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Abstract. A finite element-based procedure is presented for the solution directly in the time domain of 
transient problems involving structures submerged in an infinite acoustic fluid. A central component of the 
methodology employed herein, and presented in greater detail elsewhere, is a novel element that arises upon 
discretization of a high-order absorbing boundary condition introduced in the formulation of the fluid-struc- 
ture interaction problem in order to render the computational domain finite. The new element is local in both 
time and space and is completely defined by a pair of symmetric stiffness and damping matrices. The familiar 
form of the discretized equations of motion for the structure is retained with its symmetry and sparseness 
intact. Standard temporal integration techniques can then be used for the solution of the equations. In this 
paper we present the methodology in a two-dimensional setting, together with numerical examples involving 
both circular and non-circular shells. Although the focus is on the time domain, the methodology is equally 
applicable in the frequency domain, thus providing a unified and efficient tool for the treatment of the exterior 
structural acoustics problem. 

Introduct ion 

The exterior s tructural  acoustics problem,  considered here in  as a model  case of f l u id -  
s t ructure  interact ion,  typically involves the de te rmina t ion  of the d isp lacement  a n d / o r  stress 
field of a s t ructure  submerged  in an infini te  acoustic fluid and the pressure field within the 
su r round ing  fluid, given an incident  pressure  field or radia t ion loading acting on the structure.  
The  s t ructure  and  the fluid are assumed to be l inear  and  homogeneous  1, while the fluid is, in 

addit ion,  assumed to be compressible and inviscid. In physical terms, as the s t ructure  vibrates 
while in contact  with the fluid, there is a cont inuous  in teract ion be tween  the s t ructure  and the 
fluid; the s t ructure  feels the radia t ion loading due to the presence  of the fluid which modifies 
the forces that  act on  the structure,  hence  giving rise to the coupling be tween  the two media  

in a dynamic setting. In mathemat ica l  terms, one seeks the solut ion of the equat ions  of 
e lastodynamics for the structure,  coupled with the scalar wave equat ion  for the fluid, subject 
to the Sommerfe ld  radia t ion condi t ion  at infinity and appropr ia te  t rans i t ion  condi t ions  at the 
interface be tween  the s t ructure  and the fluid. 

In  studying such a f l u id - s t ruc tu re  in terac t ion  problem, significant effort has been  devoted 
to the analysis of the t ime-harmonic  steady-state case. F requency-domain  approaches  are 
p r e d o m i n a n t  (See [1], and references therein) ,  possibly for good reason, as the mathemat ica l  
tools for such analyses are more  rigorous and  be t te r  unders tood.  In addit ion,  a pr imary 
difficulty associated with the numer ica l  t r ea tment  of the infinite fluid, namely  the appropr ia te  
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modeling of the Sommerfeld radiation condition, has thus far proven easier to implement in 
the frequency domain than in the time domain. Integral equation methods are prime 
representatives of the aforementioned ease, as the Green's functions involved in the formula- 
tion satisfy apriori the radiation condition. A further reason for the apparent popularity of 
such methodologies is the possibility of inverting, through appropriate Laplace or Fourier 
transforms, the frequency domain solutions back to the time domain and thus have a tool that 
provides the solution in the transient regime as well. The shortcomings of such approaches 
include limitations in their applicability at certain frequencies, unless particular corrective 
action is taken [2,3], and large computational cost associated with short wavelengths in the 
fluid compared to the dimensions of the structure; an extensive sweep of the frequency 
spectrum is required for any reasonably accurate solution in the time domain, while the size 
of the fully-populated unsymmetric matrices, which generally result from such methodologies, 
increases as the wave number increases. 

