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Abstract

A family of absorbing-boundary finite elements (FEs) is recently developed for the acoustic time-harmonic, transient and modal analyses

of problems having fluid domains of infinite extent. These elements can be easily ‘glued’ to the truncated exterior surface of an underlying FE

mesh. The desirable characteristics of the absorbing elements are that they are local and produce banded symmetric element matrices. Since

the use of the absorbing FEs reduces the size of the FE model through the premature truncation of the mesh, a post-processing procedure must

be employed to obtain solutions far away from FE domain in the case of transient and time-harmonic analyses. In this paper free-space

Green’s functions are utilized, in the context of time-harmonic analysis, in association with the computed solutions at the exterior boundary

where absorbing-boundary FEs are placed in order to compute pressure distribution outside the FE computational domain. The paper

demonstrates that the computation of accurate pressure gradients at the absorbing-boundary element nodes plays a crucial role in obtaining

accurate pressure solutions outside the FE computational domain. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of absorbing boundary elements (BEs) at the

truncated boundary of an infinite-domain acoustic problem

results in a smaller FE model and thus efficient solution of

the discretized equations. A family of acoustics absorbing

BEs in two and three dimensions was developed [1–4] to be

placed at the truncated boundary of an underlying FE mesh

to solve wave equation in unbounded domains. These

elements can be used in conjunction with structural and

acoustic FEs to perform transient, time-harmonic, modal

and fluid-structure interaction analyses. The elements are

based on the second-order asymptotic expansion procedure

and are shown to produce accurate solutions for a

reasonable distance of placement of these elements. The

absorbing elements are local and so they preserve the

bandedness of the assembled matrices of the coupled FE-

infinite element system. Furthermore, these elements

produce symmetric coefficient matrices. These properties

make them suitable for implementation in a general-purpose

computer program.

This family of absorbing-boundary infinite elements was

implemented in the ANSYS program [5] in the form of two

surface elements FLUID129 and FLUID130. FLUID129 is

a two-noded surface element for use in planar or axisym-

metric situation along with the four-noded FE FLUID29

while FLUID130 is a four-noded surface element, collap-

sible to three-noded triangular element, to be used with the

eight-noded ANSYS FE FLUID30 for three-dimensional

(3D) wave propagation problems. The new additions to the

element library of ANSYS are intended to model 2D,

axisymmetric or 3D infinite regions, where the governing

field equation is the scalar wave equation. The typical

application field of the new elements is acoustics and the

elements can be used for either time-domain or frequency-

domain analysis (transient, harmonic, or eigenvalue analysis

type).

The use of the absorbing-BEs allows the analysts to cut

short the FE domain dramatically. However, often field
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solutions are desired outside this truncated domain,

especially in acoustic analysis. This paper demonstrates

the use of integral equation in the computation of far-field

pressure solutions in the context of time-harmonic analysis.

To this end, the pressure solutions on the absorbing

boundary are utilized. Note that the computation of pressure

field using integral equation requires the pressure gradient

values in addition to the pressure field on the absorbing

boundary. The FE solution procedure computes pressure

gradients by differentiating nodal pressure values and are

not as accurate as the pressure solution. A simple but novel

pressure gradient computation procedure is presented which

uses the reactive nodal flows from the acoustics FEs

attached to the absorbing elements, enforces global

equilibrium at the nodes on the absorbing elements and

recovers the pressure gradients.

The intent of the paper is to provide a presentation on the

effectiveness of a combined computational process employ-

ing the BE and the FE concepts. There have been

applications where BE–FE coupled analysis have been

shown to be successfully applied to problems involving

unbounded computational domain. The current approach,

however, is different in using the BE computations as an

effective post-processing methodology to calculate the far

field acoustic pressures where the pressure solution obtained

through FE computations is used. The advantage of this

approach is, unlike the BE–FE coupled solution approach,

the solution is performed using the FE approach where the

matrices are symmetric and banded allowing the use of

efficient solvers available in general purpose FE software

packages.

