

{∇vb :
(
ṠT �̃e + ST �̃p

)+ vb · ρb (aüb + bu̇b + cub)
}

d� =
∫

�load

vb · f d�, (10a)

∫
�a

{
−∇q :

[
α

R

φ2
(div ua) I + R

φ2
(div w) I

]
− q ·

[
ρ f üa + ρ f

1 + C1

φ
ẅ + 1

κ
ẇ

]}
d� = 0, (10b)

∫
�PML

T :

{
D :

(
aS̈ + bṠ + cṠ

)− 1

2

[∇ub�̃p + �̃p (∇ub)T + ∇u̇b�̃e + �̃e (∇u̇b)T
]}

d� = 0. (10c)

2.3 Semi-discrete form

Numerical solution of the forward problem requires spatiotemporal discretization. We introduce spatial discretization via shape functions

w(x) ∈ H1

wh(�a), 
u(x) ∈ H1
uh(�), and �(x) ∈ L2

h(�PML). Thus, the trial and test functions are given by,

q =
⎡
⎣qT

1 
w (x)

qT
2 
w (x)

⎤
⎦ , w =

⎡
⎣wT

1 
w (x)

wT
2 
w (x)

⎤
⎦ ,

va =
⎡
⎣ vT

a1

u (x)

vT
a2


u (x)

⎤
⎦ , ua =

⎡
⎣
u (x)T ua1 (t)


u (x)T ua2 (t)

⎤
⎦ ,

vb =
⎡
⎣ vT

b1

u (x)

vT
b2


u (x)

⎤
⎦ , ub =

⎡
⎣
u (x)T ub1 (t)


u (x)T ub2 (t)

⎤
⎦ ,
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T =
⎡
⎣TT

11� (x) TT
12� (x)

TT
21� (x) TT

22� (x)

⎤
⎦ , S =

⎡
⎣� (x)T S11 (t) � (x)T S12 (t)

� (x)T S21 (t) � (x)T S22 (t)

⎤
⎦ . (11)

Introducing approximants (11) into eqs (10a)–(10c) yields the following semi-discrete equation:

Md̈ + Cḋ + Kd = F, (12)

where,

d = [w1w2ua1 ua2 ureg
b1

ureg
b2

uPML
b1

uPML
b2

S11S22S12]T , (13)

F = [0 0 0 0 F1 F2 0 0 0 0 0]T . (14)

We note that M, C and K are, the global mass, damping and stiffness matrices, respectively, d is the vector of unknown displacements and
stress histories, the latter only within the PML, and F is the force vector. The definitions of the element matrices that form the global matrices
in eq. (12) are given in Appendix A.

The temporal dimension is now discretized using a time step �t. We define the vector di ≡ d(i�t). Then, the spatiotemporally discretized
system at time t = (i + 1)�t, can be written as,

Md̈i+1 + Cḋi+1 + Kdi+1 = Fi+1. (15)

We use Newmark’s time integration scheme to integrate eq. (15) in time. At time t = 0:

Md̈0 = F0 − Cḋ0 − Kd0, (16)

where, d0 and ḋ0 are the prescribed displacement and velocity vectors. For any time t ∈ J, that is, for i ≥ 0, we calculate the acceleration d̈i+1

by solving,

Meff d̈i+1 = Reff , (17)

where

Meff = M + Cγ (�t) + K(�t)2β

= M + b4C + b2K, (18)

Reff = Fi+1 − Kdi − [C + (�t)K] ḋi −
[

(1 − γ )(�t)C +
(

1

2
− β

)
(�t)2K

]
d̈i

= Fi+1 − L0di − L1ḋi − L2d̈i . (19)

We, then, calculate the displacement and velocity at the (i + 1)th time step using,

di+1 = di + (�t)ḋi +
(

1

2
− β

)
(�t)2d̈i + β(�t)2d̈i+1

= di + b0ḋi + b1d̈i + b2d̈i+1, (20)

ḋi+1 = ḋi + (1 − γ )(�t)d̈i + γ (�t)d̈i+1

= ḋi + b3d̈i + b4d̈i+1. (21)

The solution of the forward problem can be obtained by starting with i = 0 and marching in time (i ← i + 1), using eqs (16)–(21). In eqs
(17)–(21) we have introduced constants b0. . . b4 and matrices L0, L1, L2, for brevity. Their definitions are given below:

b0 = �t, b1 = ( 1
2 − β

)
(�t)2, b2 = β(�t)2, (22a)

b3 = (1 − γ )(�t), b4 = γ (�t), (22b)

L0 = K, L1 = C + b0K, L2 = b3C + b1K. (22c)

The step-by-step procedure given by eqs (16)–(21) can be represented as a solution of a linear system of equations (Kallivokas et al.
2013) given by,

Qu = f , (23)
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where,

u = [d̈0 ḋ0 d0 d̈1 ḋ1 d1 · · · d̈N ḋN dN ]T , (24)

f = [F0 ḋ0 d0 F1 0 0 · · · FN 0 0]T , (25)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M C K 0 0 0 · · · 0 0 0 0 0 0