Clearly, direct time domain approaches are needed not only as a natural alternative to the 
aforementioned indirect approaches, but also as the only viable means for tackling problems 
that involve structures that can behave inelastically. Within the realm of such methods, we 
mention the exact boundary integral formulation in terms of retarded potentials, which 
however suffers from the need to solve a dense system of equations at each time step. On the 
other hand, direct time domain approaches which rely on a field discretization scheme, such 
as the finite element method, require that the originally infinite domain be truncated for 
computations. To accommodate that need, a fictitious boundary is usually introduced at some 
distance from the structure. This particular idea gives rise to a class of methodologies that are 
based on absorbing (artificial) boundaries (See [4] for a review). Physically, the newly 
introduced boundary should simulate the behavior of the part of the infinite domain that has 
been excluded from the computational domain, in such a way that the solution obtained for 
the interior region of interest is, if possible, not affected, or, in practice, only slightly affected 
by its introduction. Mathematically, the artificial boundary should still render a well-posed 
problem. The boundary condition at the artificial boundary need be such that the governing 
field equations have a unique and stable solution. The methodology used herein relies 
precisely on the introduction of such an artificial boundary. 

There is an exact boundary condition that holds at the interface between the computa- 
tional domain and the exterior region, which is non-local in both space and time; that is, the 
motion at every point of the interface is coupled with that at all other points, and the 
response at any instant depends on the entire previous history. In mathematical terms the 
theoretical exact boundary condition is tantamount to an integral on the boundary (spatial 
non-locality) involving convolutions (temporal non-locality) of the boundary quantities under 
the first (spatial) integral sign. As the numerical implementation of such a condition entails a 
heavy computational burden both in terms of memory and time requirements, one aims at 
reducing the temporal or the spatial non-localities in an effort to render the problem solvable 
by present means. 

An inherent difficulty with methodologies such as the above is the assurance of stability of 
the conditions and validity for the low end of the frequency spectrum, since the conditions are 
usually constructed using high frequency approximations. Geers [5] developed conditions, 
termed doubly asymptotic approximations (DAA), that are exact in both the low and high 
frequency limits and local in time but, unfortunately, non-local in space. A note should also 
be made of attempts to solve directly in the time domain the fluid-structure interaction 
problem. Pinsky et al. [6,7] used the Bayliss and Turkel [8] absorbing boundary conditions with 
finite elements, but there resulted a non-symmetric formulation that in two and three 
dimensions has been applied to Dirichlet and Neumann problems. Geers used the DAAs for 
the general problem, "a formidable task" as he put it in [9], but again the resulting 
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formulation suffers from the spatial non-locality of the conditions. Extensions to problems 
with inelastic interior structures using DAAs failed [10]. 

In devising a procedure for the solution of the f luid-structure interaction problem, within 
the family of methods that rely on artificial boundaries, one should aim for: (a) a stable 
high-order absorbing boundary condition so that sufficient accuracy for engineering applica- 
tions is attained, (b) a small computational domain so that the associated computational cost 
is kept at a minimum, (c) locality in time so that extensive storage of time histories is avoided 
and the resulting equations of motion can be easily integrated in time and (d) locality in space 
such that standard finite element techniques that preserve the symmetry and the bandedness 
can be used. In this paper, we use a methodology that attempts to encompass all of these 
characteristics. We particularly aim at demonstrating the versatility of the method by showing 
the ease of incorporation into existing finite element codes. For the theoretical background 
we borrow heavily from the variational formulation presented in [11] for the particular case of 
circular cylindrical shells. Similarly, we follow Everstine's [12] introduction of a velocity 
potential to model the fluid and we use absorbing boundaries, borrowing from the work of 
Barry et al. [13] and Kallivokas et al. [14], to truncate the infinite domain to a finite one, while 
appropriate transition conditions are prescribed at the fluid-structure interface. The struc- 
ture is described by the standard elastodynamics equations. Finite elements are used to model 
the structure, the fluid and the absorbing boundary. Upon discretization of the resulting weak 
form of the problem, the absorbing boundary is replaced by an impedance element, com- 
pletely defined by a pair of symmetric damping and stiffness matrices, that can be easily 
attached to the adjoining fluid elements. The element is such that it can be readily 
incorporated into existing finite element libraries; to illustrate the validity of this claim, 
numerical results are presented for a non-circular shell using a specially modified version of a 
commercial code (ANSYS). Numerical results are shown also for a circular cylindrical shell in 
order to demonstrate the accuracy of the methodology through comparisons with exact 
solutions. 