In this paper, the theoretical foundation of the absorbing

FEs is briefly summarized along with the implementation

details of the absorbing FEs in the ANSYS program. The

incorporation of the integral equation to compute far-field

pressure in a planar frequency domain acoustic analysis is

then described. 2D time-harmonic example problems in

acoustics are presented to demonstrate the accuracy of the

absorbing elements and the effectiveness of the free-space

Green’s functions in the computation of the far-field

solutions.

2. Brief theory of absorbing elements

The exterior structural acoustics problem typically

involves a structure submerged in an infinite, so-called

acoustic fluid. The latter characterization implies that the

fluid is homogeneous, linear, compressible and inviscid.

When considering small barotropic disturbances of the

pressure and density about an equilibrium state, it can be

shown that the pressure field p within the fluid is described

by the scalar wave equation as

72p ¼
1

c2
€p in Vþ ð1Þ

where c is the speed of sound in the fluid, an overdot denotes

derivative with respect to time and Vþ is the unbounded

region occupied by the fluid (Fig. 1a). In addition to Eq. (1),

Sommerfeld radiation condition, that simply states that the

waves generated within the fluid are outgoing, needs to be

satisfied at infinity. A primary difficulty associated with the

use of FEs for the modeling of the infinite medium stems

precisely from the need to satisfy the Sommerfeld radiation

condition. A typical approach for tackling the difficulty

consists of truncating the unbounded domain Vþ by the

introduction of an absorbing (artificial) boundary Ga at some

distance from the structure (Fig. 1b).

The equation of motion (1) is then solved in the annular

region Vf which is bounded by the fluid-structure interface

G and the absorbing boundary Ga In order, however, for the

resulting problem in Vf to be well-posed, an appropriate

condition needs to be specified on Ga: Towards this end, the

following second-order conditions are used [1–4,6] on Ga:

In two dimensions,

_pn þ gpn ¼ 2
1

c
€p þ

1

2
k2

g

c

� �
_p þ

1

2
cpll

þ
1

8
k2c þ

1

2
kg

� �
p ð2Þ

where n denotes the outward normal to Ga; l denotes the

arc-length along Ga; k is the curvature of Ga and g is a

stability parameter.

Fig. 1. Typical fluid-structure interaction geometry and absorbing boundary.
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In three dimensions,

_pn þ gpn ¼ 2
1

c
€p þ H 2

g

c

� �
_p þ Hgp
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c
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ffiffiffiffi
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 !
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ffiffiffiffi
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 !
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" #

þ
c

2
ðH2 2 KÞp ð3Þ

where for the boundary surface Ga; n denotes the outward

normal, u and v denote the surface parameters, H and K

denote the mean and Gaussian curvature, respectively, E

and G are the usual coefficients of the first fundamental

form, g is a stability parameter and subscripts denote partial

derivatives. In writing Eq. (3), it is assumed that the surface

parameters u and v represent orthogonal curvilinear

coordinates (e.g. the meridional and polar angles in

spherical coordinates).

It can be further shown that, upon introduction of the

auxiliary variables qð1Þ and qð2Þ; Eq. (2) is equivalent to the

following set of equations:

2pn ¼
1

c
_p 2

k

2
p 2

c

2g
qð1Þ
ll 2

k2c

8g
qð2Þ ð4aÞ

pll 2 qð1Þ
ll 2

1

g
_qð1Þ
ll ¼ 0 ð4bÞ

p 2 qð2Þ 2
1

g
_qð2Þ ¼ 0 ð4cÞ

Similarly, the 3D absorbing boundary condition, Eq. (3),

can be decomposed into

2pn ¼
1

c
_p 2 Hp 2

c

2g
‘qð1Þ 2

c

2g
ðH2 2 KÞqð2Þ ð5aÞ

‘p 2 ‘qð1Þ
2

1

g
‘_qð1Þ ¼ 0 ð5bÞ

p 2 qð2Þ 2
1

g
_qð2Þ ¼ 0 ð5cÞ

where the operator ‘ is defined as
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Hence, Eq. (1) and either of Eqs. (4a)–(4c) or (5a)–(5c)

together with the equation of motion for the structural

domain Vs and appropriate continuity relations at the fluid-

structure interface provide the complete description for the

exterior structural acoustics problem.

