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In this article, we discuss an application of a fictitious domain method to the numerical simulation of the mechanical process
induced by press-fitting cementless femoral implants in total hip replacement surgeries. Here, the primary goal is to
demonstrate the feasibility of the method and its advantages over competing numerical methods for a wide range of
applications for which the primary input originates from computed tomography-, magnetic resonance imaging- or other
regular-grid medical imaging data. For this class of problems, the fictitious domain method is a natural choice, because it
avoids the segmentation, surface reconstruction and meshing phases required by unstructured geometry-conforming
simulation methods. We consider the implantation of a press-fit femoral artificial prosthesis as a prototype problem for
sketching the application path of the methodology. Of concern is the assessment of the robustness and speed of the
methodology, for both factors are critical if one were to consider patient-specific modelling. To this end, we report numerical
results that exhibit optimal convergence rates and thus shed a favourable light on the approach.

Keywords: fictitious domain method; regular and geometry-conforming finite element methods; press-fit implant; linear
elasticity; CT- or MRI-scan; medical imaging

1. Introduction

Today, in total hip replacement surgeries, typical pre-

operative planning systems are based on geometric

templating capabilities that, invariably, are used to find

an appropriate match between the femoral and acetabular

implants and their respective receiving bony structures

(e.g. Figure 1). Femoral implant choices can be roughly

classified into cementless and cemented: the latter refers to

femoral implants whose bonding to the receiving femoral

canal is ascertained via a bonding agent ‘cement’, whereas

the former refers to bonding ascertained via press-fitting

an over-sized implant. In either case, the primary intent is

to allow for an as-normal-as-possible post-operative range

of motion as the healthy anatomy would have provided.

Here, the focus is on cementless implants: for these, by and

large, it is the anatomical geometry, coupled with the

experience of the operating surgeon, that dictates the

implant choice, without the desirable benefit of an a priori

estimate of the stresses induced to the bones due to such a

choice.

If, however, a biomechanical feedback mechanism

were to exist that would present, in a way meaningful to

the planning surgeon, the potential mechanical effects of a

specific implant choice, it is then conceivable that such a

mechanism would act as a safety feature (Krejči et al.

1997). Its introduction might prevent selections leading to

either short- or long-term failures of the chosen implant,

and thus to a potential improvement of the clinical

outcome.1 The introduction of robotic systems into the

operating room (Kanade et al. 1996) – responsible for

preparing the femoral cavity receiving the implant – only

accentuated the need for pre-operative planners enhanced

with such a biomechanical feedback mechanism. How-

ever, the inclusion of a feedback module into a pre-

operative system imposes severe demands for compu-

tational speed and robustness of the underlying geometry

and analysis modelling tools, especially if one were to

consider the onerous requirements of patient-specific

modelling. It is within the above framework that we

explore in this article the applicability and suitability of a

fictitious domain method as part of an analysis tool of a

biomechanical feedback mechanism for a pre-operative

surgical planner.

A first step in any attempt to address the mechanical

(e.g. stress) effects of the implantation process has

perforce to start from the reconstruction of the femoral

geometry. Thus, one strategy for patient-specific geo-

metric modelling is to develop solid models of bone

volumes by reconstructing computed tomography (CT)

data, and then use these models to generate physical
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models appropriate for simulation (e.g. using finite

element meshes within the encompassed volumes). The

steps to such a process are pictorially depicted in Figure 2.

Invariably one starts from slices of the anatomical

geometry obtained using patient CT-scans that result in a

series of planar tomographic images. Next, the collected

images undergo noise-filtering to remove artefacts.

Extraction of bony boundaries (segmentation) is accom-

plished by edge detection algorithms, often based on

density threshold values, yielding contours on each

tomographic cross section which typically separate the

cortical (hard) from the cancellous (spongy) bone (red

rectangle A in Figure 2). Having identified the bony

geometry on the planar slices, the next step involves the

reconstruction of the three-dimensional anatomy (surface

reconstruction step; blue rectangle B in Figure 2) by

connecting the contours extracted in the previous step

(often achieved via triangulation). Once the 3D recon-

struction has been completed, one also needs to identify

the femoral canal volume (receiving the implant), the

surrounding bony volume, while also simulating the

femoral neck osteotomy that will result in a modified solid

model volume (rectangle C (green) in Figure 2). The

insertion of the implant (selection is made pre-operatively,

and a solid model for the implant is constructed as per the

rectangle D (black) in Figure 2) will result in the

intersection of the bone volumes identified in the previous

PELVIS

ACETABULUM

FEMUR

FEMORAL IMPLANT

ACETABULAR CUP

Figure 1. Typical post-operative total hip replacement X-ray;
shown are the patient’s acetabulum, femur, acetabular cup and
femoral implant.