Mathematical  formulation 

Problem s ta t emen t  

Let ~e  be a bounded domain occupied by a linear, isotropic, inhomogeneous elastic solid 
surrounded by a compressible, inviscid and homogeneous fluid occupying the exterior infinite 

(a) fo) 
Fig. 1. (a) Fluid-structure interaction problem; (b) Modified problem. 

F 
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region ~ +  and let F be their interface [Fig. l(a)]. Then, 

O'(Ue) = C [ E ]  = c [ l ( ~ T U e  + r U T ) ]  in ~,~e, 

( l a )  

( l b )  

1 
/ le" // = /if" n ptn on F,  ( l d )  

Pf 

(o'(u~).n)Xn=O o n  F, (le) 

o ' ( u e ) ' n =  -p tn  on F ,  ( l f )  

p'~ satisfies a radiation condition at infinity, ( lg)  

where subscripts e and f denote quantities pertaining to the elastic solid and the fluid, 
respectively; p denotes density and c is the speed of sound in the fluid; u denotes 
displacement vectors, while ~ denotes the stress tensor, E the strain tensor and C the 
elasticity tensor for the solid; pt =pS +p0  is the total pressure field with pS denoting the 
scattered pressure field and p0 an incident pressure field; n denotes the outward normal to 
F. Equation (la) is the equation of motion for the solid in the absence of body forces, eqn. 
( lb)  is the constitutive law for the solid, eqn. (lc) is the scalar wave equation for the scattered 
pressure in the fluid, eqn. ( ld)  ensures that the normal velocity of the fluid is continuous 
across F, eqn. ( le)  and (lf) represent the continuity of normal and tangential tractions across 
F respectively. Given p0 and some appropriate initial conditions, eqs. ( l a ) - ( lg )  represent the 
strong form of the fluid-structure interaction problem. Following Everstine [12] and based on 
the assumption of irrotational flow, the scattered fluid velocity field can be expressed as the 
gradient of a potential 4', thus leading to: 

P '  = -Pf4). (2) 

With the introduction of the velocity potential 4', eqns. (lc), ( ld)  and (lf) can be replaced by: 

1 1 
f t  o dr on F, ~y24' = _~_~ in ,(2+, ti c • n = 4', -- - -  ¢0p, 

c -  p f  

O ' (Ue)  " n  ~ ( - p ° + p f t ~ ) n  on F .  (3) 

Since the scattered wave --pf~ must be outgoing, then it is 4' that must satisfy the radiation 
condition at infinity instead of pL 

Now, rather than considering the structural acoustic scattering problem over the infinite 
domain S2 +, we introduce an artificial, smooth, convex boundary E d in g2 + and pose a 
problem equivalent to (1) over the finite region ~'~e U .~f [Fig. l(b)]. Then on F.d, 4' will satisfy 
an exact non-local condition for the normal derivative, which symbolically can be expressed 
as: 

4'n = ~-[4 ' ]  on F~,. (4) 

above, is the exact operator, which merely expresses the fact that the motion at every point 
on the artificial boundary F a is coupled with the time histories of all other points on F, d. 
Equations ( la ) - ( lb ) ,  (3) and (4) represent the modified strong form of the fluid-structure 
interaction problem (with appropriate initial conditions). The corresponding weak form can 

1 
~72pS = __c2 p..s in 12 +, ( lc )  
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then be stated as follows: Given an incident pressure field p0 and appropriate initial 
conditions, find u e and 0 so that for all admissible pairs (3u, 60), the following holds: 

f~2eVUe:C:~r3U dOe-t-Defl2e3" "iie d~e--pffF~13u °n e l '+  f p ° 3 u ' n  dl '=O, 

(5a) 

-pffnVaO.VO dl2e- ?-2 fnfiO~ dl2f-pff?oiG.n dF- f?O~ip ° d r d F  

+ p f £ 3 0 ~ r [ 0 ]  d F  a = 0. (5b) 

Notice that eqs. (5a) and (5b), upon discretization, will yield a symmetric system of equations, 
provided that the last term of eqn. (5b), which corresponds to the contribution of the 
absorbing boundary E a, can also be cast in symmetric terms. 

