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Abstract

We have recently discussed the performance of local second-order two-dimensional absorbing boundary con-
ditions of elliptical shape for scattering and radiation problems involving sound-hard obstacles embedded in a
full-plane. In this article, using the method of images, we extend the applicability of elliptically shaped trun-
cation boundaries to semi-in nite acoustic media. For problems in either the time- or the frequency-domains,
involving near-surface structures of elongated cross-sections, we show that signi cant computational savings
are attainable when compared against semi-circular truncation geometries.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When domain discretization methods are used in the numerical simulation of acoustic waves in un-
bounded domains, whether of in nite or semi-in nite extent, there always arises the need to truncate
the unbounded domain to a  nite computational one. The truncation is achieved through the intro-
duction of an arti cial boundary that limits the extent of the unbounded domain. For well-posedness
of the ensuing initial-and-boundary-value problem (IBVP) over the  nite domain, an appropriate
(absorbing, silent, arti cial, etc.) condition need also be prescribed on the truncation boundary. Typ-
ically, it is di:cult to obtain an exact absorbing condition for arbitrary truncation geometries (if it
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at all exists). Such an exact condition can be seen as a near- eld instantiation of the Sommerfeld
radiation condition—realized closer to the origin rather than at in nity.
Exact conditions on truncation boundaries are referred to as DtN (Dirichlet-to-Neumann) maps,

for they typically relate the Dirichlet to the Neumann datum on the boundary [1,2]. DtN conditions
are, by construction, spatially and temporally non-local, even for the few canonical geometries for
which the apparatus of separation of variables allows for their construction. The non-locality of DtN
maps imposes onerous computational requirements. By contrast, and in order to overcome the exact
condition’s di:culties, local approximants in both time and space of the DtN maps oJer the bene t
of reduced computational cost at the expense of accuracy. Oftentimes, but not always, the trade-oJ
is user-controllable, via: (a) the order of the local approximant (increasing orders lead to increased
spatial and temporal coupling); and (b) the location of the truncation boundary (the farther the
boundary is placed, the fewer the reLections are).
For the computational bene ts they aJord, it is without surprise that a signi cant amount of work

has been devoted to devising local constructs of the truncation condition. Extensive surveys, both
early and recent, of developments in this area include the works in [2–6]. Local constructs can be
roughly classi ed in two categories: those based on rational approximations of the dispersion relation,
and those based on asymptotic expansions of the far- eld solution or the solution exterior to the
computational domain. As examples, we mention here the pioneering works of Engquist and Majda
[7,8], and Bayliss and Turkel [9–11]. Most of these and related works, however, were limited to
canonical geometries (straight, circular, or spherical boundaries). It is conceivable though that other
geometries may oJer computational advantages, especially in the presence of elongated scatterers.
However, numerical results pertaining to non-circular or non-spherical geometries are scant.
For example, in the context of two-dimensional elliptically shaped local boundaries we mention

ad hoc (as opposed to systematic) developments [12–17] largely based on generalizations of the
Bayliss–Turkel conditions to elliptical or general convex geometries without, however, the bene t of
generalization to higher-order conditions, and the systematic works of Grote and Keller [18], Antoine
et al. [19], Barry et al. [20], and Kallivokas et al. [21–23]. Finite element implementations of up to
second-order conditions have recently appeared for elliptical and arbitrarily shaped geometries [24,25]
for frequency-domain applications only, whereas comparisons of elliptical boundary developments
up to 1996 have also been reported [26,27].
The works discussed thus far pertain mostly to the full-plane or full-space case. In [28], we showed

how a family of absorbing boundary conditions prescribed on arbitrarily-convex truncation surfaces
(three-dimensional case) can be applied to the half-space problem; therein, numerical results were
presented for semi-spherical truncation boundaries endowed with second-order conditions. To the
best of our knowledge, local absorbing conditions applicable to both time- and frequency-domain
problems for half-plane problems prescribed on non-circular boundaries have not appeared. Thus,
this paper  lls this gap by extending past work [29,28], most notably the approach followed for the
half-space three-dimensional case [28]; herein, we present numerical results for elliptically-shaped
boundaries for the half-plane case in both the frequency- and time-domains using a local second-order
absorbing boundary condition.
The rest of the article is organized as follows: we treat  rst the continuous problem starting with the

full-plane setting, and repeat the main theoretical results from recent work [30]; using the full-plane
development, we particularize next the conditions to the half-plane case and provide the framework
for resolving the waves in the semi-in nite medium using the method of images. In the numerical
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section we present results pertaining to both canonical and arbitrary scatterers using both elliptically
shaped and circular truncation geometries for applications in the time- and frequency-domains and
establish the computational advantages elliptically shaped boundaries oJer. Lastly, in Appendix A,
we provide an exact solution to a prototype problem involving cylindrical obstacles, which is used
to compare against the numerical results.

