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Abstract-This paper is concerned with the development of a mixed variational principle for coupling 
finite element and boundary integral methods in interface problems, using the generalized Poisson’s 
equation as a prototype situation. One of its primary objectives is to compare the performance of fully 
variational procedures with methods that use collocation for the treatment of boundary integral equations. 
A distinctive feature of the new variational principle is that the discretized algebraic equations for the 
coupled problem are automaticaIIy symmetric since they are all derived from a single functional. In 
addition, the condition that the flux remain continuous across interfaces is satisfied naturally. In 
discretizing the problem within inhomogeneous or loaded regions, domain finite elements are used to 
approximate the field variable. On the other hand, only boundary elements are used for regions where 
the medium is homogeneous and free of external agents. The corresponding integral equations are 
discretized both by fully variational and by collocation techniaues. Results of numerical exoeriments 
indicate that the ac&ra&y of the fully variational procedure is sigkicantly greater than that of collocation 
for the complete interface problem, especially for complex disturbances, at little additional computational 
cost. This suggests that fully variational procedures may be preferable to collocation, not only in dealing 
with interface problems, but even for solving integral equations by themselves. 

1. INTROD~~ION 

Coupled finite element (FE) and boundary element 
(BE) methods are especially well-suited for dealing 
with problems that are defined over a combination of 
homogeneous regions free of body forces and regions 
within which body loads are present or where the 
material is inhomogeneous, even possibly nonlinear. 
Such methods have been used increasingly in engin- 
eering since the early 1970s [ 1,2]; their mathematical 
analysis was initiated with the work of Brezzi, John- 
son, and Nedelec [3,4], Many different variants of 
these methods have been developed over the years; 
see, for example, Hsiao [5] for a recent survey. 

In most applications to date, while the domain 
finite element part of the formulation is generally 
derived from a variational principle, the boundary 
element part is usually obtained by direct collocation 
of the corresponding boundary integral equation. 
Only in isolated cases have variational principles been 
used to derive all the discretized equations. Hence, 
the resulting algebraic systems are often non-symmet- 
ric. Since symmetry is a desirable property in numeri- 
cal computations, substantial effort has been devoted 
to developing symmetric formulations. Representa- 
tive examples of each kind of formulation are cited in 
Table 1. 

Despite the recent progress on coupled FE/BE 
methods there has been little effort to assess the 

t To whom all correspondence should be sent. 

relative advantages and disadvantages of various 
procedures. The main objective of this paper is to 
present a fully variational symmetric coupling 
method, using Poisson’s equation as a prototype, and 
to compare results of numerical experiments with 
those from a related collocation procedure. The fully 
variational method presented here is based on a 
coupling method [IO] developed originaliy for solving 
the Helmholtz equation in combined exterior and 
interior regions, and applied subsequently [13] to the 
numerical study of propagation of incoming SH- 
waves through inhomogeneous valleys surrounded by 
a halfspace. In determining the coefficients of the 
system of discretized algebraic equations with this 
methodology, it is necessary to evaluate certain 
double integrals that involve Green’s function or its 
normal derivative as a kernel. By approximating one 
of the variables by Dirac-delta functions one can 
arrive instead at a collocation procedure that involves 
only single integrations. It is of interest to examine 
how the fully variational and the collocation pro- 
cedures perform in problems that involve several 
interior subregions. In particular, inasmuch as collo- 
cation is currently the prevalent method for discretiz- 
ing integral equations, it is important to assess both 
the relative compu~tional complexity of the two 
procedures and their relative accuracy. 

In Sec. 2 we formulate the prototype problem 
under study and present the corresponding vari- 
ational formulation. Two distinct discretization pro- 
cedures are described in Sec. 3, and in Sec. 4 we give 
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Table 1. Representative BE/FE methods 

Variational approach Fully 
combined with collocation variational 

Non-symmetric 
Belytschko et al. [6] 

Cruse [7] 
Mathews [8] 

Symmetric 
Zienkiewicz ef nl. [2] 

McDonald and Wexler [I] 
Mathews [8] 

Hamdi and Jean [9] 
Bielak and MacCamy [IO] 