The absorbing boundary 
In order to reduce the non-local character of 5 r, one seeks to approximate 5 r, aiming in 

particular at reducing the temporal non-locality. Barry et al. [13] obtained a family of 
approximations of increasing accuracy and complexity of Y-. The first three are: 

1 .  
0, = - - 0 ,  (6a) 

c 
1 . 

1 ( 6 b )  G = - - 0  + ~K0 ,  
C 

( a )  , (~K2c + ½k6)0, (6c) 6 n + 6 0 , , =  . . . .  1 6 +  ½K 0 + T c 0 a a +  
C C 

in which the subscript A denotes differentiation with respect to the arc length, K is the 
curvature of E d and 6 is a stability parameter. All three conditions are appropriate candidates 
for replacing the exact operator ~r in eqn. (5b); for reasons of increased accuracy and 
economy (reduced computational domain) as evidence in [14], we seek to implement eqn. (6c). 
The other two are straightforward. The apparent difficulty of eqn. (6c) is that it contains a 
linear combination of both 0, and its time derivative 0n., as opposed to eqs. (6a) and (6b) 
which contain only 0,. Naturally, one can approximate 0,,  but the resulting time-marching 
scheme destroys the symmetry, and possibly the accuracy, of the original formulation. By 
introducing two auxiliary variables 0 (o and 0 (2) on F~, it can be shown [14], that eqn. (6c) can 
be rewritten as the following system of three equations: 

1 . K K2c c 
= - - 0  + + __ ,~ , (2 )  

0,  c ~ 0  + -8-~-0 ~') 23 ~'aa, 

1 .  1 
0 -- 0 (]) ~ -0  (1), t/ja a .,.(2) = __,[,(2) = - ~'aa 3"~*~'  ( 7 )  

In light of eqn. (7), the last term in eqn. (5b) can now be written as: 

fF.( K K2C ~ C - = - - - - 0 ( 1 ) i 3 0  dA + f_ ~-~0~(2)303 da  f d 0 < 0 1  5 0 83 j - /  
, a 

% 8 3  

+ ft .  c--5-- ( 2 3  1 ff~12 ) ) 3 i/.ta(2) ~10a - 0~  2) - d A .  ( 8 )  
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It is important to notice that the substitution of eqn. (8) into eqn. (5b) will yield a symmetric 
system of equations. Furthermore, as the time derivatives involved in eqn. (8) are at most of 
first order, the addition of the absorbing boundary will also maintain the order of the 
resulting system of differential equations, by contributing to the stiffness and damping of the 
original system. The cost of the additional degrees of freedom on the boundary is minimal. It 
is also important to notice that the form of eqn. (8) is independent of the particular 
formulation for the fluid presented herein; indeed, had we chosen to formulate the fluid- 
structure interaction problem in terms of the pressure in the fluid region, the resulting 
unsymmetric form could equally use eqn. (8), provided that ~ above were replaced by the 
total pressure pt. 