Pre-operative planner
→ implant type, position, orientation
→ press fit amount
→ implant solid model
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Figure 2. Typical modelling sequence based on unstructured meshes.
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step, leading to the final solid model. The last step,

following a conventional finite element modelling

approach, involves the meshing of the final solid model

and, given loads, material properties and boundary

conditions, the subsequent simulation of the press-fit

problem.

The process described thus far is an exacting one,

plagued also by uncertainty with respect to whether the

underlying algorithms could always deliver a final solid

model – a hard requirement for patient-specific modelling:

for example, the 3D surface reconstruction step from the

planar slices may not always admit a unique solution.

More importantly though, there are many sources of error

introduced at every step of the outlined process: these

include CT imaging errors, boundary extraction errors,

surface generation errors and meshing errors. Furthermore,

the surface reconstruction and the intersection of volumes

during the insertion of the implant (neck osteotomy and

canal preparation) result in geometrically complex

volumes, characterised by fine geometric features, that

are difficult to mesh using unstructured techniques, if at all

possible (fine features typically drive, at least locally, 3D

meshes), given a reasonable set of computational

resources – both hardware and software.

We remark that in this process, the CT-scan data are

perforce considered as the best anatomical information

that is available for modelling – a sort of a ground truth.

The approximation errors that are introduced during the

outlined modelling path, and prior to the simulation,

potentially distort that ground truth (Lengsfeld et al. 1998).

Therefore, if one were to avoid the accumulation of these

errors, while simultaneously resolving or sidestepping the

meshing difficulties without sacrificing computational

speed or accuracy, one would obtain a fast and robust

(iv) Surface reconstruction
(v) Volume identification

(vi) Femoral neck osteotomy
and canal preparation

(vii) Finite element mesh

(iii′) Fictitious domain mesh
(with femoral neck osteotomy
and canal preparation)

(iii) Boundary extraction

(i)  Patient CT scan
(ii) Noise filtering

(a) Conventional modelling
pipeline based on standard
finite element method

(b) Alternative pipeline
based on the fictitious
domain method

γ
Γ

Figure 3. Modelling sequence based on conventional finite element meshes vs. regular grids (fictitious domain).

Computer Methods in Biomechanics and Biomedical Engineering 3

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
a
l
l
i
v
o
k
a
s
,
 
L
o
u
k
a
s
 
F
.
]
 
A
t
:
 
1
6
:
5
9
 
1
6
 
M
a
y
 
2
0
1
1



simulation tool capable of addressing the needs of patient-

specific modelling. We turn to the fictitious domain

method in search of such a tool and use Figure 3 to sketch

the alternative modelling path.

Accordingly, we operate directly on the original 3D

voxel data, without going through the steps of segmenta-

tion and 3D surface reconstruction. The boolean

operations of the neck osteotomy and of the implantation

are performed by imposing traction and displacement

constraints on the surface (g) of the cutting planes and of

the implant (assumed rigid), respectively (Figure 3). The

solution for the stresses exterior to the implant surface and

within the bony domain is obtained by direct application of

the fictitious domain method on the original grid provided

by the CT-scan. Thus, we summarily bypass all the

geometric, image processing, solid modelling and meshing

errors/difficulties outlined earlier. In the next sections, we

provide the technical details.

2. Background

To fix ideas, we turn to the 2D counterpart of the problem

described in Section 1: Figure 4 depicts a slice of a

patient’s femur, where the shades of grey in the pixels

correspond to different bone densities. The circular inset

(red) in Figure 4 represents the (cross-sectional) boundary

of a rigid implant (assumed here to be of circular cross

section) press-fitted into the femoral canal; the region v

interior to the circular boundary g is occupied, post-

interventionally, by the metallic implant (not shown).

Given a preset amount for the press-fit, and a material

description afforded by the CT-scan, the goal is to

determine the displacement and/or stress field in the

exterior of the implant, i.e. within the affected part of the

femur. We remark that the pixel data are provided, as it is

typically the case, on a regular grid. Thus, as argued, the

problem lends itself naturally to a fictitious domain

formulation. Let V denote the entire square 2D domain

depicted in Figure 4 bounded by G; let v denote the ‘small’

circular domain bounded by g and fully embedded within

V. Let u(x) denote the vector displacement field in Vnv,

i.e. exterior to g; we seek u such that

divsþ f ¼ 0; inVnv; ð1Þ

u ¼ g; on g; ð2Þ

sn ¼ 0; onG; ð3Þ

where customary notation has been used to denote the

stress tensor s, the traction vector sn on G, with n the

outward normal to G; g represents the Dirichlet datum on g

(press-fit amount) and f denotes body forces. For the press-

fit problem considered herein, there are no body forces,

and thus f ¼ 0. We also note that the position of G is not

critical to the underlying process, as long as G is exterior to

any bone boundaries: this is always the case with properly

collected CT-scans.