Costabel [I I] 
Jeans and Mathews [12] 

a numerical example and compare results from the 
two schemes. The main observation from this com- 
parison is that the fully variational technique yields 

significantly more accurate results than the colloca- 
tion procedure, especially at interfaces and other 
boundaries, and for increasingly complex loading. 
This result is dramatically illustrated in Table 2. 

ki un- = k,u,f on r, (Id) 

U =u’ on r;, (fe) 

U” = t’ on r?, (lf) 

u =uh on I-;, (lg) 

2. STATEMENT OF PROBLEM AND VARIATIONAL 
FORMULATION 

u,, = th on rz, (Ih) 

Let R be a bounded region in R*, with boundary 
80. R consists of two distinct parts 0, and R,, as 
shown on Fig. 1; the first subdomain is homogeneous 
and load-free while the second may be inhomo- 
geneous and be subjected to external loads. Let r be 
the interface between 0, and R,, and let rhr the part 
of 8R surrounding R,, be subdivided into r,” and I-2. 
Similarly, let r, = 8R\Th be partitioned into r; and 
ry. Let k, be a positive function in R,, p be the 
applied load, and k, a positive constant. Also, let uh, 
th, d and t’ be prescribed functions on r;, I-2, r; 
and r?, respectively. We then consider the problem 
of finding u in R such that 

V.(k,Vu) =p in R,, (la) 

and denote this as Problem P. n is the exterior normal 
to Cl as well as the unit normal to r, pointing toward 
Q,, and the plus and minus signs indicate limits from 
Q, and C&. The subscript n denotes normal derivative, 
that is, u,, = Vu .n. Physically, (1) may be given several 
different interpretations, but to fix ideas we will 
regard u as the temperature field in the closure 0 
generated by the source p and the various prescribed 
temperatures and fluxes on 80. k, and kh then 
represent thermal conductivities. 

To derive the variational form of problem P we 
start with the standard potential energy functional 

rr[u] = ; s k,Vu-VudR+; 
s 

k,Vu .Vu dQ 
aI B 

khV2u = 0 in Qh, 

u-~ =u+ on r, 

(lb) 

(ICI 

Table 2. Relative errors, in percent, for example with u = u,, cos nt?, for different harmonics and number of elements, at 
three different locations on ray 0 = 0”. The table compares errors between fully variational and collocation approaches 

Radius (r/a) 

2 3 8 

n N, N,, Variational Collocation Variational Collocation Variational Collocation 

0 2 4 2.48( - 3)t 2.72(-3) 1.15(- 1) 1.90(-2) 2.92(-2) 9.66(-2) 
4 8 1.21(-3) l.OS(-3) 1.69(-2) 1.86(-3) 4.43(-3) 7.75(-2) 
8 16 1.57(-4) 3.82( -4) 2.21(-3) 2.60( -4) 7.57( -4) 3.94(-2) 

I 2 4 
4 8 
8 16 

2 2 4 
4 8 
8 16 

3 2 4 
4 8 
8 16 

5.57( -2) 
3.03(-2) 
1.67( - 3) 

1.19(fl) 
5.72( - 1) 
2.63(-2) 

6.27(+0) 
2.68( - 1) 
1.67( - 2) 

2.17(+0) 
1.73(-2) 
2.99(-3) 

1.30(+ 1) 
6.69( +0) 
519(-l) 

9.71(fO) 
1.94( +o) 
1.34(-l) 

2.18(- 1) 
3.75(-2) 
1.83(-2) 

1.45(+ 1) 
8.35( - I) 
3.22(-2) 

6.90(+0) 
4.39( - 1) 
6.14(-3) 

1.67(+ I) 
1.21(+0) 
1.14(-l) 

2.16(+ 1) 
3.88(+ 1) 
3.42(+0) 

1.08(+2) 
1.59(+ 1) 
2.69( + 0) 

7.14(- 1) 
3.28(-2) 
5.09( -4) 

1.51(+ 1) 
9.79( - I) 
5.29(-2) 

7.33( +o) 
4.52( - 1) 
2.76(-2) 

5.36( +0) 
1.07(-l) 
7.26( - 3) 

1.88(+1) 
1.01(+2) 
4.66( +O) 

I .27( + 2) 
5.05( + 1) 
2.15(+0) 

t 2.48( - 3) means 2.48 x IO-‘. 
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Fig. 1. Model of interface problem with nomenclature for 
various subdomains: (Q,) domain approach; (a,,) boundary 

integral approach. 