0 I 0 0 0 0 · · · 0 0 0 0 0 0

0 0 I 0 0 0 · · · 0 0 0 0 0 0

L2 L1 L0 Meff 0 0 · · · 0 0 0 0 0 0

−b3I −I 0 −b4I I 0 · · · 0 0 0 0 0 0

−b1I −b0I −I −b2I 0 I · · · 0 0 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0 0 0 · · · L2 L1 L0 Meff 0 0

0 0 0 0 0 0 · · · −b3I −I 0 −b4I I 0

0 0 0 0 0 0 · · · −b1I −b0I −I −b2I 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

While the description of the temporal discretization is well-known, we repeated the steps leading to eq. (23) to set the stage for the inverse
source formulation, where eq. (23) is side-imposed to the objective functional to satisfy the underlying wave mechanics.

3 PA R A M E T R I Z AT I O N O F L OA D D E S C R I P T O R S

In our inverse source formulation, the search for the optimal source characteristics is carried out by an iterative scheme, following a reduced-
space strategy. The formulation requires parametrization of the spatiotemporal load characteristics. To this end, the tractions f(x, t) applied
on �load consist of contributions fi (x, t) from ns sources, where i = 1, . . . , ns. The i-th source consists of a spatial θi (x) and a temporal fi(t)
component. θi is further decomposed into the x1-directional component θi1(x) and the x2-directional component θi2(x). Thus,

f(x, t) =
ns∑

i=1

fi (x, t) =
ns∑

i=1

⎡
⎣ θi1(x)

θi2(x)

⎤
⎦ fi (t). (27)

In our numerical experiments, we use loads in either the x1 or x2 direction, and therefore, either θi1(x) = 0 or θi2(x) = 0. We parametrize the
(unknown) time signal using quadratic Lagrange polynomials τ j(t) whose temporal nodal values are denoted by ξ ij. This allows us to express
fi(t) as

fi (t) =
n f∑
j=1

ξi jτ j (t), (28)

where, nf is the total number of the piecewise, narrowly supported, Lagrange polynomials. The spatial variation of the i-th load on �load is
captured by θ iK, where subscript K describes the direction in which the load acts. In our experiments, we use a load varying like a Gaussian
function in space, given by:

θi K (x1, 0) = −exp

[−(x1 − ηi )2

bi

]
, (29)

where, ηi is the x1 co-ordinate of the load’s centre line and bi controls the i-th load’s width. We use (approximately) 2 m wide loads. Thus,
for example, we set bi = 1.25 m2 in eq. (29). We remark that other descriptions of spatial behaviour of loads can be easily accommodated in
the formulation, for example, a constant pressure load applied vertically on part of the surface (x2 = 0) can be expressed as,

θi2(x1, 0) = H

(
ηi − bi

2

)
− H

(
ηi + bi

2

)
, (30)

where, H is the Heaviside function. The necessary framework for formulation of the inverse source problem is now ready. In the next section,
we present the formulation of the inverse problem.

4 T H E I N V E R S E S O U RC E P RO B L E M

The inverse source problem aims at maximizing a predefined motion metric (e.g. the kinetic energy) of the target formation by seeking
the optimal time signals and optimal locations for the surface tractions that are used to excite the computational/physical domain. The
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problem can be cast as a constrained minimization problem, where maximization of a suitable objective functional is sought. The objective
functional and the constraints can be cast in either their continuous or in their discrete form (Karve et al. 2014). In this work, we favour
the latter approach, and begin the formulation with the fully discretized form (23) of the forward problem. The concept of discretizing first
and then seeking to satisfy the optimality conditions (discretize-then-optimize) was first described in Gunzburger (2003), and results in the
computation of consistent gradients. The objective functional is cast in its discrete form, as well. It is augmented by side-imposing the discrete
governing equations, weighed by discrete Lagrange multipliers. To arrive at the KKT (Karush–Kuhn–Tucker) system, we then seek to satisfy
the first-order optimality conditions. Herein, we choose an objective functional given by,

Ld = 1

ρs uT Bin u
= 1

ρs �t

[
1
2 u̇T

a0
u̇a0 + 1

2 u̇T
aN

u̇aN +
N−1∑
i=1

u̇T
ai

u̇ai

] , (31)

where, Bin is a block diagonal matrix with �t B on its diagonal. B is a square matrix that is zero everywhere except on the diagonals that
correspond to the u̇a degrees-of-freedom. Thus, minimization of Ld is equivalent to maximization of the kinetic energy in the target, since
Ld is the discrete version of the reciprocal of the time-integrated kinetic energy of the target’s solid matrix (

∫
�a

∫ T
0 ρs u̇a · u̇a dtd�).

4.1 The Lagrangian

We side-impose the governing eqs (23), weighted by the discrete Lagrange multipliers p, on the objective functional to obtain the discrete
Lagrangian:

A(u, p, f ) = Ld − pT ( Qu − f ). (32)

Thus, the inverse problem can be stated as,

min
f

A(u, p, f ), (33)

where,

p = [λ̈0 λ̇0 λ0 λ̈1 λ̇1 λ1 · · · λ̈N λ̇N λN ]T , (34)

λ =
[
λw1λw2λua1

λua2
λreg

ub1
λreg

ub2
λPML

ub1
λPML

ub2
λS11λS22λS12

]T
, with λi ≡ λ(i�t). (35)

The first-order optimality conditions are obtained by taking derivatives of A with respect to u, p and λ and the source parameters ξ and η.