Under the simplifying assumption of linear elastic

isotropic behaviour,2 there also hold:

s ¼ 2meþ lI tr e; ð4Þ

e ¼
1

2
7uþ 7uT
� �

; ð5Þ

where e denotes the small-strain tensor, I the second-order

identity tensor, and l and m are the Lamé constants.

Following classical lines of fictitious domain methods,

the strong form (1)–(3), together with the constitutive

relation (4) and the kinematic condition (5), can be recast

Figure 4. Typical grey-scale femoral cross-section CT-scan.
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Figure 5. Regular grid (background) covering V with mesh
metric hV; Dirichlet boundary grid (foreground) g with mesh
metric hg.
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as: find û in V such that

div ŝþ f̂ ¼ 0; inV; ð6Þ

û ¼ g; on g; ð7Þ

ŝn ¼ 0; onG; ð8Þ

with

ŝ ¼ 2mêþ lI tr ê; ð9Þ

ê ¼
1

2
7ûþ 7ûT
� �

; ð10Þ

where f̂ represents an L2 extension of f over the entire

domain V, such that the following restriction holds:

f̂jVnv ; f: ð11Þ

It can then be shown (e.g. Glowinski et al. 1994a) that

the restriction of solution û over Vnv coincides with the

solution to the original problem defined only over the

region exterior to g, i.e.

ûjVnv ; ujVnv: ð12Þ

A statement similar to (12) can be written for ûjv, had

the original problems (1)–(5) been cast over the domain v

interior to g. In fact, we will return to the interior problem

in the next section. We remark that recasting the problem

over the entire domain V (as opposed to casting over the

domain exterior to g only), while weakly imposing the

Dirichlet condition (7) on g, offers the advantage of using

a regular discretisation over V (structured mesh), as

opposed to an unstructured boundary-conforming mesh in

Vnv. In this way, we bypass the need for identifying

material boundaries (they are implicit in the pixel data), by

directly operating on the naturally regular grid provided by

the CT-scan.

The weak imposition of the Dirichlet datum on g via

Lagrange multipliers gives rise to a saddle-point problem.

The treatment of problems of this kind can be traced back

to the 1960s in the (then) Soviet literature (e.g. Saul’ev

1963), where the term fictitious domain appears to have

been coined for the first time. Later, Fix (1976) presented,

under the heading of ‘hybrid’ finite element methods, one

of the earliest discussions on how Dirichlet conditions can

be imposed via Lagrange multipliers on interior

boundaries embedded within a background grid. Other

early developments can also be found in the (then) Soviet

literature (see for example Astrakhantsev 1978; Finogenov

and Kuznetsov 1988). The theoretical underpinnings

borrow largely from developments in mixed methods

(Babuška 1973). A comprehensive review of fictitious

domain methods, with many historical references, can be

found in Glowinski (2003). Renewed interest in fictitious

domain methods in the mid-1990s and later was fuelled (a)

by the increasing need to solve 3D problems efficiently

(3D unstructured quality meshing remains an open

problem) and (b) by the maturation of fast solvers for

ΩΩ

w w

Figure 6. Schematic depiction of the role of B matrix.
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Figure 7. Domain for prototype Laplace problem.
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regular grid problems. Representative works include the

many contributions of Glowinski and his collaborators on

flows with rigid bodies (Glowinski et al. 1994b, 1997,

2001) and on other elliptic problems (Glowinski et al.

1996; Glowinski and Kuznetsov 1998; see also Maitre and

Tomas 1999). Applications of the fictitious domain

method now cover an ever-widening spectrum, including

work on unsteady problems (Collino et al. 1997), fluid–

structure interaction (Baaijens 2001), radiation and

scattering problems for the Helmholtz operator (Heikkola

et al. 1998, 2003; Nasir et al. 2003), the recent work on the

treatment of the exterior Helmholtz problem by Farhat and

Hetmaniuk (2002) and by Hetmaniuk and Farhat (2003a,

2003b), and the development of distributed forms of the

fictitious domain method in which the constraints are

imposed over regions as opposed to interfaces (Glowinski

et al. 1998; Patankar et al. 2000). Applications to

biomechanical problems are scantier (see De Hart et al.

(2000, 2003), for modelling of the aortic valve), despite

the attractiveness of the method for these problems. In this

article, we build on past work (Shah et al. 1995; Kallivokas

et al. 1996; Na et al. 2002) and discuss an application to

linear elasticity of the fictitious domain method, also

motivated by a biomechanics problem.