We assume that the admissible functions satisfy the 
essential boundary conditions (lc), (le), and (lg). 
Given sufficient regularity it is then straightforward 
to show that the variation of (2) for all admissible u 
vanishes if and only if (1) holds. 

Now, with the aid of the divergence theorem, the 
second term on the right side of (2) can be rewritten 
as 

s k,Vu.Vu dR= - 
s 

k,uV=u dR 
oh Rh 

+ 
s 

r&u, dS, (3) 
mt’ 

in which d R, = r u r;: u rp, and if we assume that 
all admissible u in ah are such that (lb) is satisfied, 
then the left-hand side of (3) can be expressed exclu- 
sively in terms of a boundary integral. To ensure that 
u satisfies (1 b), we require that the Cauchy boundary 
values u and u, on an,, satisfy the well-known 
Helmholtz integral representation fomula (written for 
smooth 8R,,) 

fu(x) - 
j 

dG(x, Y) dS, 

a 
U(Y)-jy I 

) 

+ s u,(y)C(x, Y) dS, = 0, x E aR,. (4) 
Xl,, 

Here G(x, y) is the Green’s function 

1 
G(x, Y) = - W - YI, 

2n 
X,YEQh, (54 

which satisfies the symmetry relationships 

G(x, Y) = WY, 4, (5b) 

dG(x, Y) =(Y, xl -=-, 
an, an, (5c) 

Then, by substituting (3) into (2) after setting 
V2u = 0 within Q,, and introducing (4) via a 
Lagrange multiplier, 4, we obtain a modified func- 
tional fr that involves only boundary terms corre- 

sponding to Q. In this formulation we regard u, as 
an additional independent unknown, separate from u, 
and denote it as $, i.e. u, = J/ on T;uT. The 
functional fI just described then becomes 

I=I[u,&.,]=; k,VuVudR+; 
s s 

uk,$ dS 
b/ Phh 

This functional provides the basis for our vari- 
ational principle. By taking the first variation of (6), 
and making use of (5b, c), it can be readily shown that 
the triad [u, $, 41 gives a solution to problem P if and 
only if the first variation SfI vanishes for admissible 
variations 6u, Sl(l and 64; the admissible 6us are 
required to satisfy homogeneous Dirichlet conditions 
on a&, while S$ and &$ need not satisfy any 
boundary conditions, u is the solution of problem P 
within Q,, as well as on the boundaries r?, rp, r; 
rJ gives the normal derivative u, on r?, rp, r; and 
4 yields the solution for u in Qh via 

u(x) = 
s 

G(x, Y)~(Y) dS,., x o Q, (7) 
pnh 

that is, 4, the Lagrange multiplier in (6), turns out to 
be the density of a single-layer potential that com- 
pletely determines u within R,. u may also be 
obtained in terms of the Cauchy boundary values 
through 

u(x) = s 4Y)yjy 1 

aw6 Y) dS 

i‘% J 

- I G(x> YM(Y) ds,., x E 3. (8) 
ah 

Remarks. (i) The flux transition condition (Id), as 
well as the additional Neumann boundary conditions 
(1 f) and (1 h) are satisfied naturally by the variational 
principle. This means that when we approximate, as 
below, with finite elements within R, aR, and r one 
only needs to impose the essential boundary con- 
ditions (Ic), (le), and (If) on the trial functions, and 
corresponding homogeneous Dirichlet conditions on 
the test functions. (ii) If one chooses the admissible 
4 to be in the same space as I+%, i.e. at least piecewise 
continuous, the discretization procedure will yield a 
full finite element formulation for both subregions 0, 
and Q,, entailing the evaluation of several double 
integrals, as may be seen from (6). If, on the other 
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hand, CJ!J is represented as a linear weighted combi- 
nation of Dirac-delta functions, S(y - y,), this will be 
equivalent to solving the integral equation (4) by 
collocation, requiring that it be satisfied at the prese- 
lected points y,. In that case the double integrals 
reduce to single integrals. We emphasize that both 
approaches are based on our variational principle. To 
differentiate between the two procedures, however, 
we reserve the term fully variational for the former 
approach, while the latter will be referred to as 
collocation. (iii) Since our variational principle 
involves taking the variation of a trilinear functional, 
the corresponding discretized algebraic equations will 
always be symmetric, whether one chooses admissible 
Cps that are piecewise continuous, discontinuous, or 
given by concentrated sources. Thus, our collocation 
procedure will also lead to a symmetric system of 
algebraic equations. 