A set of FE approximations for the quantities on Ga such

as p; qð1Þ and qð2Þ can now be introduced

pðx; tÞ ¼ wT
1 ðxÞpGa

ðtÞ; qð1Þðx; tÞ ¼ wT
2 ðxÞq

ð1ÞðtÞ;

qð2Þðx; tÞ ¼ wT
3 ðxÞq

ð2ÞðtÞ

ð7Þ

in which, w1; w2; and w3 are vectors of shape functions; pGa
;

q (1), and q (2) are unknown nodal values defined over Ga:

This allows us to derive a pair of symmetric stiffness and

damping matrices, which summarily contain the effect of

the absorbing boundary on each element on the boundary

Ga:

3. Implementational details of absorbing elements

The absorbing BEs are developed for arbitrary geometry;

indeed, the boundary surface Ga need only be convex [1,3,

6]. However, based on the success and the experience drawn

from early numerical experiments, it is sought to implement

the stiffness and damping matrices for a circular absorbing

boundary in the 2D case and for a spherical absorbing

boundary in the 3D case. We shall henceforth denote the

radius of either the circular or the spherical boundaries by R:

The stability parameter g; contained in Eqs. (2), (3),

(4a)–(4c), and (5a)–(5c), assists in making the conditions

stable in the time domain by preventing exponential error

growth. Physically, it is equivalent to adding a certain

amount of numerical damping into the fluid. In this

implementation and for both the 2D and 3D cases, g is

chosen as c=R: For the chosen types of canonical geometry

for the absorbing boundary, and for the above value of g; it

can be shown that the present formulations reduce to those

derived by Bayliss and Turkel [7]. Moreover, the various

curvatures involved in Eqs. (2), (3), (4a)–(4c), and (5a)–

(5c) reduce to

k ¼ 2
1

R
; H ¼ 2

1

R
; K ¼

1

R2
ð8Þ

It can be noted from Eq. (8) that H2 2 K ¼ 0; this simplifies

the 3D element matrices to have only two degrees of

freedom (DOF), namely p and qð1Þ: Thus, for standard linear

approximations the dimensions of the element stiffness and

damping matrices are (1) 6 £ 6 in 2D having 2 nodes per

element with 3 DOF per node, (2) 8 £ 8 in 3D having 4

nodes per element with 2 DOF per node, and (3) 4 £ 4 in 2D

axisymmetric case having 2 nodes per element with 2 DOF

per node. The corresponding element geometry is shown in

Fig. 2.

In Eq. (7), qð1Þ is approximated directly. However, qð1Þ

does not explicitly appear in FE discretizations resulting

from either Eqs. (4a)–(4c) or (5a)–(5c), only its derivatives

do. Therefore, any approximate solution for qð1Þ that differs

by a constant from the exact solution to qð1Þ will still satisfy

Eqs. (4a)–(4c) or (5a)–(5c); this is equivalent to numeri-

cally introducing a rigid-body mode into the fluid on the

absorbing boundary that otherwise does not exist. It is thus

evident that the resulting global stiffness and damping

matrices, if left untreated, will be rank deficient by one. The

remedy to the problem is to constrain, at only one node of

one element on the absorbing boundary, the DOF corre-

sponding to qð1Þ: The particular value used for constraining

qð1Þ is inconsequential to the results.
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4. Integral equation to compute far-field pressure