3. Mathematical formulation

We turn first to the interior problem (the counterpart to

(1)–(5); Figure 5): find u in v such that

divsþ q ¼ 0; inv; ð13Þ

u ¼ g; on g; ð14Þ

which, similarly to (6)–(10), is recast over the background

domain V as (henceforth, we use background to refer to V

and foreground to refer to g):

div ŝþ q̂ ¼ 0; inV; ð15Þ

û ¼ g; on g; ð16Þ

t̂ ¼ ŝn ¼ 0; onG; ð17Þ

where q̂ now represents an L2 extension of q over the entire

domain V, such that the following restriction holds:

q̂jv ; q: ð18Þ

It can then be shown (Glowinski et al. 1994a) that the

restriction of û in v is a solution of (13) and (14), i.e.

u ¼ ûjv. Problems (15)–(17), together with (9) and (10),

can be readily cast in a weak form: we multiply (15) by an

admissible function v [ H 1(V). There results:ð
V

v·ðdiv ŝþ q̂Þ dV ¼

ð
Vnv

v·ðdiv ŝþ q̂Þ dðVnvÞ

þ

ð
v

v·ðdiv ŝþ q̂Þ dv

¼ 2

ð
V

ŝ : 7v dVþ

ð
G

v·t̂ dG

2

ð
g

v·t̂þ dGþ

ð
g

v·t̂2 dG

þ

ð
V

v·q̂ dV ¼ 0;

ð19Þ
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Figure 8. Exact solution û (31) and (32) for n ¼ 0; 1; 2 (left to right) (Laplace prototype problem).
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Figure 9. Typical boundary cell subdivision for error norm
calculations.
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where t̂2 and t̂þ denote the boundary tractions on g,

computed from the interior (2) and the exterior (þ) region

to g, respectively (Figure 5). Next, the Dirichlet condition

(16) is imposed weakly on g and, thus, we seek the pair

(û; ĵÞ [ H 1ðVÞ £ H2ð1=2ÞðgÞ such that:ð
V

ŝ : 7v dVþ

ð
g

ĵ·v dg ¼

ð
V

q̂·v dVþ

ð
G

t̂·v dG; ð20Þ

ð
g

z·û dg ¼

ð
g

z·g dg; ð21Þ

where, physically, ĵ denotes the traction jump on the g

boundary, i.e.

ĵ ¼ ½t̂þ 2 t̂2�: ð22Þ

The last term in (20) vanishes as per (17), and Equation

(21) represents the weak imposition of the Dirichlet

condition (16), where z [ H2ð1=2ÞðgÞ. We remark that the

same systems (20) and (21) could have been obtained by

considering the Lagrangian of the problem and imposing

the Dirichlet condition via Lagrange multipliers ĵ.3 From

(20) and (21), it also follows that one need only discretise

the background domain V and the boundary g without

resorting to (unstructured) discretisation that conforms to

the boundary g. In fact, the discretisations of V and g, from

a geometrical point of view, are largely independent of

each other (Figure 5). The approximations, though, for the

pair of test functions (v, z) and the pair of trial functions

ðû; ĵÞ cannot be independently chosen: due to the mixed

nature of the problem (our unknowns are both the

displacement vector and the (jump of the) tractions), the

Ladysenskaja–Babuška–Brezzi (LBB) or inf–sup con-

dition needs to be satisfied. Accordingly, let:

ûhi ðxÞ ¼ fTðxÞUi; v
h
i ¼ VT

i fðxÞ; x [ V ð23Þ

and

ĵ
h

i ðxÞ ¼ cTðxÞJi; z
h
i ðxÞ ¼ ZT

i cðxÞ; x [ gh; ð24Þ

where the subscripts i ¼ 1, 2 denote Cartesian components

hγ = 2.618, n = 1

–ln(hΩ)
–1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5

–ln(hΩ)
–1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5

–ln(hΩ)
0.0 0.5 1.0 1.5 2.0 2.5

–ln(hΩ)
0.0 0.5 1.0 1.5 2.0 2.5

ln
(L

2)
ln

(L
2)

ln
(L

2)
ln

(L
2)

–5

–4

–3

–2

–1
L2(wh) - computed
L2(gh) - computed
L2(wh) - fitted
L2(gh) - fitted
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L2(gh) - computed
L2(wh) - fitted
L2(gh) - fitted

|slope| ~ 0.42:1

|slope| ~ 0.11:1

(a)

Fixed foreground grid hγ = 2.618

hγ = 0.436, n = 1

–7

–6

–5

–4

–3

–2

|slope| ~ 1.14:1

|slope| ~ 0.38:1

(b)

(c) (d)

Fixed foreground grid hγ = 0.436

hγ = 2.618, n = 1

–6

–5

–4

–3
L2(Ω\wh) - computed

Fixed foreground grid hγ = 2.618

hγ = 0.436, n = 1

–6

–5

–4

–3
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L2(Ω\wh) - fitted

|slope| ~ 1.24:1

Fixed foreground grid hγ = 0.436

Figure 10. (a) and (b): L2 errors for û in the interior vh and on the boundary gh; (c) and (d): L2 errors for û in the exterior Vnvh; one-
sided refinement in hV, whereas hg is constant.
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of the corresponding vectors and a superscript h denotes an

approximant of the subtended quantity. A subscript h

denotes geometric approximation of the corresponding

entity. We note though that, due to the background grid’s

regular structure, V ; Vh, and that gh is a non-conforming

discretisation of g. Moreover, gh is not necessarily

constructed by matching the segments of gh with the

intersections of g with the background grid (Figure 9).