Finite element discretization 

Standard finite element polynomial approximations are used for the spatial discretization 
of eqn. (5), namely for approximating the displacement vector Ue, the potential ~ and their 
respective test functions. Here we concentrate on the discretization of the absorbing bound- 
ary, i.e. of eqn. (8). To this end, we introduce for quantities on E~: 

~b(x, t )  =¢rY(X)~bt . ( t ) ,  ~b(I)(x, t) = ~T(x)~b(1)(t),  

(]~¢(X) = (]{/jTtlt'(X), ( ]~ t ( l ) (x )  = (]~//(I)Tj[~(X), 

~(2)(X, t) = "yT(x)Yl(t),  

(]~t12)(X) = ( ] ' /TT '~(X) , (9)  

(10) 
in which, a,  ]3 and y are vectors of global shape functions; 6, 6 (]) and r/ are the unknown 
nodal values defined over E,, initially at rest. Notice that in eqn. (9) we approximate the 
tangential derivative 4,] 2) instead of ~(~) in order to avoid singular matrices in later calcula- 
tions. Taking K and 6 to be constant over each element and by virtue of eqn. (9) and (10), 
eqn. (8) leads to a discretized representation for an element on E~ as: 

K K2C C 
-- 2 kll 8(] k12 ~ k13 

K2C K2C 
-- ~ -kT2 8(] k22 0 

C C 
_ _ k  T _ - - k 3 3  2(] 13 0 2(] 

4/ 

~7 

- fr,,~(] ~ ' J  [ ~ ] (] '~ = 

with 

= [ a a  T dA, kll dl 

kl2 = ~zf2 aJST dA, 

+ 

1 
--kll 0 
c 

K2C 
0 852 k22 

0 0 

F 
k22 = J/]e~ T dA, 

k l 3 = f  otaF v dA, 

0 4Jr 

0 i~) ( 

c 
282k33 r/ 

k3 3 = f/ ,y,yT dA, 

(11) 



L.F. Kallicokas, J. Bielak / The analysis of transient exterior fluid-structure interaction 75 

Absorbing 
/ Boundary 

/ ~ / ~ / ~ / ~  \ / F l u i d  

~ ments 

°°°° 1 
8h -h -2h I2R 2R g 16 0 0 0 0 

1 - -h 2h h 0 R h  0 0 2 1 0 0 
-2h h 2h 0 Ca = 0 0 1 2 0 0 

ka = ~ | - I2R I2R 0 0 -8R2h "4R2h / 0 0 0 0 -8R 2 -4R 2 

~-I2R 12R 0 0 -4R2h-8R2hJ 0 0 0 0 -4R 2 -8R 2 

Fig. 2. Absorbing boundary element geometry; linear element stiffness and damping matrices. 

where Ef  denotes an element on E~. The first of the two matrices in (11) is a stiffness-like 
contribution to the global stiffness of the system, while the second matrix in (11) is a 
damping-like contribution. A representative geometry of the absorbing boundary element is 
shown in Fig. 2 for the case of a circular absorbing boundary of radius R which is 
approximated by linear elements; the corresponding element stiffness (k a) and damping (c a) 
matrices, also included in Fig. 2, were obtained using 6 = c/R; this value makes the absorbing 
boundary condition used herein coincide for the case of a circle with the second-order 
condition of Bayliss and Turkel [8]. It should also be noted that in Fig. 2, the actual distance 
between nodes 1 and 2 and any of 3 -6  is immaterial to the formulation. 

Once eqn. (11) is introduced into the discretized form of eqn. (5) there results a system of 
ordinary differential equations with the following structure: 

MlJ + CI) + KU = F, (12) 

where U T =  (u~, 0~, T T ~/(1) T, O~,  ~0r,, ~TT), 4Jr, O~ and 4Jr~ are partitions of 4J over F, S2 f, and 
F a respectively, M, C and K are the mass, damping, and stiffness matrices of the system, and 
F(t) represents the effective wave excitation. The coupling between the structure and the 
fluid is represented via off-diagonal terms of the damping matrix as it can readily be seen 
from the third terms in eqs (5a) and (5b). Equation (12) can be solved using standard time 
integration schemes; for the numerical results obtained herein the trapezoidal rule was used. 
The same equation can be used for steady-state harmonic excitation. 