Only time-harmonic problems using the absorbing

elements are considered in this paper. In this case, the

acoustical pressure is written as p ¼ P ejvt and as such the

wave Eq. (1) reduces to the Helmholtz equation 72P þ

k2P ¼ 0: P is the pressure amplitude. The solution of the

Helmholtz equation for the combined FE system produces

the pressure amplitude field in the domain enclosed by Ga

(Fig. 1b). The pressure amplitude PðjÞ at the point j outside

Ga can now be computed using integral equation

PðjÞ ¼
ð
Ga

Ppðx; jÞ
›PðxÞ

›nðxÞ
dGðxÞ

2
ð
Ga

›Ppðx; jÞ

›nðxÞ
PðxÞdGðxÞ ð9Þ

where Ppðx; jÞ is free-space Green’s function for the

Helmholtz equation given by

2D : Ppðx; jÞ ¼
j

4
H1

0 ðkrÞ ð10aÞ

3D : Ppðx; jÞ ¼
1

4pr
e2jkr ð10bÞ

n is outward normal to Ga: H1
0ðkrÞ is the Hankel function of

the first kind and of order zero. k is the wave number ¼ v=c

and r is the distance between a field point x on Ga and a

source point j outside Ga: Note that the computation of Pðj Þ

requires the pressure gradient Qn ¼ ›PðxÞ=›n on Ga in

addition to the pressure values PðxÞ on the FE domain

boundary. The pressure values are readily available from the

FE solution. However, in the FE analysis the pressure

gradients are typically computed by differentiating the

pressure values. The pressure gradients computed in this

fashion are approximate. If these are used in the integral Eq.

(9), the resulting pressure values PðjÞ outside Ga would

contain large errors.

In the FE discretization, the pressure field in an element

is a polynomial function, PðxÞ ¼ PjNjðxÞ; where Pj are

pressure values at the element nodes and NjðxÞ are the

associated polynomial shape functions. The normal pressure

gradient at the absorbing boundary is computed by taking

the dot product of the gradient of pressure and the outward

normal n at the absorbing boundary of the FE domain:

›P

›n
¼ 7P·n ð11Þ

In order to evaluate the gradient of pressure at the boundary,

the polynomial shape functions are differentiated with

respect to the spatial coordinates and evaluated at the

boundary of the FE domain:

7P ¼
›Nj

›xj

Pj ð12Þ

Therefore, the normal pressure gradient function ›P=›n thus

obtained will be one polynomial order lower than that of the

pressure field. For example, a linear variation of the pressure

field will yield a constant pressure gradient field. When this

pressure gradient field is used in evaluating ›P=›n at the

boundary nodes, the resulting far field pressures evaluated

by the BE integral Eq. (9) will be less accurate.

In order to overcome this deficiency, a novel approach is

implemented employing the basic property of the equili-

brium of forces in a FE within the FE solution field. That is,

instead of obtaining the pressure gradient at the FE

absorption boundary by differentiating the pressure field, a

direct approach is employed, wherein the following reaction

force expression of a FE is employed:

Qi ¼ KijPj ð13Þ

Accurate pressure gradients at the nodes on the absorbing

boundary can be recovered from the reaction flow within the

FEs attached to the absorbing elements. This simple

procedure is outlined below:

(a) The equilibrium equation within an FE attached to the

absorbing boundary is given by

½K�{P} 2 v2½M�{P} ¼ {F} ð14Þ

(b) The reactive forces {F} or in other words, flows at a

node on the absorbing boundary summed for the FEs

Fig. 2. Typical element geometry. (a) In two dimension; (b) in three dimension.
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attached to the absorbing boundary must equal flow

through the node:X
{F}at a node ¼ Qn £ Area ð15Þ

(c) The pressure gradient at the node Qn can now be

recovered as follows:

Qn ¼

P
{F}at a node

Area
ð16Þ

For applications in 2D, with the pressure gradients and

pressure values thus computed on Ga; the accuracy of

computation of pressure field values PðjÞ outside Ga using

Eq. (9) hinges on evaluating Hankel function accurately [8].