4.2 State problem

Differentiating A with respect to the Lagrange multipliers p yields:

A p(u, p, f ) = 0 ⇒ Qu = f , (36)

which is the same as the forward problem, given by eq. (23).1

4.3 Adjoint problem

Similarly, differentiating A with respect to the state variables u results in:

Au(u, p, f ) = 0 ⇒ − QT p − 2Bin u

ρs (uT Bin u)2
= 0. (37)

Eq. (37) represents the adjoint problem associated with the inverse problem of interest. Since the adjoint problem involves the transpose of
Q, we solve it by marching backwards in time. From the last three rows of eq. (37), we get (for i = N),

(update) λN = λu
N , (38a)

(update) λ̇N = λv
N , (38b)

(solve) MT
eff λ̈N = λa

N + b4λ̇N + b2λN . (38c)

For (N − 1) ≤ i ≤ 1, we update λ̇i , λi and solve for λ̈i , as given by,

(update) λi = λu
i + λi+1 − LT

0 λ̈i+1, (39a)

(update) λ̇i = λv
i + b0λi+1 + λ̇i+1 − LT

1 λ̈i+1, (39b)

1
A subscript on the Lagrangian A denotes differentiation, that is, A p = ∂A

∂ p .
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(solve) MT
eff λ̈i = λa

i + b1λi+1 + b3λ̇i+1 − LT
2 λ̈i+1 + b2λi + b4λ̇i . (39c)

For i = 0, we have,

(solve) MT λ̈0 = λa
0 + b1λ1 + b3λ̇1 − LT

2 λ̈1, (40a)

(update) λ0 = λu
0 + λ1 − LT

0 λ̈1 − KT λ̈0, (40b)

(update) λ̇0 = λv
0 + b0λ1 + λ̇1 − LT

1 λ̈1 − CT λ̈0. (40c)

The vectors λu
i , λ

v
i , λ

a
i , used in eqs (38)–(40), can be written as,

λu
i = [λu

i,w λu
i,ua

| λu
i,ub

| λu
i,ub

λu
i,S]T , (41a)

λv
i = [λv

i,w λv
i,ua

| λv
i,ub

| λv
i,ub

λv
i,S]T , (41b)

λa
i = [λa

i,w λa
i,ua

| λa
i,ub

| λa
i,ub

λa
i,S]T , (41c)

where we have grouped together the adjoint variables that correspond to the degrees-of-freedom within the target inclusion, regular domain
and PML region. We obtain:

λu
i = λa

i = 0, 0 ≤ i ≤ N , (42a)

λv
i,w = 0; λv

i,ub
= 0; λv

i,S = 0; 0 ≤ i ≤ N , (42b)

λv
i,ua

= −ρs �t L2
d u̇ai , i = 0, N , (42c)

λv
i,ua

= −2 ρs �t L2
d u̇ai , 0 < i < N . (42d)

4.4 Control problem

4.4.1 Source time signal optimization

Aξmn (u, p, f ) = pT ∂ f

∂ξmn
=

N∑
i=0

λ̈
T
i

∂Fi

∂ξmn
, (43)

is the gradient of the Lagrangian with respect to a given nodal-excitation parameter ξmn. For a load acting in the xp direction, we update each
element, ξmn, of the control parameter vector

ξ = [ξ11 ξ12 · · · ξ1n f · · · ξ(ns )(n f −1) ξns n f ], (44)

using,

Aξmn (u, p, f ) =
N∑

k=0

λ̈
T
k,load

∫
�load

θmp(x)
u τn(k�t) d�

=
N∑

k=0

τn(k�t) λ̈
T
k,load

∫
�load

θmp(x)
u d�. (45)

4.4.2 Source location optimization

Aηm (u, p, f ) = pT ∂ f

∂ηm
=

N∑
i=0

λ̈
T
i

∂Fi

∂ηm
, (46)

is the gradient of the Lagrangian with respect to a given load location parameter ηm. Thus, for a load acting in the xp direction, we update
each element, ηm, of the control parameter vector η = [η1 η2 · · · ηns

]
, using,

Aηm (u, p, f ) =
N∑

k=0

λ̈
T
k,load

∫
�load

∂θmp

∂ηm
(x)
u

n f∑
j=1

ξmjτ j (k�t) d�,

=
N∑

k=0

⎡
⎣
⎛
⎝ n f∑

j=1

ξmjτ j (k�t)

⎞
⎠ λ̈

T
k,load

∫
�load

∂θmp

∂ηm
(x)
u d�

⎤
⎦ . (47)
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Table 2. Inversion algorithm.

Choose an objective
functional L

Step 0 Set value of tolerence tol
Start with an initial-guess of
ξ = ξ0 and η = η0, (k = 0).