2. The continuous problem

2.1. Propagation in full-plane

We consider  rst the exterior problem in a full-plane governed by the time-dependent wave
equation. Let � be a closed curve with exterior � ⊂ R2; � is occupied by a linear, inviscid, and
compressible Luid. Without loss of generality we focus on the scattering problem in which a traveling
plane wave p0 impinges upon a rigid structure 1 (Fig. 1a), and seek to determine the scattered (or
total) pressure  eld within �. 2 The strong form of the problem can be stated as
Given p0(x; t) with x∈�,  nd p(x; t) such that

Op(x; t) = c2Qp(x; t); x∈�; t ¿ 0; (1)

p�(x; t) + p0
�(x; t) = 0; x∈�; t ¿ 0; (2)

lim
r→∞

√
r(pr +

1
c
ṗ) = 0; (3)

p(x; 0) = 0; ṗ(x; 0) = 0; x∈ S�; (4)

where p denotes scattered pressure, x is the position vector, t is time, � is the outward unit normal
on �, c is the velocity of wave propagation, 
 is the Laplace operator, an overdot denotes derivative
with respect to time, and p� denotes the normal derivative of the scattered pressure p. Condition (2)
implies that the normal Luid acceleration vanishes on the boundary of the scatterer, or equivalently,
that the normal derivative of the total pressure also vanishes on �. Condition (3), in which r is
radial distance and pr the derivative of the pressure along the radial direction, is the Sommerfeld
radiation condition. Condition (4) indicates that the system is taken to be initially at rest.
Following classical lines for resolving unbounded domain problems, the exterior in nite region

� is truncated via the introduction of an arti cial boundary �a. The process gives rise to the  nite
computational domain �f (Fig. 1b). For well-posedness of the associated IBVP over the  nite �f ,
a boundary condition need also be prescribed on the truncation boundary �a. This condition, which
can be determined in terms of the actual solution p on �a, admits the form [23]:

p�(x; t) =F[pt(·; ·)](x); x∈�a; (5)

in which the dots following pt indicate dummy variables, and F is an integral operator that depends
on pt , the time history of p, i.e.,

pt(t) = p(t − �);∀�: 06 �6 t: (6)

1 Throughout this article, the scatterer is considered to be immobile.
2 Radiation problems can be similarly treated.
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Fig. 1. (a) Exterior scattering problem in unbounded full-plane; and (b) reduced model with  nite Luid region �f and
arti cial boundary �a.

F is non-local in time and space, that is to say, the motion at any given instant t at every point on
the arti cial boundary �a is coupled with the time histories of all other points on �a. The non-local
character of the exact F makes it unsuitable for implementation in the context of domain dis-
cretization methods. In [21], we developed a family of localized approximants to F for arbitrarily
convex truncation boundaries and have used its members in applications implicating circular trun-
cation boundaries in a full-plane. Recently, in [30], we presented numerical results for elliptically
shaped boundaries also in a full-plane. Here, we use a second-order approximant to F, denoted by
F2, prescribed on an elliptical boundary for half-plane applications; this local second-order condition
is particularly well-suited for numerical implementation using  nite elements. In the next section,
we discuss the essential theoretical results from [30] that lead to the second-order approximant. We
remark that, with the introduction of the arti cial boundary and the approximant F2, the IBVP
(1)–(4) is now replaced by

Op(x; t) = c2Qp(x; t); x∈�f ; t ¿ 0; (7)

p�(x; t) = −p0
�(x; t); x∈�; t ¿ 0; (8)

p�(x; t) =F2[p(x; t)]; x∈�a; t ¿ 0; (9)

p(x; 0) = 0; ṗ(x; 0) = 0; x∈ S�f : (10)