Numerical results 

Several infinitely long steel thin elastic shells submerged in water were considered as 
model cases in order to assess the validity of the proposed methodology and its implementa- 
tion into existing software for interior problems. One case involves a shell with a circular 
cross-section, analyzed using shell theory [15], while the others deal with a shell of more 
complex geometry as shown in Fig. 3, together with the corresponding finite element mesh. In 
the latter model the shell is treated as a standard two-dimensional isotropic, homogeneous, 
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Fig. 3. Finite element mesh for a coupled shell-fluid system; (n r = 8, n o = 256). 

elastic medium.  The relative propert ies,  in all cases, are: c J c  = 3.53, p,~/pf = 7.65, v = 0.3 

and d / a  = 0.01, where c, is the velocity of compressional  waves in the shell, v is Poisson's  
ratio, d is the thickness and a a characteristic length of the shell (radius in the case of circular 
shells). We considered an exterior excitation in the form of a traveling p lane  wave that 

impinges normal ly  upon  the axis of the shell ( two-dimensional  scattering problem).  In all 
cases the t ime signal was represen ted  by a f in i te -dura t ion  modif ied Ricker pulse. The  Ricker 
pulse has the property that the ampl i tude  of its Four ier  t ransform has a single well-defined 
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Fig. 4. Modified Ricker pulse (a) and its Fourier transform (b). 
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Fig. 5. Scattered pressure due to a plane wave impinging on a circular cylindrical shell; kra = 0.5; FEM solution with 
n r = 2, n o = 16, r / a  = 1.2; (a, b, c) points on the surface of the shell; (d, e, f) points on the absorbing boundary. 

cen t ra l  f requency  w r and  has non -ze ro  values  only over  a na r row f requency  band.  The  
exci ta t ion,  no rma l i zed  to a uni t  ampl i tude ,  and  its t r ans form are  shown in Fig. 4(a) and  4(b) 
for a d o m i n a n t  f requency  w r = 1. 

F igure  5 dep ic t s  the  sca t t e red  p ressu re  c o m p u t e d  at d i f ferent  points ,  m a r k e d  by solid 
bul lets ,  on the  surface  of  a c i rcular  cyl indrical  shell  of  rad ius  a and  on the absorb ing  
boundary .  The  shell  is i l l umina ted  by a p lane  wave of  uni t  amp l i t ude  t ravel ing along the 
d i rec t ion  of  the  ar row (f rom east  to west);  the  t ime signal  of  the  excit ing wave has a dominan t  
f requency  o~ r = 0.5 (or  a d imens ion less  wave n u m b e r  k r a  = 0.5). T h e r e  are  two curves p e r  
graph;  the  d o t t e d  l ine r ep re sen t s  the  F E M  solut ion which was o b t a i n e d  by using the 
fo rmula t ion  and  the absorb ing  b o u n d a r y  e l e me n t  ( A B E )  desc r ibed  herein .  The  solid curve, 
m a r k e d  exact,  r ep r e sen t s  the  exact  t ime doma in  solut ion ob t a ined  by invers ion (via F F T s )  of  
the  exact  f requency  d o m a i n  solut ion.  F o r  the  F E M  solution,  the  absorb ing  b o u n d a r y  was 
p l aced  at a d i s tance  of  1.2a,  i.e. at  only 0 .2a  f rom the surface of  the  shell; we used 2 
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Fig. 6. Scattered pressure due to a plane wave impinging on the shell; k,.a = 0.5; FEM solution with n r = 8, n o = 256 
and 512, r / a  = 0.6: (a, b, c) points on the surface of the shell; (d, e, f) points on the absorbing boundary. 

quadratic elements along the radial direction (n r = 2) and 16 quadratic elements along the 
circumferential direction (n o = 16). As it can be seen, each curve is indistinguishable from the 
other at all locations. 