(solve) State problem
Step 1 (compute) L

if L ≤ tol, Convergence, STOP
else GO TO Step 2

Step 2 (solve) Adjoint problem
Control problem
(update ξ and/or η)

Source time signal optimization:
(compute) Gradient:

gtk = Aξmn (u, p, f )
(compute) Search direction: stk = h(gtk ),

h : Rp → Rp, p = dim(ξ )
(update) ξ k+1 = ξ k + αt stk

Step 3

Source location optimization:
(compute) Gradient:

glk = Aηm (u, p, f )
(compute) Search direction: slk = h(glk ),

h : Rq → Rq , q = dim(η)
(update) ηk+1 = ηk + αl slk

(update) k = k + 1
GO TO Step 1

We remark that the gradient involves the derivative of the loading function θ . Since the derivative of a Heaviside function is a Dirac-delta
function, the sharp variation in loading intensity given by eq. (30) requires impractically small element size on �load. For this reason, we use
eq. (29) to describe the spatial variability of loads for the inverse problems involving load location optimization.

4.5 Summary of the inversion process

Table 2 depicts the summary of the inversion process. We start with an initial guess for the load descriptors. We, then, solve the state problem
and compute the objective functional. If the value of the objective functional is greater than the tolerance, the velocity vector in the target
formation (u̇ai ) is used to compute the body forces that drive the adjoint problem. Upon solution, the adjoint problem yields the values of the
acceleration-like adjoint variable (λ̈i,load) that can be used to compute the gradients gtk and glk (eqs 45 and 47). The function h is then used
to compute the search directions. In this work, we used the search direction given by the conjugate gradient method. Step lengths αt, αl are
used to update the source characteristics, and the procedure is repeated until convergence is reached.

5 N U M E R I C A L E X P E R I M E N T S

We evaluate the performance of the proposed method by conducting numerical experiments. We start our experiments with a guess for
the locations and for the time signals of the surface loads. We, then, ask the optimizer to update the guess using the algorithm given in
Table 2. It is known (Sánchez-Sesma et al. 2011) that a horizontally acting point load, applied on the surface of an elastic halfspace, imparts
higher percentage of the input energy in terms of body waves than a vertically acting point load. A vertically acting point load expends
about 65 per cent of its energy in the form of Rayleigh (surface) waves. In order to minimize the energy loss to surface motion, here we use
horizontally acting surface loads, having maximum amplitude of 50 kN m−2. The spatial description of loads is given by eq. (29). We remark
that the procedure for optimizing vertically acting pressure loads is identical to that used for horizontal loads.

The geological formation models used in our numerical experiments are depicted in Fig. 2. They contain an elliptical, poroelastic target
inclusion, having axes of lengths 30 m and 15 m. P- and S-wave speeds in the elastic formations are denoted by Cp and Cv , respectively. Other
relevant material properties for the elastic solids are given in Tables 3 and 4. The properties of the poroelastic solid are given in Table 5. We
use eight-noded, quadrilateral finite elements, and the time step for temporal discretization is set at �t = 0.001 s. We use the time-averaged
kinetic energy (KETA, s) at a node, measured in J m−1 and the time-averaged kinetic energy (KEinc, s), integrated over the target formation, as
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(a) Formation model 1

(b) Formation model 2

(c) Formation model 3

Figure 2. Geological formation models for numerical experiments.

Table 3. Formation model 1 material properties.

Material Cp Cv ρs

ID (m s−1) (m s−1) (kg m−3)

M1 1230 753 2200
M2 1145 701 2200
M3 1421 870 2200
M4 1628 997 2200

Table 4. Formation models 2 and 3 material properties.

Material Cp Cv ρs

ID (m s−1) (m s−1) (kg m−3)

M1 1005 615 2200
M2 1230 753 2200
M3 1421 870 2200
M4 1589 973 2200
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Table 5. Poroelastic inclusion properties for formation models 1, 2 and 3.

Ka Ga Kf ρa ρf φ α μ k
(GPa) (GPa) (GPa) (kg m−3) (kg m−3) (kg (ms)−1) (Darcy)

0.556 0.412 2 1865 860 0.25 0.75 0.0025 0.5

Figure 3. Frequency sweep results—geological formation model 1.

performance metrics of the developed algorithm:

KETA,s =
∫ T

0

1

2
ρs [u̇(t) · u̇(t)] dt

/
T, (48)

KEinc,s =
∫

�a

∫ T

0

1

2
ρs [u̇a · u̇a] dtd�

/
T =

∫ T

0

1

2
ρs u̇a(t)

T Ma
uu u̇a(t)dt

/
T, (49)

where, u̇a(t) is the solid’s velocity vector corresponding to the computational nodes in the inclusion and Ma
uu is the mass matrix of the target

inclusion (see Appendix B for the definition). To illustrate, we consider candidate pores whose axes make an angle of 60 deg with the x1 axis.
We calculate the maximum and minimum fluid accelerations with respect to the walls of these pores, as

af ,max = max
�a

[ |ẅ1(t) cos(π/3) + ẅ2(t) sin(π/3)|
φ

]
, (50)

af ,min = min
�a

[ |ẅ1(t) cos(π/3) + ẅ2(t) sin(π/3)|
φ

]
. (51)

We remark that the choice of pore orientation (60 deg) is arbitrary. The fluid acceleration for different pore orientations can be computed if
a statistical measure of the acceleration corresponding to a realistic distribution of pore orientations is desired. Next, we report the results of
the source time signal and/or source location optimization.