2.2. The absorbing boundary

Let �a (the absorbing boundary) be smooth and convex and let it be described by the parametric
representation X(
), where X denotes the position vector on �a, and 
 is an arc-length parameter
(Fig. 2). Using a Fermi-type coordinate system, it can be shown [30,20,21] that a second-order
absorbing boundary condition on �a is given by

ṗ� + �p� = −1
c
Op+

(
1
2
� − �

c

)
ṗ+

1
2
cp

 +

(
1
8
�2c +

1
2
��

)
p; (11)

where � is an arbitrary non-negative parameter, and � denotes the curvature of �a (for convex �a,
�(x)¡ 0;∀x∈�a).
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Fig. 2. Arti cial boundary �a in a Fermi-type coordinate system characterized by the planar curve parameter 
 and scalar
distance metric �.

The parameter � in (11) has been formally introduced for stability in time-domain applications.
Speci cally, in [30] we derived (11) (and all members of the family of approximants) using asymp-
totic expansions, in the Laplace transform domain, of the solution to the problem exterior to �a. The
parameter � was introduced into these expansions to ensure the stability of the solution when the
expansions are transformed back to the time-domain. From a physical point of view, � represents
damping introduced through the boundary �a. In [20,21], it was shown that, to ensure the dissipa-
tivity of the conditions, � need be greater than a critical value above which exponential error growth
in time-domain applications is prevented. In [30], for elliptically shaped boundaries, we used:

�(x) = −c�(x): (12)

With choice (12), the second-order condition (11) becomes

ṗ� − c�p� = −1
c
Op+

3
2
�ṗ+

1
2
cp

 − 3

8
�2cp: (13)

It can be easily veri ed that either (11) or (13) cannot be readily incorporated into a weak form
tantamount to the strong statement of the modi ed IBVP (7)–(10), since (11) or (13) contain both
the normal derivative p� and its  rst time derivative, i.e., ṗ�. To do this e:ciently, we introduce two
auxiliary variables on the arti cial boundary, q(1) and q(2), and decompose (13) into the following
equivalent set of three equations:

− p� =
1
c
ṗ − 1

2
�p − c

2
q(1)

 − c

8
�2q(2); (14)

p

 − q̇(1)

 + c�q(1)

 = 0; (15)

p − q̇(2) + c�q(2) = 0: (16)

Eqs. (14)–(16) allow now the ready incorporation of the second-order condition into a variational
statement for the IBVP (7)–(10), at the minimal expense of two additional variables on the absorbing
boundary.

2.3. Propagation in a half-plane

We consider next the half-plane propagation problem, and in particular the scattering problem
that arises when a traveling wave pinc impinges upon a submerged near-surface object (Fig. 3).
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Fig. 3. (a) Exterior scattering problem in a half-plane; and (b) reduced model with  nite Luid region �f , arti cial boundary
�a, and free surface �f .
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Fig. 4. Method of images: full-plane problem adjoint to the half-plane problem shown in Fig. 3b.

Typically, in full-plane problems, one need only be concerned with the motion within the  nite Luid
domain: it is expected that the arti cial boundary will resolve any outgoing waves to the degree
allowed by the order of the approximant to the exact truncation condition (second order here). By
contrast, in half-plane scattering problems where full-plane absorbing boundary conditions are used,
the introduction of an arti cial boundary might give rise to additional errors, particularly in regions
close to the intersection of the arti cial boundary with the free surface. This is especially true if one
were to solve for the scattered wave eld in a manner identical to that of the preceding section (the
scattered wave eld on the free surface is non-zero). The peculiarity of the half-plane problem stems
from the presence of a free surface which the absorbing boundary conditions, developed originally
for full-plane problems, do not readily account for.
To overcome the di:culty imposed by our desire to use full-plane conditions in half-plane prob-

lems, we resort to the method of images in order to: (a) ensure the appropriateness of the use
of the full-plane condition (13); and (b) ensure that the wave eld one needs to solve for remains
zero at all times on the free surface. To this end, we consider the half-plane problem depicted in
Fig. 3(b) and its adjoint full-plane problem depicted in Fig. 4. In the latter  gure, preL represents
the image incident  eld of the incident pressure  eld pinc in the positive half-plane (y¿ 0). In other
words, in the negative half-plane preL represents the free- eld reLected wave eld, i.e., the wave eld
generated when pinc impinges on the free-surface in the absence of any scatterers. We remark that
we require that the free surface be an axis of symmetry of the convex planar region bounded by
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the (closed-curve) arti cial boundary �a. Having turned our attention to the half-plane problem,
henceforth �a is used to denote the (open-curve) arti cial boundary in the negative half-plane only
(Fig. 4).
Let us de ne the image incident pressure  eld as

preL(x; y; t) = −pinc(x;−y; t); ∀y: (17)