The free-space Green’s function of Eq. (10a) can also be

expressed in terms of Bessel’s function as shown below:

Ppðx; jÞ ¼
j

4
H1

0ðkrÞ ¼
j

4
½J0ðkrÞ þ jY0ðkrÞ� ð17Þ

The normal derivative of the free-space Green’s function,

appearing in Eq. (9), can be derived from Eq. (17) as

follows:

›Ppðx; jÞ

›nðxÞ
¼ 2

jk

4
H1

1ðkrÞ
›r

›n

¼ 2
jk

4
½J1ðkrÞ þ jY1ðkrÞ�

›r

›n
ð18Þ

H1
1 is the Hankel function of the first kind and first order. J

and Y are the Bessel functions of first and second kind. The

subscripts 0 and 1 represent the zeroth and first order,

respectively. With the help of Eqs. (17) and (18), the

integral Eq. (9) for an internal point j inside the BE domain,

i.e. outside the boundary Ga; can be rewritten in terms of

Bessel functions:

PRðjÞ ¼ 2
1

4

ð
Ga

Y0ðkrÞQRðxÞdGðxÞ2
k

4

ð
Ga

Y1ðkrÞ
›r

›n

�PRðxÞdGðxÞ ð19Þ

PIðjÞ ¼
1

4

ð
Ga

J0ðkrÞQIðxÞdGðxÞ þ
k

4

ð
Ga

J1ðkrÞ
›r

›n

�PIðxÞdGðxÞ ð20Þ

The subscripts R and I stand for the real and the imaginary

parts, respectively. The pressure gradient ›PðxÞ=›nðxÞ is

represented by QðxÞ: The isoparametric concept of the FE

method can be employed to approximate the problem

variables PðxÞ and QðxÞ; and the geometry in the following

fashion:

PðxÞ ¼ fmPm; QðxÞ ¼ fmQm; S ¼ fmSm ð21Þ

m ¼ 1; 2 for linear shape functions. S is the geometry

variable along the boundary Ga: This approximation for the

problem variables PðxÞ and QðxÞ is applicable to the real as

well as the imaginary parts. With these approximations, the

pressures inside the BE domain outside Ga can be computed

as

PRðjÞ ¼ 2
1

4

ð
Ga

fmY0ðkrÞdGðxÞ

� 
QRm

2
k

4

ð
Ga

fmY1ðkrÞ
›r

›n
dGðxÞ

� 
PRm ð22Þ

PIðjÞ ¼
1

4

ð
Ga

fmJ0ðkrÞdGðxÞ

� 
QIm

þ
k

4

ð
Ga

fmJ1ðkrÞ
›r

›n
dGðxÞ

� 
PIm ð23Þ

With the pressure and pressure gradient known on the

boundary Ga; the pressure field computation in the BE

domain outside the boundary Ga is posed as a post-

processing exercise. The integrals in Eqs. (22) and (23)

thus do not involve the evaluation of singular integrals,

since the pressure computation is restricted to the domain

outside of Ga and not including the boundary Ga itself. In

this case, r – 0 and the source point j never coincides with

any of the field points x:

The integration is performed using four Gaussian

integration points, which is found to produce solution of

adequate accuracy. As mentioned earlier, the accuracy of

the computed pressure field depends on the accurate

evaluation of Hankel function, i.e. the Bessel functions J

and Y : The efficient ways of evaluating Bessel functions, as

described by Abramowitz and Stegun [11], are adopted

here.

5. Example problems

A number of time-harmonic acoustic scattering problems

are illustrated here to demonstrate the accuracy and

efficiency of the absorption element and the validity of the

procedure of pressure field computation outside the FE

domain using integral equation, as outlined above. The

absorbing element performs well for low as well as high

frequency excitations. It is determined through numerical

experiments that the placement of the absorbing elements at

a distance of approximately 0:2l beyond the region

occupied by the inclusion or source of vibration is adequate

to produce accurate solutions. The first problem presented

below deals with pressure wave scattering due to a plane

wave traveling from infinity and impinging on a circular

rigid cylinder. The second example solves for the scattered

pressure due to the vibration of a speaker cone.

5.1. Rigid cylinder impinged by a plane wave

Fig. 3 shows a circular cylindrical inclusion of radius a.