5.1 Experiment 1

We begin the experiment by comparing two methodologies used to decide the optimal frequency content of the time signals driving the loads:
a frequency sweep approach (if interested in monochromatic loads only), and the inverse source algorithm described earlier. The frequency
sweep, which involves computing the objective functional over a predetermined range of frequencies, can be carried out for: (i) a load acting
on the entire width of the computational domain, or (ii) a number of finite-width loads placed at fixed (guessed) locations; the aim is to probe
the formation’s intrinsic dynamic properties. We use the geological formation model 1 and horizontally polarized loads to compare the results
of both these approaches. The simulations are performed for a total time T = 1.5 s. For the frequency sweep with a single uniform load, the
entire width of the computational domain is subjected to a horizontal load, and the amplitude of the sine function is set at 2 kN m−2. For
the case of finite-width loads, we place three loads, having a width of approximately 2 m, at fixed locations (0, 0)m, (−7, 0)m and (5, 0)m.
The amplitude of the monochromatic sine function is set at 50 kN m−2. Fig. 3 shows the results of the sweeps. For the range of frequencies
considered, a global minimum for the reciprocal of the target’s kinetic energy occurs, approximately, at 27.5 Hz for both cases; this value
corresponds to one of the formation’s amplification frequencies.

Next, we perform the time signal optimization using the inverse source algorithm outlined in Table 2. We place three horizontal loads
at (0, 0)m, (−7, 0)m and (5, 0)m. The spatial description of the loads is given by eq. (29). The initial guess of the time signals is shown in
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(d) Frequency spectra of converged time signals (after

time signal optimization)
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(e) Converged time signals (after time signal and
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Figure 4. Experiment 1—time signals and frequency spectra.

Fig. 4(a). The initial guess contains a broad range of frequencies (Fig. 4b). The converged time signals and their frequency spectra are shown
in Figs 4(c) and (d), respectively. The optimizer converges on near-monochromatic time signals having 27.5 Hz as the dominant frequency.
The KEinc,s for the converged time signals is 0.90 J m−1. The plot of KETA,s is shown in Fig. 5(b). The fact that the optimizer converged to a
near-monochromatic signal having a frequency equal to the one obtained by the frequency sweep provides a validation for the inverse source
approach.

We next compare the results obtained by the inverse source approach when seeking to optimize the time signals of fixed-location
sources versus those obtained when seeking to simultaneously optimize source time signals and source locations. To this end, we begin the
simultaneous optimization process (Table 2) with the same initial guesses of signals and locations as those used for the time signal optimization
case with fixed locations. The converged, near-monochromatic time signals, exhibiting the dominant frequency of 27.5 Hz, are shown in
Fig. 4(e). Fig. 5(c) shows the plot of KETA,s. The KEinc,s achieved by the simultaneous signal-location optimization process is 1.26 J m−1.

The experiment highlights the importance of the load locations. For the short computational time of 1.5 s used in our experiment, the
loads placed at optimal locations were able to deliver 38 per cent more time-averaged kinetic energy to the target than the blindly placed
sources. In a field implementation of seismic EOR, where stimulation may be applied for days or even weeks at a time, the difference amounts
to a significant increase in efficiency.
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Figure 5. Experiment 1—time-averaged kinetic energy.

5.2 Experiment 2

In this experiment, we use formation model 2 and perform simultaneous time signal and load location optimization. We use six horizontally
acting surface loads to simulate the action of a fleet of Vibroseis actuators. The initial guess and converged values of the time signals are
shown in Fig. 6. Fig. 7 depicts the time-averaged kinetic energy KETA,s before and after the optimization process. The initial and converged
locations of loads are given in Table 6. It can be seen from the converged load locations that the optimizer tried to arrange the loads in three
groups centred at, approximately, (−26, 0)m, (−2, 0)m and (−37, 0)m. The optimizer is able to deliver a KEinc,s of 14.61 J m−1. As it can
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(b) Frequency spectra of initial guess
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(d) Frequency spectra of converged time signals

Figure 6. Experiment 2—time signals and frequency spectra.

be seen in Fig. 6, this time, the spectra of the converged signals have a rich content, accounting not only for the dominant amplification
frequencies of the formation but also for the complex propagation paths arising in the particular formation.

5.3 Experiment 3

Here, we use the deeper geological formation model 3 to perform simultaneous time signal and load location optimization. Note that the
target inclusion for the formation model 3 is located at about 550 m below the ground level, or otherwise, at a depth that is about twice that
of the target inclusion in formation model 2. Once again, we use six horizontally polarized loads to simulate the action of a fleet of Vibroseis
trucks. The experiment is performed for a total simulation time T = 2 s. The initial guess and converged values of the time signals are shown
in Fig. 8. Table 7 lists the load locations before and after the optimization. Fig. 9 depicts the distribution of KETA,s. KEinc,s for Fig. 9(b) is
4.32 J m−1.
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Figure 7. Experiment 2—time-averaged kinetic energy.