The total pressure  eld is

ptot(x; y; t) = p0(x; y; t) + p(x; y; t); ∀y; (18)

where p denotes part of the scattered  eld, and

p0(x; y; t) = pinc(x; y; t) + preL(x; y; t); ∀y: (19)

On account of symmetry,

ptot(x; y; t) = −ptot(x;−y; t); ∀y: (20)

Therefore, on the free surface �f (y = 0), one has

ptot(x; 0; t) = 0; (21)

and from (17)

pinc(x; 0; t) + preL(x; 0; t) = 0: (22)

Clearly, from (19) and (22), there holds on the free-surface �f (y = 0):

p0(x; 0; t) = pinc(x; 0; t) + preL(x; 0; t) = 0: (23)

Thus, p0 above denotes the total free- eld wave eld that would have been generated in the absence
of any scatterers. p in (18) denotes a scattered pressure wave eld; in physical terms, p is equal to
the sum of the scattered  elds generated by the real and image scatterers when they are insoni ed
by pinc and preL, respectively. With these de nitions, p is equal to the part of the scattered  eld
understood as the total wave eld less the free- eld wave p0. Notice that by virtue of (18), (21),
and (23), there also holds on �f

p(x; 0; t) = ptot(x; 0; t) − p0(x; 0; t) = 0: (24)

We remark that the total scattered wave eld psc generated in the negative half-plane when pinc

impinges on the scatterer is given by

psc(x; y; t) = p(x; y; t) + preL(x; y; t);∀y6 0: (25)

It can be easily seen now that the adjoint problems (Figs. 3(b) and 4) are equivalent, provided that
in the half-plane case one solves for the scattered wave eld p, prescribes (24) on the free surface,
and uses p0 (19) as the excitation. These observations, together with the fact that the right-hand side
of the absorbing boundary condition (13) is an odd function with respect to the y coordinate, allow
for the ready use of the full-plane condition (13) in the half-plane problem without any modi cation,
i.e., one needs to pose the problem for p only over the lower half-plane in Fig. 4, while prescribing
(13) on the restriction of the full-plane arti cial boundary in the half-plane. The associated strong
form can be cast as
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Given an incident  eld pinc(x; t) with x∈�f (Fig. 4),  nd p(x; t) such that

Op(x; t) = c2Qp(x; t); x∈�f ; t ¿ 0; (26)

p�(x; t) = −p0
�(x; t) = −9pinc(x; t)

9� − 9preL(x; t)
9� ; x∈�; t ¿ 0; (27)

− p�(x; t) =
1
c
ṗ(x; t) − 1

2
�(x)p(x; t) − c

2
q(1)

 (x; t)

−c
8
�2(x)q(2)(x; t); x∈�a; t ¿ 0; (28)

p

(x; t) − q̇(1)

 (x; t) + c�(x)q(1)

 (x; t) = 0; x∈�a; t ¿ 0; (29)

p(x; t) − q̇(2)(x; t) + c�(x)q(2)(x; t) = 0; x∈�a; t ¿ 0; (30)

p(x; 0) = 0; ṗ(x; 0) = 0; x∈ S�f : (31)

3. The discrete problem

3.1. Finite elements

Following classical lines the weak form corresponding to (26)–(31) can be easily shown to be

1
c2

∫
�f

�p Op d�f +
∫
�f

∇�p · ∇p d�f +
1
c

∫
�a

�pṗ d�a − 1
2

∫
�a

��pp d�a

+
c
2

∫
�a

�p
q
(1)

 d�a − c

8

∫
�a

�2�pq(2) d�a

+
c
2

∫
�a

�q(1)
 p
 d�a − c
2

∫
�a

�q(1)
 q̇(1)
 d�a +
c2

2

∫
�a

��q(1)
 q(1)
 d�a

− c
8

∫
�a

�2�q(2)p�a +
c
8

∫
�a

�2�q(2) q̇(2) d�a − c
8

∫
�a

�3�q(2) q(2) d�a

=
∫
�
�pp0

� d�a: (32)