In the above equations, U and J denote vectors of

nodal displacements in the background grid V and of the

Lagrange multipliers on the foreground grid gh, respect-

ively. To satisfy the LBB condition, if in (23) f is chosen

to be piecewise linear (quadratic), then c in (24) needs be

piecewise constant (linear). With the approximations (23)

and (24), the saddle-point problems (20) and (21), upon

discretisation, leads to the following (indefinite) algebraic

hΩ/hγ = 0.1273, n = 1
ln

(L
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–5

–4
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(a) (b)
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Figure 11. (a) and (b): L2 errors for û in the interior vh and on the boundary gh; (c) and (d): L2 errors for û in the exterior Vnvh;
simultaneous refinement in hV and hg.
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system:

K BT

B 0

" #
U

J

" #
¼

Q

G

" #
; ð25Þ

where K is the standard stiffness matrix arising in 2D

elastostatics given by

K ¼
K11 K12

K21 K22

" #
;

with

K11
ij ¼

ð
V

ðlþ 2mÞ
›fi

›x1

›fj

›x1

þ m
›fi

›x2

›fj

›x2

� �
dV;

K12
ij ¼

ð
V

l
›fi

›x1

›fj

›x2

þ m
›fi

›x2

›fj

›x1

� �
dV;

K21 ¼ ðK12ÞT;

K22
ij ¼

ð
V

ðlþ 2mÞ
›fi

›x2

›fj

›x2

þ m
›fi

›x1

›fj

›x1

� �
dV:

ð26Þ

Similarly, the constraint matrix B is given by:

B ¼
B11 0

0 B22

" #
;

with

B11
ij ¼ B22

ij ¼

ð
gh

cifj dgh: ð27Þ

Furthermore, in (25) Q is the vector of body forces, and G

is the discrete form of the right-hand side of (21). Notice

that, whereas K is a square matrix, B, in general, is a

rectangular matrix. For example, let n denote the number

of grid points in V and let us assume that bilinear

approximations are used for û; then K will be of size

2n £ 2n. Furthermore, let m denote the number of

elements of the discretisation of g; to satisfy the LBB

condition, we use constant approximations for the

Lagrange multipliers ĵ on g, and thus B will be of size

2m £ 2n. Of course, B is highly sparse, for its elements are

only non-zero for those background grid cells that are

intersected by gh (Figure 6). Loosely stated and as

depicted in the right column of Figure 6, B is responsible

for distributing the jump of the tractions on gh to the

background grid of V. We remark that given the regular

structure of the background grid, the storage requirements

for K can be minimised, because it is necessary to store

only a stencil (even for inhomogeneous domains),

appropriately scaled by the material parameters (l and m).

We also note that system (25) is somewhat larger than

the system that would have resulted from an unstructured

discretisation of similar density if a conventional finite

element approach were used. The larger size is due to two

factors: (a) the Lagrange multipliers J add to the

displacement unknowns; their number, however, is far

smaller than the number of displacement unknowns, and

the latter will still control the overall size; and (b) part of
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the domain that is meshed using the fictitious domain

method need not be meshed with a conventional

unstructured method. However, we note that the additional

unknowns do not increase substantially the total system

size, and, more importantly, the regular structure of the

fictitious domain grid (and that of K in (25)) affords the

use of fast solvers, which endow the fictitious domain

method with a competitive advantage over the unstruc-

tured-grid finite element approach in terms of compu-

tational cost.

4. Numerical results

We conducted numerical experiments with the discrete

saddle-point problem (25) for a variety of problems: here

we discuss the convergence rates we observed for two

prototype problems involving materially homogeneous

domains – an elasticity problem and a similarly casted

Laplace problem. At the end of this section, we report

numerical results for the original press-fit problem, which

motivated this analysis, using actual patient CT-scan data

(arbitrarily heterogeneous).