Table 6. Load locations for experiment 2.

Load Initial Converged
number locations locations

(m,m) (m,m)

1 (−35.00, 0) (−28.65, 0)
2 (−20.00, 0) (−24.61, 0)
3 (−5.00, 0) (−4.05, 0)
4 (10.00, 0) (−1.08, 0)
5 (18.00, 0) (−2.67, 0)
6 (37.00, 0) (37.41, 0)

5.4 Experiment 4

In the preceding numerical experiments, we assumed that the material properties of the layers are known with confidence. In practice, however,
the knowledge about the material properties and the geometric description of the geostructure in question is imperfect. To illustrate the effect
of the material uncertainties on the intensity of wave energy focusing, we conduct a simple numerical test.

In experiment 2, we resolved the inverse source problem for geological formation model 2 endowed with material properties given in
Tables 4 and 5. Here, we assume that the properties used in that experiment were ‘incorrect’ and that the ‘correct’ material properties are
those given in Tables 8 and 9. The difference between (Ka, Ga) and (Kb, Gb) values of the ‘correct’ and ‘incorrect’ profiles ranges between 12
and 50 per cent. We use the spatiotemporally optimized loads computed in experiment 2 (Figs 6c and d and Table 6) to excite the geological
formation model 2 endowed with the presumed ‘correct’ material properties. Fig. 10 shows the distribution of KETA,s. The KEinc,s value is
reduced by about 50 per cent from 14.69 to 7.51 J m−1. Thus, the uncertainties in the knowledge of the material properties tend to reduce the
amount of the kinetic energy delivered to the target, but the focusing appears to remain intact.

The effect of uncertainty in the input geometric and material data on the energy delivery to the target formation can be systematically
evaluated using sensitivity and uncertainty analyses. The sensitivity analysis can be used to compute the derivative of KEinc,s with respect to
a given material property of a layer. Moreover, the material properties can be treated as random variables described by suitable probability
distribution functions (PDFs), and the probability of failure to achieve a given KEinc,s value can be computed using a formal uncertainty
analysis. These analyses can aid the engineering and economic decision making process for the field implementation of the wave-based EOR
method. A detailed discussion of these methodologies is beyond the scope of this article.

The results of our numerical experiments are summarized in Table 10, where we report the values of maximum and minimum fluid
accelerations, along with the values of KEinc,s, and other characteristics of our numerical experiments. In experiment 1, we compared the
results of time signal optimization with those of simultaneous signal-location optimization. The simultaneous optimization procedure was able
to deliver about 38 per cent more KEinc,s to the target than the time signal optimization. Furthermore, the fluid accelerations af, max and af, min
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(c) Converged time signals
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(d) Frequency spectra of converged time signals

Figure 8. Experiment 3—time signals and frequency spectra.

(eqs 50 and 51) for the case of the simultaneous optimization, are about two times greater than those for corresponding the time-signal-only
optimization case. This experiment highlights the importance of placing loads at optimal locations, especially in the case of geological
formations exhibiting a high degree of heterogeneity. Experiments 2 and 3 were conducted to observe the effect of depth of the target on the
energy focusing and the magnitude of the fluid acceleration field. The KEinc,s for the deeper target is about three times lower than that for the
shallower target. The minimum and maximum acceleration values are reduced by a factor of two for the deeper target. But, more importantly,
in both cases the inverse source optimizer arrived at source characteristics, which successfully illuminated the target formation, independent
of the target’s depth.
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Table 7. Load locations for experi-
ment 3.

Load Initial Converged
number locations locations

(m,m) (m,m)

1 (−35.00, 0) (−33.88, 0)
2 (−20.00, 0) (−24.12, 0)
3 (−5.00, 0) (−7.53, 0)
4 (10.00, 0) (6.64, 0)
5 (18.00, 0) (14.53, 0)
6 (37.00, 0) (37.91, 0)

Figure 9. Experiment 3—time-averaged kinetic energy.

Table 8. ‘Correct’ elastic material properties
for formation model 2.

Material Cp Cv ρs

ID (m s−1) (m s−1) (kg m−3)

M1 1066 652 2200
M2 1348 825 2200
M3 1524 933 2200
M4 1666 1020 2200

Table 9. ‘Correct’ poroelastic inclusion properties for formation model 2.

Ka Ga Kf ρa ρf φ α μ k
(GPa) (GPa) (GPa) (kg m−3) (kg m−3) (kg (ms)−1) (Darcy)

0.833 0.625 2 1865 860 0.25 0.69 0.0025 0.5
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Figure 10. Experiment 4—KETA, s for geological formation model 2 endowed with the ‘correct’ material properties.

Table 10. Summary of numerical experiments.