The semi-discretized equations corresponding to the variational form (32) can be obtained read-
ily by using standard piecewise polynomials to represent the test and trial functions implicated in
(32) (details were given in [30]). The resulting ordinary diJerential equations have the following
second-order structure:

M OU + CU̇ + KU = F ; (33)
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where

M =



Mp�p� Mp�p�f

0

Mp�f p� Mp�f p�f
Mp�f p�a

0 Mp�ap�f
Mp�ap�a


 ; (34)

C =



0 0 0

0 0 0

0 0 C a


 ; K =



Kp�p� Kp�p�f

0

Kp�f p� Kp�f p�f
Kp�f p�a

0 Kp�ap�f
Kp�ap�a

+ K a


 : (35)

U is the vector of the unknown nodal quantities, i.e.

UT = [pT�; pT�f
; SpT�a

] (36)

and

FT = [f Tp�
; 0T; 0T]: (37)

In the above, SpT�a
= [pT�a

; q(1)T�a
; q(2)T�a

], fp� is the discretized form of the right-hand side of (32), and
pT�, p

T
�f
, pT�a

denote partitions of p over �, �f , and �a, respectively. Notice that the contributions of
the absorbing boundary enter through the bottom right blocks in the damping and stiJness matrices
(35).
For completeness, we repeat the expressions given in [30,21], that characterize the contributions

of the absorbing boundary. As it can be seen from the weak form (32) or the global matrices
(35), the contributions of the absorbing boundary give rise to a boundary-only element (Fig. 5) that
is completely characterized by the damping and stiJness matrices C a and K a; the corresponding
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element matrices are given as

ka =




−1
2

∫
e
�   T c

2

∫
e
 
 T


 −c
8

∫
e
�2   T

c
2

∫
e
 
 T



c2

2

∫
e
� 
 T


 0

−c
8

∫
e
�2   T 0 −c2

8

∫
e
�3   T



; (38)

ca =




1
c

∫
e
  T 0 0

0 −c
2

∫
e
 
 T


 0

0 0
c
8

∫
e
�2   T



: (39)

 and  
 above are the shape functions and their tangential derivatives, respectively (details on
the shape functions are provided in Appendix B). The subscript e denotes a line element on the
truncation boundary �a, and the line diJerential (d�e

a) has been dropped throughout for brevity. We
remark that one need only mesh the  nite region �f and simply attach the absorbing element on
the boundary �a without any further discretization within the in nite exterior region. Notice that all
matrices are frequency-independent and symmetric, thus readily allowing for applications in either
the time- or frequency-domain, while maintaining the overall symmetry of the algebraic systems
resulting from the discretization of the interior computational domain.

4. Numerical results

Two types of rigid scatterers submerged in a half-plane at diJerent depths of immersion are
considered; a circular cylindrical, and a cigar-shaped scatterer. We consider insoni cation by both
time-harmonic and transient plane waves. Numerical results are obtained using the second-order
absorbing boundary condition prescribed on both semi-circularly- and semi-elliptically-shaped
boundaries. All subsequent references to scattered pressure pertain to the partial scattered  eld ob-
tained as a solution to (33); to recover the total scattered  eld one need only add preL (see A.2).

4.1. Cylindrical scatterer

The geometry of the problem is depicted in Fig. 6; we denote the major semi-axis of the
semi-elliptical boundary with sM, the minor semi-axis with sm, and their ratio with � = sM=sm.
The cylindrical scatterer has a radius of a. In all cases, the mesh density is kept the same; it is
characterized by a typical element size metric of 0:02a. For the time-harmonic cases we use a fre-
quency sweep between ka=0:1 and ka=10 (low to medium range). With these choices the smallest
wavelength is 0:6a; Therefore, for the highest frequency we consider, the mesh density results in
roughly 30 points per wavelength—more than enough to resolve locally the waves. We use linear
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Fig. 6. Model of a rigid circular scatterer in a half-plane surrounded by a semi-elliptical absorbing boundary.