4.1 Prototype problems

To fix ideas, we consider first the following Laplace

problem (Figure 7):

Dûðx; yÞ ¼ 0; ðx; yÞ [ V; ð28Þ

ûðx; yÞ ¼ cos nu; ðx; yÞ [ g; ð29Þ

ûðx; yÞ ¼
5n

52n þ 202n
ðx 2 þ y 2Þn=2 þ

202n

ðx 2 þ y 2Þn=2

� �
cos nu;

ðx; yÞ [ G; ð30Þ

where u ¼ arctanðy=xÞ, V is the square (0,16) £ (0,16)

bounded by G and v is the circular domain bounded by g

for which x 2 þ y 2 # 52. Then, the exact solution for

(28)–(30) is given as

ûðx; yÞ ; uðx; yÞ ¼
1

5n
ðx2 þ y 2Þn=2 cos nu;

for 0 #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
# 5; ð31Þ

ûðx; yÞ ¼
5n

52n þ 202n
ðx 2 þ y 2Þn=2 þ

202n

ðx 2 þ y 2Þn=2

� �
cos nu;

elsewhere: ð32Þ

Furthermore, the exact solution for the Lagrange

multipliers (jump in the radial derivative of u) on the

circular boundary g is

ĵ ¼
2n

5

202n

52n þ 202n
cos nu: ð33Þ

Problems (28)–(30) are convenient, because by control-

ling the value of n we can create either a smooth problem

–ln(hΩ)

0.0 0.5 1.0 1.5 2.0

–ln(hΩ)

0.0 0.5 1.0 1.5 2.52.0

ln
(L

2)

ln
(L

2)

–6

–5

–4

–3

–2

–1

L2(wh) - computed

L2(wh) - fitted

L2(gh) - computed

L2(gh) - fitted

L2(wh) - computed

L2(wh) - fitted

L2(gh) - computed

L2(gh) - fitted

|slope|~1.92:1

|slope|~1.91:1

|slope|~1.70:1

|slope|~1.62:1

hΩ/hγ = 0.1273, n = 2 hΩ/hγ = 0.06366, n = 2

–6

–5

–4

–3

–2

–1

0

1
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(for n ¼ 0, ĵ ¼ 0) or one where there will be a jump in the

normal derivatives across g. The presence of a jump is

critical to the stability of the solution and the convergence

rates. The exact solution for different values of n is

depicted in Figure 8, whereas the exact solution for the

Lagrange multipliers, for the same range of n, is shown in

Figure 14. We remark that for n ¼ 1, 2, u [ H 2(v),

whereas û [ H ð3=2Þ2e ðVÞ. We study first, numerically, the

convergence rates in the L2 norm for the solution within

the inner domain vh and on the boundary gh. We use

isoparametric bilinear elements for the test and trial

functions of the background grid (Vh ; V), and constant

elements for the test and trial functions of the foreground

grid (gh). We use square-shaped elements for the

background grid and straight-line elements for the

discretisation gh of g. We denote with hV the mesh metric

for the background grid in V, and with hg the mesh metric

of gh (Figure 5). Since the mesh is common for both V and

v, the associated element size hv ¼ hV.

Figure 10 shows the L2 errors for values of the hV/hg
ratio ranging from 0.045 to 0.625 (Figure 10(a,c)), and

from 0.333 to 1.429 (Figure 10(b,d)), respectively. For the

error calculations shown in these figures, the foreground

grid mesh is kept constant (hg ¼ 2.618 in Figure 10(a,c)

and hg ¼ 0.436 in Figure 10(b,d)), whereas the back-

ground grid is refined; the small circles and squares

represent computed errors, whereas the solid/dashed lines

represent best fits to the computed norms. To compute the

reported errors, we use the background grid solution for

grid cells fully contained within vh; for grid cells

intersected by the straight-line approximation to the

curved boundary (gh), we triangularise the polygon

resulting from the intersections, as per Figure 9. In this

figure, shaded areas represent the integration domain for

such a ‘boundary’ cell; within each triangle we use a Gauss

quadrature rule and obtain the solution at the integration

points using the shape functions (bilinear) of the

background grid cell and the nodal values at its vertices.

In this way, the solution on boundary cells is clearly

influenced by nodes exterior to gh, as it should.

Notice that the convergence rates in Figure 10 are

clearly suboptimal,4 for both the coarser foreground grid

of Figure 10(a,c) and for the finer grid of Figure 10(b,d).

Moreover, as it can be seen from Figure 10(b,d), for ratios

hV/hg greater than approximately (1/2)(2 ln(hV) , 1.52),

there is no clear convergence pattern; this, numerically

evaluated, critical value of the mesh metric ratio represents

a stability limit. In the literature, tight estimates of the

stability limit have only scantily been reported: for

example, in Girault and Glowinski (1995), for the inf–sup

condition to be satisfied, the stability limit was shown to be

equal to 1/3, for a linear-constant pair (linear triangles

were used in Girault and Glowinski (1995) for the

background grid). On the other hand, as reported in

(Glowinski et al. 1994a), stable results were obtained using

hV/hg . 2/3.