Numerical Formation Loading Control KEinc, s af, max af, min

experiment model number direction variable(s) (J m−1) (mm s−2) (mm s−2)
number

1 1 Horizontal Time signal 0.90 5.16 1.03

Horizontal Time signal 1.26 10.20 1.93
and load location
(simultaneously)

2 2 Horizontal Time signal 14.61 6.51 0.99
and load location
(simultaneously)

3 3 Horizontal Time signal 4.32 2.95 0.53
and load location
(simultaneously)

6 E X T E N S I O N S

In this section, we discuss the formulation for an objective functional constructed using a measure of the input energy in addition to the metric
of motion in the target inclusion. We use the inner product of nodal forces and nodal displacements on the loaded portion of the free surface
to estimate the input energy. Consider the vector f̃ , given by,

f̃ = �t[0 0 F0 0 0 F1 · · · 0 0 FN]T . (52)
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Thus, the inner product,

uT f̃ = �tdT
0 F0 + �tdT

1 F1 + · · · + �tdT
N FN, (53)

can be used as a measure of the time-integrated input energy. A search for load characteristics that maximize the motion within the target
inclusion, while minimizing the input energy metric can now be conducted by defining an objective functional, Ld1 as:

Ld1 = uT ˜f
ρs uT Bin u = (uT f̃

)Ld . (54)

For the inverse source problem cast using Ld1 , the state problem is still given by eq. (23). The adjoint problem changes to

− QT p − 2Bin u

ρs (uT Bin u)2
+ f̃

ρs (uT Bin u)
= 0. (55)

The modified control equations are given by:

Aξmn (u, p, f ) =
N∑

k=0

τn(k�t)
(
λ̈

T
k,load + �tLd uT

k,load

) ∫
�load

θmp(x)
u d�, (56)

and

Aηm (u, p, f ) =
N∑

k=0

⎡
⎣
⎛
⎝ n f∑

j=1

ξmjτ j (k�t)

⎞
⎠(λ̈T

k,load + �tLd uT
k,load

) ∫
�load

∂θmp

∂ηm
(x)
u d�

⎤
⎦ . (57)

Functional (54) can be used when the interest is in maximizing energy delivery at the target formation, while expending minimal input energy.
We remark that the numerator of (54) can be replaced by more suitable definitions of input energy reflecting the equipment’s actual energy
expenditure. We also note that other target motion metrics can be accommodated by merely changing of the definition of Ld .

7 C O N C LU S I O N S

We presented an inverse source problem formulated for focusing wave energy to subterranean poroelastic formations. The developed approach
offers an important analytical tool for quantifying the strength of vibrations imparted to the particles trapped in the narrow pores of geological
formations. This analysis, in conjunction with pore-scale simulations, facilitates the design of field implementations of wave-based EOR
methods.

The inverse source problem deals with reservoir-scale wave propagation and seeks the optimal locations and temporal descriptions for
the surface loads, where optimality is defined based on the maximization of a desired motion metric within the reservoir. We formulated the
underlying wave physics in two spatial dimensions. The reservoir was abstracted as a poroelastic solid using Biot’s equations, and elastic
behaviour was assumed for formations surrounding the reservoir. The semi-infinite nature of the governing wave propagation was negotiated
using computationally efficient, hybrid PMLs. The optimization problem was cast for the field equations in their discretized form, instead of
their continuous form. Numerical experiments were conducted to determine the effectiveness of the proposed technique.

Our experiments suggest that optimal load locations of surface loads play a critical role in maximizing energy delivery to the target
formation. The optimizer is capable of arriving at source characteristics that successfully produce conditions of constructive interference at
the target, thus illuminating the formation. For the 2-D setting adopted in our numerical experiments, we computed that the acceleration of
fluid particles with respect to the solid matrix (pore walls) ranges between 1–10 mm s−2. The magnitude of the acceleration may be increased
by applying surface loads of higher amplitudes or by increasing the number of loads used. We remark, however, that the reported acceleration
levels may still lead to trapped particle release by one of the mechanisms discussed in Kurlenya & Serdyukov (1999), Kostrov & Wooden
(2002), Roberts & Abdel-Fattah (2009) and Beresnev et al. (2011).
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A P P E N D I X A : C O N T RO L P RO B L E M D E R I VAT I O N

A1 Source time signal optimization

Consider the derivative of A, with respect to the nodal-excitation parameter ξmn,

Aξmn (u, p, f ) =
N∑

i=0

λ̈
T
i

∂Fi

∂ξmn
. (A1)

We recall that, for each element,

Felem
k =

ns∑
i=1

∫
�load

⎡
⎣ θi1(x)
u

θi2(x)
u

⎤
⎦ n f∑

j=1

ξi jτ j (k�t) d�,

∂Felem
k

∂ξmn
=
∫

�load

⎡
⎣ θm1(x)
u

θm2(x)
u

⎤
⎦ τn(k�t) d�,

N∑
k=0

λ̈
T
k

∂Felem
k

∂ξmn
=

N∑
k=0

λ̈
T
k,load

∫
�load

⎡
⎣ θm1(x)
u

θm2(x)
u

⎤
⎦ τn(k�t) d�, (A2)

where, λ̈k,load contains the values of adjoint variable corresponding to the degrees-of-freedom represented by rows of vector 
u on �load.