Table 1
Computational cost in terms of the total number of degrees-of-freedom per case for the circular cylindrical scatterer

sM Total DOF d=2a

�= 1 �= 2

4:0a 57,850 23,554 2.0
3:0a 28,658 10,400 1.2
3:0a 28,058 10,248 1.5

isoparametric elements for both domain Luid elements and for the absorbing boundary elements; for
all numerical experiments we used unstructured quadrilateral meshes.
We consider three diJerent depths of immersion, three angles of incidence (�=90◦ (vertically prop-

agating wave), 45◦, and a grazing angle of 5◦), and both semi-circular and semi-elliptical boundaries.
Table 1 summarizes for all cases the associated computational cost in terms of degrees-of-freedom.
Figs. 7–9 depict the amplitude of the scattered pressure  eld as computed at various points on

the cylindrical scatterer’s boundary (denoted in the plots by the polar angle �). Both exact and
approximate solutions are shown; the latter correspond to a semi-circular boundary (� = 1), and
a semi-elliptical boundary (� = 2). Clearly, there is excellent agreement between the exact and
circular-boundary cases; the agreement between the exact and the elliptical boundary is also quite
satisfactory in all cases. We observe the greatest deviation from the exact solution in the case of the
elliptical boundary (�=2) when the wave impinges at the grazing angle (Fig. 9). We remark though,
that the use of the semi-elliptical geometries has allowed for considerable computational savings over
the semi-circular boundaries; referring to Table 1, the savings, again in terms of degrees-of-freedom,
are of the order of 60%. We further remark that the accuracy of both boundaries at the low-frequency
end is also quite satisfactory.
Whereas Figs. 7–9 depict the response point-wise, in Fig. 10 we compare the numerical solution

against the exact for the distribution of the scattered pressure amplitude along both the scatterer’s
boundary (�), and the absorbing boundary (�a) for a single scattering case (angle of incidence
�= 45◦, ka= 1). Notice again that the agreement is quite satisfactory.
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Fig. 7. Scattered pressure amplitude for a circular cylindrical scatterer; depth of immersion d=2a= 2:0; sM = 4:0a.

Fig. 11 depicts a relative error measure E on the scatterer’s boundary using L2-norms for various
ratios � and for a single immersion depth d=2a = 2:0 and angle of incidence � = 45◦. The error is
de ned as

E =
[
∫
� ‖pex − papp‖2 d�]1=2
[
∫
� ‖pex‖2 d�]1=2

× 100%; (40)

where pex is the exact solution derived from (A.16), and papp is the  nite element solution obtained
by solving (33). In all cases, it appears that the circular boundary outperforms the elliptical one at an
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Fig. 8. Scattered pressure amplitude for a circular cylindrical scatterer; depth of immersion d=2a= 1:2; sM = 3:0a.

increased computational cost. We remark however that the error levels for the elliptical boundaries
(e.g. �= 1:5), are still quite satisfactory.

4.2. Cigar-shaped scatterer

To illustrate the applicability of the boundaries and the corresponding absorbing  nite elements
to problems of practical interest, we consider next an elongated cigar-shaped scatterer (Fig. 12),
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for which the semi-elliptical boundary oJers tighter circumscription, and therefore the potential for
increased computational gains.
Since there is no exact solution in this case, we obtain a reference solution to compare against

by using a semi-circular absorbing boundary with a radius of 22a endowed with the second-order
condition. Table 2 summarizes the number of degrees-of-freedom used for each of the four cases
for which we computed the response. The typical mesh element metric is 0:25a. Fig. 13 depicts
the distribution of the real and imaginary parts of the scattered  eld on the cigar-shaped scatterer’s
boundary for two frequencies (ka = 1 and ka = 3) and for a single incidence angle of 45◦. The
agreement between the exact and all approximate solutions is excellent. Notice though (Table 2)
that, for comparable accuracy, the computational cost associated with �= 2 is less than half that of
the semi-circular boundary.
To illustrate the applicability of the absorbing elements to transient simulations, Fig. 14 pertains to

a direct time-domain solution of (33) for the scattered pressure  eld due to the insoni cation of the
cigar-shaped scatterer by a traveling plane wave. We use the implicit trapezoidal rule to integrate
in time the semi-discrete form (33) with a time-step Qt c=a = 0:1; the time signal for the plane
wave is given by a  nite-duration modi ed Ricker pulse with a central dimensionless frequency of 1
(see [30] for details). Again, as seen from Fig. 14 the agreement between the reference solution and
the various elliptical boundaries at discrete points on the surface is excellent.
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5. Conclusions