By contrast, when we simultaneously refine both grids,

while respecting the stability limit, i.e. when hV/hg , 1/2,

the convergence rates improve dramatically, as shown in

Figure 11, for two different fixed ratios of hV/hg. This

suggests that both background and foreground grids need

to be refined simultaneously, i.e.

hV

hg
! 0; as hV ! 0; hg ! 0: ð34Þ

The observed convergence rates are summarised in

Figure 12 for the Laplace prototype problem and for two

values of the harmonic parameter n. Notice that for fine

discretisations, the solution u ; ûjv or u ; ûjg in the L2

norm is Oðh2
VÞ (consistent with the performance reported

in Glowinski et al. (1994a)). Shown in the same figures are

the rates associated with the first-order derivatives

(û;x ; û;y ; û;
2
r ), which, as expected, drop by one order to

O(hV).

We remark that in the presented numerical exper-

iments, the errors are mostly concentrated in the interior

region v (solutions with the exterior region Vnvh are
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Figure 17. (a) Distribution of Young’s modulus for the CT-scan
of Figure 4; (b) Young’s modulus to scan intensity correlation.
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clearly superior to those of the interior vh); very little is

contributed to the global error norms L2(V) from the

exterior region; we attribute this to the closeness of the

exterior Dirichlet boundary. Figure 13 pictorially depicts

the absolute errors, which are concentrated on and to the

interior of gh; notice that for the smooth problem (n ¼ 0),

for which there is no jump in the normal derivatives across

g (ĵ ¼ 0), there is no error (the exact solution is linear).

Figure 14 depicts the quite satisfactory approximation of

the Lagrange multipliers by the computed solution for a

single case of hV/hg. We note that although the

approximate Lagrange multipliers reside on gh, the exact

ones reside on g. To compute the error, we integrate over

gh: the approximate Lagrange multipliers are readily

available. For the exact solution, we project each

integration point onto g based on the associated polar

(a) (b)

Figure 18. (a) Geometry-conforming FEM grid; (b) regular fictitious domain grid.
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Figure 19. (a) and (b): Total displacement distribution; press-fit amount 0.5mm; (c) distribution of total displacement difference
between FEM and fictitious domain; scale in mm.
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angle and compute the corresponding exact multiplier at

the projected location of g. This is not mathematically

rigorous, but provides a reasonable approach to assess the

accuracy of the multipliers. Moreover, we remark that the

convergence rates similar to the ones we discuss here also

hold for the 3D counterparts of the prototype problems

(Biros et al. 1997).

We turn next to a prototype elasticity problem similar

to (28)–(30). Referring again to Figure 7, we seek to find

the Cartesian components ûx, ûy of the displacement vector

such that

div ŝðx; yÞ ¼ 0; ðx; yÞ [ V; ð35Þ

ûxðx; yÞ ¼ cos nu; ûyðx; yÞ ¼ 2sin nu; ðx; yÞ [ g; ð36Þ

ûxðx; yÞ ¼ c1ðx
2 þ y 2Þðn21Þ=2 þ c2ðx

2 þ y2Þðnþ1Þ=2
h

þc3ðx
2 > þy2Þ2ðnþ1Þ=2 þ c4ðx

2 þ y 2Þ2ðn21Þ=2
i

cos nu; ðx; yÞ [ G;

ð37Þ

ûyðx; yÞ ¼ 2c1ðx
2 þ y2Þðn21Þ=2 2 c2

nðlþ mÞ þ 2ðlþ 2mÞ

nðlþ mÞ2 2m

�

x2 þ y2Þðnþ1Þ=2 þ c3ðx
2 þ y2Þ2ðnþ1Þ=2

�
þc4

nðlþ mÞ2 2ðlþ 2mÞ

nðlþ mÞ þ 2m
ðx2 þ y2Þ2ðn21Þ=2

�
sin nu; ðx; yÞ [ G;

ð38Þ

where u ¼ arctanðy=xÞ, n $ 2 and c1,c2,c3,c4 are appro-

priate constants. The constants were obtained by solving

an auxiliary Dirichlet problem in the annular region

defined by the inner (g) and outer circles shown in Figure 7,

respectively, by setting the conditions on the outer circle to

be ûx ¼ ð1=2Þcos nu, ûy ¼ 2ð1=2Þsin nu. The boundary

conditions on G were obtained as the restriction on G of the

solution within the annular region.5 With these definitions,

the exact solution within v becomes

ûxðx; yÞ ¼
ðx 2 þ y2Þ1=2

5

� �n21

cos nu;

ûyðx; yÞ ¼ 2
ðx2 þ y 2Þ1=2

5

� �n21

sin nu;

ð39Þ

whereas within Vnv it is given by (35) and (36). As it

can be seen from Figures 15 and 16, the observations

made about the Laplace problem are true here as well

(both problems are elliptic). Figure 15 shows the

convergence rates for the displacement solution on g and

in v under simultaneous refinement with fixed ratio,

whereas Figure 16 shows the cumulative rates that clearly

approach Oðh2
VÞ as ðhV=hgÞ! 0.