3. FINiTE ELEMENT DISCRETIZATION 

We consider here the numerical solution of the 
variationai problem, initially using standard finite 
element methodology. To approximate u, introduce a 
finite-dimensional subspace Sh in C&depending on the 
mesh size h, and another basis on 8Q, to represent $ 
and (6. Following the usual steps, the variational 
principle characterized by (6) leads to a system of 
algebraic equations of the form 

S i-r? = -~(Kr,& K,w 

+K,,K&‘K,~)=S&r, (llb) 

and 

Observe that the shape functions for u must 
be piecewise continuous, while those for @ and d, 
may be discontinuous. In our implementation of the 
standard finite element formulation we use identical 
shape functions for both $ and 4, and denote this 
approach as fully variational. The collocation 
method results when d, is approximated by a set 
of Dirac-delta functions, i.e. 4(x) = Xi #,8(x - x,), 
while $ is still approximated by piecewise poly- 
nomials (x, is taken as the midpoint at the ith 
element). In both formulations, the matrices Kc,+ 

&I,~, Kr+ and Krr are sparse as they represent 
partitions of the standard symmetric stiffness 

I- 

K%n, K&i 0 0 0 % Pnt 
K rq/ K/,, 0 iKKr* - iK;Kr$ Ur Pr 

0 0 0 :K@* ‘K -5 i-P@ “3 = Prp 9 (9) 

0 :K,r tK,q 0 ‘K -I ebb 

~_: (~ $ P* 

0 ‘K -5 +r 
L 

-+K,,? -K,, 0 rp P# 

in which un, are the nodal temperatures within C+ and matrix K within R. K,, is small, and also sparse 
on rp; ur and II,-? are the nodal temperatures at the as it involves only products of the approximations 
interface r between S2! and Q,, and on rp, respect- for u and I&, as its transpose K,,; K,, K,,, K,,;, 
ively; $ represents nodal values of the flux? on KG~, K,,, and KM3 on the other hand, are full 
f u fi, and d, is the vector of nodal values of the den- but small since $ and d, are defined only on f,. 
sity of the single layer in (7). In practice, rather than It is straightforward to verify that the systems (9) 
solving (9) directly, it is sometimes convenient to con- and (10) are symmetric. For instance, to show 
dense $ and 4. Thus, one arrives at a reduced system that K, = K,, one need only make use of the 
of equations with only temperatures as unknowns relationship 

in which 

Srr = -t(K,,K,$K,+, + K,,K;$K,r) = SF,, Ella) 
=b, Y) _ .._ = 

t Scaled by l/k,, 
T~(~Mx)dS,.d&. (12) 

.: 
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Fig. 2. Domain and mesh for numerical example. 

4. NUMERICAL RESULTS 

In order to illustrate the applicability of our 
coupled FE/BE method and to assess the relative 
accuracy of the fully variational and the collocation 
discretization procedures described in the preceding 
section we consider here a particular problem defined 
over an annular region, as shown on Fig. 2. The inner 
annulus (ri ,< r < r,,,) is inhomogeneous with conduc- 
tivity k, = k,/r (k, is constant), while the outer one 
(r,,, < r < r,) has constant conductivity k, = k,. The 
temperature is prescribed on r = r, as u = U, cos no, 
and the outer boundary is insulated, i.e. u,= 0 on 
r = ro. This problem has a closed-form solution (see 
the Appendix), which is depicted on Fig. 3 for the first 
few harmonics. In the numerical experiments r,, r,n. 