A2 Source location optimization

For any given load location parameter ηm, the derivative of A is given by,

Aηm (u, p, f ) =
N∑

i=0

λ̈
T
i

∂Fi

∂ηm
. (A3)

For each element,

Felem
k =

ns∑
i=1

∫
�load

⎡
⎣ θi1(x, ηi )
u

θi2(x, ηi )
u

⎤
⎦ n f∑

j=1

ξi jτ j (k�t) d�,
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∂Felem
k

∂ηm
=
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�load
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⎣ ∂θm1(x,ηm )

∂ηm

u

∂θm2(x,ηm )
∂ηm


u
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⎦ n f∑

j=1

ξmjτ j (k�t) d�,

N∑
k=0

λ̈
T
k

∂Felem
k

∂ηm
=

N∑
k=0

λ̈
T
k,load

∫
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⎡
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∂ηm

u

∂θm2(x,ηm )
∂ηm


u

⎤
⎦ ·

n f∑
j=1

ξmjτ j (k�t) d�, (A4)

where, λ̈k,load contains the values of adjoint variable corresponding to the degrees-of-freedom represented by rows of vector 
u on �load.

A P P E N D I X B : E L E M E N T M AT R I C E S

Here, we present concise definitions of element matrices that form the global matrices in eq. (12). A detailed description, and definitions of
parameters αi (i = 1, 2), β i (i = 1, 2) etc., can be found in Kucukcoban & Kallivokas (2013). We define the following symbols to simplify the
equations:

D1 = Ka − 2

3
Ga + α2 R

φ2
, D2 = R

φ2
, D3 = 1 + C1

φ
, D4 = 1

κ
= η

k
, D5 = Kb − 2

3
Gb. (B1)

DMloc
pq =

∫
�loc

D
p

T
q d�, DQloc

i j,pq =
∫

�loc

D
∂
p

∂xi

∂
T
q

∂x j
d�, (B2)

Ai jk =
∫

�PML

i j
∂
u

∂xk
�T d�, Fi =

∫
�load


uf i d�, (B3)

Nik =
∫

�PML

k
2G + D5

4G(G + D5)
��T d�, if i = 1,

=
∫

�PML

k
D5

4G(G + D5)
��T d�, if i = 2,

=
∫

�PML

k
1

G
��T d�, if i = 3. (B4)

Element matrices for the poroelastic inclusion:

Ma =

⎡
⎢⎢⎢⎢⎢⎣

ρ f D3Ma
ww 0 ρ f Ma

wu 0

0 ρ f D3Ma
ww 0 ρ f Ma

wu

ρ f Ma
uw 0 ρaMa

uu 0

0 ρ f Ma
uw 0 ρaMa

uu

⎤
⎥⎥⎥⎥⎥⎦ , (B5)

Ca =

⎡
⎢⎢⎢⎢⎢⎣

D4Ma
ww 0 0 0

0 D4Ma
ww 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (B6)

Ka =

⎡
⎢⎢⎢⎢⎢⎣

D2Qa
11,ww D2Qa

12,ww αD2Qa
11,wu αD2Qa

12,wu

D2Qa
21,ww D2Qa

22,ww αD2Qa
21,wu αD2Qa

22,wu

αD2Qa
11,uw αD2Qa

12,uw (2G + D1) Qa
11,uu + GQa

22,uu GQa
21,uu + D1Qa

12,uu

αD2Qa
21,uw αD2Qa

22,uw GQa
12,uu + D1Qa

21,uu (2G + D1) Qa
22,uu + GQa

11,uu

⎤
⎥⎥⎥⎥⎥⎦ . (B7)

Element matrices for the elastic domain:

Mreg =
⎡
⎣ ρbMreg

uu 0

0 ρbMreg
uu

⎤
⎦ , Creg =

⎡
⎣ 0 0

0 0

⎤
⎦ , (B8)
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Kreg =
⎡
⎣ (2G + D5) Qreg

11,uu + GQreg
22,uu GQreg

21,uu + D5Qreg
12,uu

GQreg
12,uu + D5Qreg

21,uu (2G + D5) Qreg
22,uu + GQreg

11,uu

⎤
⎦ . (B9)

Element matrices for the PMLs:

MPML =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρbaMPML
uu 0 0 0 0

0 ρbaMPML
uu 0 0 0

0 0 −N1a N2a 0

0 0 N2a −N1a 0

0 0 0 0 −N3a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B10)

CPML =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρbbMPML
uu 0 Aα21 0 Aα12

0 ρbbMPML
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Aα21 0 −N1b N2b 0

0 Aα12 N2b −N1b 0

Aα12 Aα21 0 0 −N3b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B11)

KPML =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρbcMPML
uu 0 Aβ21 0 Aβ12

0 ρbcMPML
uu 0 Aβ12 Aβ21

Aβ21 0 −N1c N2c 0

0 Aβ12 N2c −N1c 0

Aβ12 Aβ21 0 0 −N3c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B12)