4.2 Press-fit problem over an inhomogeneous region

Next, we consider the original press-fit problem. Shown in

Figure 4 is, in grey-scale, an actual adult patient CT-scan

of a femoral slice; the dimensions of the square region

depicted in Figure 4 are 48mm £ 48mm. The red inset

represents the circular cross section of a rigid implant of

radius 8mm. We considered a (typical) press-fit amount of

0.5mm that was applied as a Dirichlet condition in the

radial direction on g, whereas the outer boundary G of the

slice was taken to be traction-free.

To solve the resulting boundary-value problem, we

used published correlations (Mow and Hayes 1997)

between experimentally obtained values for Young’s

modulus and the CT-scan intensity, to create the material

map shown in Figure 17(a); Poisson’s ratio was assumed

constant at 1/3. In this map, the red regions correspond to

higher values of Young’s modulus, with the highest

amongst them corresponding to the cortical part (exterior)

of the bone. The lighter pixels between the red and blue
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(b)
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Figure 20. Distribution of sxx stresses; scale in N/mm2.
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regions at the outer fibres of the cortical bone are image

artefacts. Shown in Figure 17(b) is the corresponding

curve we used for Young’s modulus.

We used both a finite-element approach based on a

geometry-conforming mesh (Figure 18(a)) and the

fictitious domain method to solve the press-fit problem.

The solid model used in the geometry-conforming mesh

case was obtained by manually delineating the outer

boundary of the femur. For the fictitious domain grid,

(Figure 18(b)), the material properties are readily available

from the CT-scan map shown in Figure 17(a). By contrast,

for each element of the geometry-conforming grid, we use

the coordinates of its barycentre to query the structured

material map shown in Figure 17(a) in order to assign

properties. Since there is overlap between the elements of

the geometry-conforming and regular meshes, there are

small differences between the material properties, and we

expect these differences to manifest, especially in the

stress distributions. Nevertheless, as argued in Section 1,

the ground-truth data are represented by the CT-scan, and

hence we hold the fictitious domain as the more faithful to

the original data of the two solutions.

Shown in Figure 19 are the distributions of total

displacements obtained using the meshes depicted in

Figure 18. Although, visually, both solutions appear close,

Figure 19(c) shows the point-wise difference distribution;

notice that the larger differences are close to the inner

boundary. For example, the highest recorded difference

was 0.04 corresponding to a displacement of approxi-

mately 0.5 (8% difference). Figures 20 and 21 show

similar comparisons for the sxx and syy stress components.

To ease the comparison, Figure 22 shows the radial

displacement and hoop stress on a circle of radius 15.5 mm

that is fully embedded within the geometry-conforming

mesh of Figure 18. Although the agreement between the

two solutions for the displacements is excellent,

differences can be seen in the stress distribution. Again,

we attribute these differences, partially, to the mismatch in

the underlying material properties between the two

meshes. Finally, Figure 23 shows a comparison on the

displacement components along the outer boundary of the

geometry-conforming grid; the agreement is quite

satisfactory. Lastly, we note that the unstructured finite

element grid comprised 3021 nodes, whereas the fictitious
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domain regular grid had 3721 nodes, and the press-fit

boundary was discretised using 73 nodes. We used direct

solvers for both approaches, resulting in comparable

solution times.

5. Conclusions

In this article, motivated by the needs of patient-specific

modelling arising in computer-assisted orthopaedic

surgery, we presented a methodology for tackling

problems for which the material profile originates from

medical imaging data that are typically delivered on

regular grids. For such problems, the fictitious domain

method is a natural choice, because it avoids the

segmentation, surface reconstruction and meshing phases

required by unstructured geometry-conforming simulation

methods. Using prototype problems, we presented

numerical results that exhibit optimal convergence rates

in the domain of interest. Similarly, satisfactory results

were presented using actual patient CT-data for the press-

fit problem arising in the cementless implantation in total-

hip replacement surgeries.
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Notes

1. Bone typically regenerates and in many cases will grow into
the porous surface of an implant; such long-term post-
operative bone ‘remodelling’ processes are not taken into
account in the analysis of the short-term intra-surgical
processes presented herein.

2. The cortical bone’s behaviour is closer to an orthotropic
material; here we opted for isotropic linear elastic behaviour

for simplicity, even though the presented methodology is not
limited by the particular form of the constitutive relation.

3. We will henceforth refer to traction jump ĵ as the Lagrange
multipliers.

4. For the bilinear-constant pair, we use the term optimal to
refer to Oðh2

VÞ rates.
5. The expressions for the constants are quite lengthy and are

thus not included here; however, they can be readily obtained
using any symbolic computation software package.
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