In this paper we discussed an e:cient methodology for resolving scattered or total pressure  elds
arising in the numerical modeling of near-surface scatterers submerged in an acoustic half-plane. The
primary objectives of this article were: (a) to provide the theoretical basis for extending full-plane
conditions to the half-plane using the method of images; and (b) to demonstrate the signi cant
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Table 2
Computational cost in terms of the total number of degrees-of-freedom per case for the cigar-shaped scatterer

Semi-axes ratio Total DOF
�= sM=sm

2.0 23 798
1.5 32 914
1.0 52 174
Reference 321 008

computational gains that are attainable, at no or minimal loss of accuracy, when elliptically-shaped
boundaries are adopted over their circular counterparts for the truncation of the semi-in nite extent
of the physical domain. Borrowing from full-plane developments of earlier works, we have shown
that the ease by which second-order conditions can be incorporated into existing  nite element codes
extends to the half-plane case as well.
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Appendix A. The exact solution

In order to compare the numerical results obtained using the outlined approach against exact
solutions to canonical problems, we provide next the solution to the scattering problem arising when
a time-harmonic plane wave insoni es a near-surface rigid circular cylindrical scatterer. While the
exact solution to this problem appears not to be readily available in the literature, a closely related
solution that follows similar lines, albeit for the more complex case of an elastic cylinder, can be
found in [31].
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Accordingly, we resort again to the method of images in conjunction with an addition theorem
for cylindrical wave functions. We consider the geometry shown in Fig. 15. The image and real
scatterers are separated by a distance d between their centers O′ and O, respectively.
We consider an incident time-harmonic plane wave pinc impinging at an angle of incidence � with

respect to the positive x-axis.

pinc(x; y; t) = eik(x cos �+y sin �)e−i!t: (A.1)

Similarly, the image incident, or free- eld reLected wave, preL, is

preL(x; y; t) = −eik(x cos �−y sin �)e−i!t; (A.2)

where k denotes wavenumber (k=!=c). Using polar coordinates (r; �) for the system that has origin
at O (Fig. 15), and the following transformations:

x = Sx = r cos �; y = Sy − d
2
= r sin � − d

2
; (A.3)

the real and image incident waves (A.1) and (A.2), respectively, can be written as (we drop the
e−i!t dependence from all subsequent expressions):

pinc(r; �) = e−ik(d=2) sin � eikr cos(�−�); (A.4)

preL(r; �) = −eik (d=2) sin � eikr cos(�+�): (A.5)
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Using a Jacobi–Auger expansion [32], Eqs. (A.4)–(A.5) can be further re-written in terms of series
of cylindrical Bessel functions, as

pinc(r; �) = e−ik(d=2) sin � eikr cos (�−�)

=e−ik(d=2) sin �
∞∑

n=−∞
inJn(kr) ein�e−in�; (A.6)

preL(r; �) =−eik(d=2) sin � eikr cos (�+�)

= − eik(d=2) sin �
∞∑

n=−∞
inJn(kr) ein�ein�: (A.7)

We next de ne two additional wave elds, namely, the scattered  eld due to the real cylinder preal
sc

(if the real cylinder alone were occupying the full-plane and were insoni ed by pinc), and the
scattered  eld due to the image cylinder pimage

sc (again, if the image cylinder alone were occupying
the full-plane and were insoni ed by preL). Accordingly

preal
sc (r; �) =

∞∑
n=−∞

anH (1)
n (kr)ein�; (A.8)

pimage
sc (r′; �′) =

∞∑
n=−∞

bnH (1)
n (kr′)ein�

′
: (A.9)

Both scattered  elds above have been obtained as solutions to the Helmholtz equation written in the
polar coordinate systems with origins at O and O′, respectively. Clearly, the sum of all four  elds
is equal to the total pressure  eld for the half-plane problem, i.e.,

ptot = pinc + preL + preal
sc + pimage

sc : (A.10)

Since on the free surface �f , the total  eld (A.10) must vanish (see (21)), and, by construction, the
sum of the real and image incident  elds also vanishes on �f (see (23)), there results

preal
sc (r; �) + pimage

sc (r′; �′) = 0 on �f : (A.11)

Using r′ ≡ r and �′ ≡ 2( − � on �f , (A.11) becomes

preal
sc (r; �) + pimage

sc (r; 2( − �)