A plane harmonic wave f ¼ ejkx traveling along x-axis
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towards the inclusion is also shown in the figure. The

obstacle created by the inclusion would produce scattered

pressure wave. The boundary of the cylinder is considered

to be rigid, i.e. the normal velocity ð›Pt=›nÞ must equal zero

on the cylinder boundary. Pt is the sum of the incident

pressure f and the scattered pressure P: As a result, Qn ¼

›P=›n ¼ 2›f =›n: The radius is taken as a ¼ 1: The problem

is to predict the scattered pressure field outside the

inclusion. Two cases are considered: k ¼ 1 and k ¼ 5:

Case (i): Impinging plane wave with a low wave number

k ¼ 1: In this case, the wave length is computed as l ¼ 2p

with c ¼ 1: The absorbing elements are placed at 3a from

the center of the cylindrical inclusion. The circular

boundary of the cylinder is divided into 36 segments

which would comfortably resolve the wave number of 2p:

The absorbing elements are ‘glued’ to the FE mesh on the

outer boundary at 3a: The problem is solved and then the

pressure field outside the computation domain is found

using the integral equation. Table 1 shows the scattered

pressure solutions at a radius of r ¼ 5a using the current

approach and an eigenfunction expansion method, referred

to in the paper by Banaugh and Goldsmith [9]. The

agreement appears to be good.

Case (ii): Impinging plane wave with a high wave

number k ¼ 5: With the value of the speed of sound taken as

c ¼ 1; here the wave length is computed as l ¼ ð2p=5Þ: The

absorbing elements are now placed at 2a from the center of

the cylindrical inclusion. In order to resolve this lower wave

number, the mesh density is doubled compared to case (i).

As before, the absorbing elements are ‘glued’ to the outer

boundary at 2a (Fig. 4). Table 2 shows the scattered pressure

solutions at the radius of r ¼ a using the current approach.

Note that these solutions are inside the FE domain. The

solutions using the eigenfunction expansion method,

referred to in Ref. [9] are also shown in the table. The

results agree well.

5.2. Vibration of a loudspeaker

A loudspeaker mounted in a box enclosure is considered

Fig. 3. Rigid cylinder impinged on by a plane wave ða ¼ 1; f ¼ ejkvÞ:

Table 1

Rigid cylinder problem

Angle Current method Eigenfunction expansion

method

Real part Imaginary part Real part Imaginary part

0 0.222541 0.129058 0.226 0.132

10 0.214927 0.129393 0.218 0.132

20 0.192706 0.130407 0.195 0.133

30 0.157667 0.132115 0.159 0.135

40 0.112543 0.134516 0.113 0.137

50 0.606897 £ 1021 0.137570 0.059 0.139

60 0.569874 £ 1022 0.141169 0.003 0.142

70 20.489805 £ 1021 0.145136 20.053 0.146

80 20.100371 0.149232 20.105 0.149

90 20.146204 0.153194 20.151 0.153

100 20.185042 0.156767 20.189 0.156

110 20.216288 0.159754 20.220 0.159

120 20.240094 0.162041 20.243 0.161

130 20.257196 0.163615 20.259 0.162

140 20.268708 0.164557 20.270 0.163

150 20.275904 0.165014 20.276 0.163

160 20.280010 0.165166 20.279 0.163

170 20.282034 0.165177 20.281 0.163

180 20.282632 0.165167 20.281 0.163

Pressure solution inside FE domain at r ¼ 5 ðk ¼ 1Þ:

Table 2

Rigid cylinder problem

Angle Current method Eigenfunction expansion

method

Real part Imaginary part Real part Imaginary part

0 20.67837 1.2684 20.681 1.231

10 20.37791 1.2285 20.382 1.205

20 0.30754 1.0402 0.303 1.046

30 0.88218 0.61775 0.883 0.643

40 0.93641 0.67027 £ 1021 0.944 0.086

50 0.47936 20.30670 0.488 20.310

60 20.52324 £ 1021 20.28261 20.051 20.300

70 20.19184 20.80694 £ 1022 20.199 20.021

80 0.88322 £ 1021 0.11233 0.081 0.114

90 0.35564 20.12783 0.355 20.118

100 0.21175 20.48744 0.216 20.481

110 20.27896 20.56379 20.275 20.564

120 20.71473 20.23306 20.713 20.236

130 20.79611 0.28404 20.795 0.2820

140 20.54191 0.70167 20.540 0.700

150 20.15885 0.90030 20.157 0.899

160 0.16968 0.92891 0.171 0.927

170 0.36756 0.89319 0.369 0.890

180 0.43106 0.87228 0.432 0.868

Pressure solution inside FE domain at r ¼ 1 ðk ¼ 5Þ:
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in this study [10]. The speaker box is 1200 mm high and

750 mm wide. The loudspeaker is semi-circular in shape,

5 mm thick and of radius 300 mm. The speaker box is

modeled using 2D structural FEs having ux and uy DOF,

whereas the loudspeaker is modeled using 1D beam

elements having ux; uy and uz DOF. Five nodes located

around the center of the cone is subjected to a unit time-

harmonic excitation in the x-direction. The objective is to

compute sound pressure distribution in the air surrounding

the loudspeaker. The speed of sound in the air is taken as

340 m/s. The speaker box cavity is assumed to be a vacuum.

5.2.1. Speaker cone vibration with a frequency of 100 Hz

The speaker cone is excited by a set of forces at a

relatively low frequency of 100 Hz. The wave number and

the wave length are computed to be k ¼ 1:85 and l ¼ 3400

mm; respectively. The absorbing elements are placed at a

radius of r ¼ 2000 mm centered near the middle of the box.

The air between the speaker box and the absorbing elements

are modeled with 2D acoustic fluid FEs with pressure DOF.

The structural FEs of the speaker system is coupled to the

acoustic fluid elements. The solution of this system would

yield pressure distribution in the air surrounding the speaker

box up to a distance of r ¼ 2000 mm from the middle of the

cone. An annular grid of points is then created up to a

distance of r ¼ 5000 mm and pressure values are computed

using integral equations. The magnitude of pressure in the

air is shown in Fig. 5a. Note that the annular gap just outside

r ¼ 2000 mm indicates the demarcation line between the

FE and the integral equation domain.

There is no analytical solution available for this problem

and so there is no obvious way to compare the results

obtained using the integral equation. Therefore, the problem

is re-solved by modeling the entire region between the

speaker box and r ¼ 5000 mm using the acoustic fluid

elements and placing the absorbing elements at r ¼ 5000

mm: The magnitude of the pressure is plotted once again

and shown in Fig. 5b. The contour plot of Fig. 5a is seen to

be identical to that of Fig. 5b demonstrating the good quality

of solution produced by the integral equation outside Ga:

6. Conclusions

A family of absorbing-boundary FEs is presented for

acoustic time-harmonic, transient and modal analyses.

These absorbing elements are local and produce banded

symmetric matrices. These characteristics make these

elements suitable for use in the general-purpose FE program

like ANSYS. The absorbing elements are implemented in a

user-friendly way in that no additional nodal points need to

be defined in order to introduce them into the model. They

Fig. 4. FE mesh for a rigid cylinder impinged by a plane wave of wave number k ¼ 5:
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Fig. 5. (a) Pressure magnitude distribution for the coupled speaker–air system for f ¼ 100 Hz; (b) pressure magnitude distribution for the coupled speaker–air

system for f ¼ 100 Hz:
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can simply be ‘glued’ to the prematurely truncated FE mesh.

The use of these absorbing elements not only reduce the FE

model, but leads to more accurate solutions.

Since the use of the absorbing elements allows premature

truncation of the FE mesh, integral equation method is used

to compute pressure distribution outside the FE domain. It is

shown that, in the case of time-harmonic acoustic analysis,

the computation of accurate pressure gradients at the nodes

on the absorbing elements is crucial to guarantee a good

quality pressure solution in the integral equation domain.

The 2D example problems demonstrate the power of the

absorbing elements and the usefulness and accuracy of the

integral equation method in predicting sound pressure

distribution.
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