In Fig. 6 we consider the non-circular shell shown in Fig. 3; the outermost layer of 
elements in Fig. 3 represents ABEs. Here a is the radius of the semicircular sections of the 
shell as well as the distance between their centers. The excitation is again a Ricker pulse with 
a dominant wavenumber, kra, equal to 0.5. The absorbing boundary was placed at 0.6a from 
the shell's rightmost edge and the FEM solutions were obtained using a specially modified 
version of a commercial code (ANSYS). The two curves shown were obtained using different 
mesh densities; in both cases we used 8 linear elements along the radial direction, while 512 
(solid line) and 256 (dotted line) linear elements were used along the circumferential 
direction. The large number of elements in the circumferential direction is needed in order to 



L.F. Kallieokas, J. Bielak / The analysis o f  transient exterior f luid-s tructure interaction 79 

-2 

2.0 
(a) 

1.5 

1.0 t 0.5 

-0.0 

-0.5 

-LO 

-1.5 

-2.0 
(b) 

1.5 

|.0 

0.5 

-0.0 

-0.5 

- 1.0 

-1.5 

-2.0 

1.5 

1 I }  

11.5 / 

0.0 

-0.5 

-1.0 

-I.5 

-2.{} 
0 

- -  FEM (w/o inlemal) 
FEM (w inlemal) 

Q 

I 

~ 

~ • -4 ÷- 

(c} 

Q ~ 

(d} 

(e) 

- - t  I I 

{f) 

20 ' 40 60 80 0 20 40 60 80 100 

Time t c / a  
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boundary.  

characterize the higher modes excited by the incident wave. To examine the effect of the 
absorbing boundary on the solution, we solved the problem again with the boundary placed at 
1.2a, using 512 angular elements and 12 radial elements, without change in the results; hence 
the solid line can be essentially regarded as an exact solution. 

To illustrate the behavior of a more complex system, in Fig. 7 we consider again the shell 
shown in Fig. 3 with the addition of an internal elastic plate placed across the diameter of the 
right semicircular section and clamped to the shell. The thickness of the plate is the same as 
that of the shell. The excitation is provided, as before, by a Ricker wavelet with a central 
wavenumber, k r a  , equal to 0.5. The solid line shown in Fig. 7 corresponds to the shell without 
the internal plate while the dotted line corresponds to the same shell with the internal plate. 
Both curves were obtained by using linear elements, namely 256 angular and 8 radial 
elements. The absorbing boundary was placed at 0.6a from the shell's rightmost edge. It can 
be seen that the presence of the internal plate clearly alters the scattered pressure field. 
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Conclusions 

In light of  the numerical  results, it appears  that the proposed  methodology  based on finite 
e lement  spatial discretization, s tandard step-by-step time integration and the absorbing 
boundary  e lement  (ABE)  is well suited for tackling efficiently and accurately complex 
transient radiat ion and scattering problems in structural acoustics directly in the time domain.  
The methodology can also be used in the f requency domain either directly by solving eqn. (12) 
in the presence of  harmonic  loads, or indirectly by applying FFTs on the time domain 
responses. The higher-order  condit ion which is embedded  in the ABE,  is more  accurate (for 
the same position) than the often used lower-order  conditions, and thus results in greater  
economy,  as the size of  the computa t ional  domain can be drastically reduced.  At  the same 
time, the higher-order  condit ion also performs bet ter  than the lower approximations in the 
presence of  higher modes;  the reason lies with its spatial weakly non-local character.  Since the 
A B E  can be completely defined by a pair of  symmetric stiffness and damping matrices, it 
lends itself to easy incorporat ion into existing finite e lement  codes originally written for 
interior problems. It should also be noted that the structure of  the A B E ' s  matrices is 
independent  of  the formulat ion (potential-based) followed herein; these matrices can be 
equally used with a pressure-based formulation.  The entire procedure  is also amenable  to 
ready parallelization that will best exploit advanced architecture computers ,  as the A B E  
retains the symmetry and sparsity of  the overall system of  equations. 

The formulat ion was herein restricted to the analysis of elastic structures submerged in full 
space. The t rea tment  of  the infinite fluid, however, can be applied without  modification to 
analyze a possible inelastic structure submerged in a half-space, provided the problem 
conditions are such that the fluid can still be idealized as a linear acoustic medium. 
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