=
∞∑

n=−∞
anH (1)

n (kr)ein� +
∞∑

n=−∞
bnH (1)

n (kr)ein(2(−�)

=
∞∑

n=−∞
anH (1)

n (kr)ein� +
−∞∑
m=∞

b−mH
(1)
−m(kr)e

im�

=
∞∑

n=−∞
anH (1)

n (kr)ein� +
∞∑

m=−∞
b−mem(iH (1)

m (kr)eim�
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=
∞∑

n=−∞
anH (1)

n (kr)ein� +
∞∑

n=−∞
b−n(−1)nH (1)

n (kr)ein�

=
∞∑

n=−∞
[an + (−1)nb−n]H (1)

n (kr)ein� = 0: (A.12)

Therefore,

b−n = (−1)n+1an: (A.13)

Next, we use an addition theorem for cylindrical waves [32] to transform pimage
sc (A.9) to the same

coordinate system (origin at O) as preal
sc (A.8). Accordingly

H (1)
n (kr′)ein�

′
=

∞∑
m=−∞

{
H (1)
n−m(kd) Jm(kr) e

i[(n−m)3(=2+m�]; r6d

Jm(kd)H
(1)
n−m(kr) e

i[m3(=2+(n−m)�]; r¿d

}
: (A.14)

Using (A.13), (A.14), after manipulation of the series indices, becomes:

pimage
sc (r; �) =

∞∑
n=−∞

{
(−1)n+1 in

Jn(kr)

H (1)
n (kr)

ein�
[ ∞∑
m=−∞

amim
H (1)
m+n(kd)

Jm+n(kd)

]
;
r6d

r¿d

}
: (A.15)

Substituting (A.6)–(A.8) and (A.15) into (A.10), the total pressure ptot becomes

ptot(r; �) =pinc(r; �) + preL(r; �) + preal
sc (r; �) + pimage

sc (r; �)

=
∞∑

n=−∞

[
e−ik(d=2) sin � ine−in� Jn(kr)

−eik (d=2) sin � inein� Jn(kr) + anH (1)
n (kr) + (−1)n+1 in

×
Jn(kr)

H (1)
n (kr)

ein�
[ ∞∑
m=−∞

amim
H (1)
m+n(kd)

Jm+n(kd)

]]
;
r6d

r¿d:
(A.16)

Eq. (A.16) provides the solution for the total pressure anywhere within the half-plane (y6 0). All
that remains is to compute the unknown series coe:cients an. To this end, we consider the boundary
condition on the surface of the sound-hard real cylinder, i.e., we set 9ptot=9r|r=a = 0. There results:

−H
′(1)
n (ka)
inJ ′

n(ka)
an + (−1)n

∞∑
m=−∞

amimH
(1)
m+n(kd)

= − 2i sin
(
k
d
2
sin �+ n�

)
; ∀n: (A.17)

Eq. (A.17) represents an in nite system of algebraic equations for the determination of the unknown
coe:cients an involved in the series (A.16). Once the coe:cients are determined, the total pressure
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is given by (A.16), and the total scattered  eld by

psc(r; �) = ptot(r; �) − pinc(r; �): (A.18)

Appendix B. Implementational details

In implementing the discrete problem discussed in Section 3 we used standard isoparametric
elements. We discuss the details pertaining to the various integrals of the absorbing element matrices
in (38) and (39) using, without loss of generality, linear approximations. Accordingly, for any
element e of the discretized arti cial boundary, we used the standard map:

x =  T(�)xe; y =  T(�)ye; (B.1)

where xe and ye denote the nodal coordinates of element e in a global Cartesian coordinate system
(x; y), and � denotes the local coordinate, with �∈ (−1; 1). For a linear approximation:

 (�) = 1
2

[
1 − �

1 + �

]
;  �(�) =

1
2

[ −1

1

]
: (B.2)

Then,

d
e =
√
x2� + y2� d�=

√
( T

�xe)2 + ( T
�ye)2 d�= j� d�; (B.3)

 
(�) =
1
j�


 −1

2
1
2


 : (B.4)

Finally, in all expressions where the curvature � appears, we used its exact value, which for an
ellipse with semi-axes sM and sm reduces to:

�(x; y) = −sMsm=(s2m=s2Mx2 + s2M=s
2
my

2)3=2: (B.5)
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