and r,, were set to u, 3a and 8a, respectively. 
In all the calculations, three-noded quadratic iso- 

parametric elements are used to represent the inter- 
face r (r = 3a), the exterior boundary r,, (r = 8a), 
and the temperature, u, and flux, II/, on these bound- 
aries. The annulus (3~ < r < 8~) is divided into N, 
elements in the radial direction, and N0 in the angular 
direction. Twice that many (2N,) elements are used 
on the outer boundary r,,. For the collocation 
approach, the Lagrange multiplier 4 (density of the 
single layer) is approximated by a set of sources of 
unknown amplitude. This amounts to satisfying the 
Helmholtz representation formula (4) only at the 
nodes. Thence the designation of collocation method. 
For the fully variational procedure, 4 is approxi- 
mated by the same quadratic approximating func- 
tions as u and $. Within the inhomogenous region Q, 
(a < r < 3u), a total of N, x N,, eight-noded isopara- 
metric elements are used to approximate U. With the 
shape functions defined, all entries of the individual 
submatrices in (9) are evaluated by Gauss-Legendre 
numerical integration. 3 x 3 points per element 
within R,, and three Gaussian points per boundary 
element on r,, are used with fully variational pro- 
cedure. Even though double integration on the 

t Theoretically, there should be no error since the exact 
solution is unity throughout. 

boundary is required for the entries that contain the 
Green’s function and its normal derivative, the com- 
putational complexity is not severe due to the small 
number of integration points. Integration over singu- 
lar terms involving the Green’s function is carried out 
by first subtracting off the singularities. The colloca- 
tion procedure entails only a single integration of the 
operators in (6) containing Green’s function or its 
normal derivative, a seeming advantage over the fully 
variational approach. We found, however, that eight 
integration points were required for sufficient accu- 
racy. This makes the two methods practically equiv- 
alent in their complexity. Moreover, as will be seen 
from the numerical results, the fully variational 
procedure provides significantly higher accuracy. 

Table 2 shows the relative error, in percent, of the 
temperature u at three different locations on the 
horizon axis 0 = 0, for different harmonics n, and for 
various numbers of radial (N,) and angular (N,,) 
elements. One point is in the middle of the hetero- 
geneous region, the second at the interface between 
the two regions, and the third one at the outer 
boundary. Results along other rays are omitted since 
they are practically indistinguishable from those 
shown. 

The tabulated results clearly show convergence of 
both the fully variational and the collocation 
methods. Naturally, the number of elements required 
to attain a desired accuracy increases with the order 
of the harmonic loading. Notice, however, that while 
both methods give comparable results for the axisym- 
metric case?, the fully variational method leads to 
vastly more accurate results for increasing harmonics. 
The largest differences, of up to two orders of magni- 
tude, are observed at the boundaries r and r,,. where 
the actual temperatures are small, but large errors 
therein also affect the solution within the inhomo- 
geneous region. 

To sum up, from the numerical results it appears 
that the proposed coupled FE/BE method provides 

1 I 

1.0 )I1 

II” 

- n=O 
n = 1 

__- n=2 
-.- n=3 

\ ‘-__ 
0.0 ‘., , - ._,_ ---____._T-- _. 

, 2 3 4 5 6 7 8 

r 

Fig. 3. Exact solution u,8(r)[u(r, 0)/u, = u,(r) cos no] for 
numerical example, corresponding to axisymmetric case and 

next three harmonics. 
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an accurate procedure for solving interface problems. 
These results also indicate that it is advantageous to 
use the fully variational rather than the more com- 

mon collocation methods. Not only is the first 
method more accurate, including a more uniform 
distribution of error throughout the computational 
domain, but the increased accuracy is obtained prac- 
tically without computational penalty. While the 
procedure has been illustrated here only for the case 
of one homogeneous and one inhomogeneous region, 
the extension to multiple regions (including domain 

decomposition) is quite straightforward. The result- 
ing system of algebraic equations is symmetric, block 
banded and can be solved efficiently using direct or 

iterative procedures. Finally, since the difference 

between the fully variational method and the colloca- 
tion method lies only in the way the boundary 

integrals are discretized, it is natural that the relative 
advantages of the fully variational procedure should 
apply also to the solution of boundary integral 
equations by themselves. 
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