
Available online at www.sciencedirect.com

a
A
v
W
r
©

K

m
a

a
m
p
f
c
h
c
(

d
T

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 393 (2022) 114788
www.elsevier.com/locate/cma

The inverse problem for conducting defective lattices
Vikram Bhamidipatia, Loukas F. Kallivokasb,c,∗, Gregory J. Rodina,c

a Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, United States of America
b Civil, Architectural and Environmental Engineering, The University of Texas at Austin, United States of America

c Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, United States of America

Received 24 November 2021; received in revised form 16 February 2022; accepted 17 February 2022
Available online xxxx

Abstract

We are concerned with the inverse problem of detecting and localizing defects in finite lattices. Using polarization dipoles
pplied at the ends of defective bars, the forward problem for a defective lattice is cast on the underlying pristine lattice.
s a result, the inverse problem of localizing lattice defects is reduced to an inverse source problem, in which the inversion
ariables are the polarization dipoles representing defective bars, while all computations are carried out on the pristine lattice.
e present the forward and inverse problem formulations, propose an algorithm for solving the inverse problem, and report

esults of numerical experiments driven by either complete or incomplete boundary data.
2022 Elsevier B.V. All rights reserved.

eywords: Discrete inverse problems; Defective lattices; Sparse optimization; Lattice Green’s functions

1. Introduction

Advances in additive manufacturing have created multiple opportunities for manufactured lattices (meta-
aterials) with interesting and useful properties [1–3]. Analysis, design, and optimization of these lattices

ccentuates the need for computational methods that take advantage of lattice periodicity and discreteness.
In this article, we are concerned with localizing defects in conducting lattices. While conduction problems

re convenient for describing our approach, the methodology can be extended to other lattices, most notably to
echanical lattices. We restrict our attention to defective lattices formed upon removal of bars from otherwise

ristine periodic lattices. Accordingly, our goal is to locate the removed bars, using complete or incomplete data
or nodal temperatures and/or sources measured on the lattice boundary. This is a discrete inverse problem. In the
ontinuum setting, detection of interior voids from boundary data, and, more broadly, thermal inverse problems,
ave received considerable attention (see, for example, [4–6]). In contrast, the literature on inverse problems for
onducting lattices is primarily concerned with various challenging mathematical aspects rather than applications
e.g., [7]).

In the continuum case, inverse problems involving localization of defects are often solved in two steps: (i) one
etermines position-dependent properties of the entire medium, and (ii) defects are inferred from property gradients.
his process is iterative, as the responses corresponding to trial property distributions are compared against the
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measurements, until the misfit between predicted and measured responses is minimized in a suitable norm. Since
the properties change at every inversion iteration, the underlying discretization may have to be changed throughout
the process. If a similar approach is adopted for defective lattices, then the inversion iterations would involve
lattices whose defects, and, consequently, the topology, change from one iteration to another — a computationally
undesirable strategy.

In this article, we build upon the approach for the forward problem for defective conducting lattices of arbitrary
opology and periodicity developed in [8–13]. In that approach, first, each removed bar is returned back into the
attice, so that the underlying pristine lattice is formed. Second, for each returned bar in the pristine lattice, a
olarization dipole of sources applied at the bar nodes is introduced. Third, the polarization dipoles are computed
o that the returned bars operate as removed bars, that is, conduct no heat. Accordingly, in the process of solving
he inverse problem, there is no need to explicitly account for topological changes of the lattice. Rather, one has to
rack the polarization dipoles applied in the same pristine lattice. Thus, the inverse medium problem defined over

the topologically changing lattice is recast as an inverse source problem over the pristine lattice.
We address the inverse source problem as a model-constrained optimization problem, following steps similar

o partial-differential-equation-constrained optimization approaches used in continuum inverse problems [14]; for
arious applications we refer to [15–17]. There, the Lagrangian functional to be minimized consists of three terms:
misfit (difference between predicted and measured data), the side imposition of the forward problem, and a

egularization term aimed at alleviating solution multiplicity. In our approach, the misfit term is constructed in
manner that ensures the satisfaction of the forward problem a priori, while the regularization term deviates from

ither the standard Tikhonov or Total Variation ansatz.
The remainder of the article is organized as follows. In Section 2, we briefly review the forward problem for

efective lattices, and use numerical experiments to demonstrate that the boundary data are rather insensitive to
defect’s location in the lattice. This motivates us to replace the original forward problem with an equivalent

erturbation problem, whose boundary data are more sensitive to the defect; this is done in Section 3. In Section 4,
e develop a two-stage algorithm for solving the inverse problem. In Section 5, we present results of numerical

xperiments for various defective lattices, based on synthetic measurements for both complete and incomplete
auchy data. In Section 6, we conclude with remarks on the effectiveness of the proposed approach to the inverse
roblem for conducting defective lattices.

. The forward problem

Consider an infinite conducting simple square lattice L∞ formed by identical bars of length h and conductance
c (Fig. 1). Following [13], we impose on L∞ a square contour Γ , so that the bars entirely inside Γ form a lattice
plate of size nh × nh. We refer to this plate as L and denote its bars by B and its nodes by N . The nodes along
the edges of L are defined as exterior and denoted by Ne, and the remaining nodes of L are defined as interior and
denoted by Ni .

By construction,

N := dimN = (n + 1)2 , Ne := dimNe = 4n , and Ni := dimNi = (n − 1)2 .

Conventionally, a thermal state of a conducting lattice is characterized by column-vectors of nodal temperatures u
and sources f related by the conductance matrix C:

Cu = f . (1)

This N×N matrix is formed by applying the standard five-point stencil at every interior node, and truncated stencils
at the exterior nodes. In a typical forward problem, at each node i ∈ N , either u(i) or f (i) is prescribed, for a total
of N prescribed components, and (1) can be used to solve for the remaining N components. This problem has a
unique solution, provided that at least one nodal temperature is prescribed. This assumption is not critical for our
development, but we will adopt it as it simplifies the presentation.

Here, we follow [13] and replace (1) with an equivalent system of equations derived with the aid of the reciprocity
theorem and the lattice Green’s function G for L∞ [18]:

u(i)+
∑ ∑

c [G(k, i)− G( j, i)] u( j) =
∑

G( j, i) f ( j) i ∈ N . (2)

j∈Ne k∈N̄ ( j) j∈N

2
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Fig. 1. Schematic of lattice geometry L and related node sets.

In this equation, i , j , and k are integer pairs, each representing nodal Cartesian coordinates normalized by the
lattice spacing h. The node set N̄ ( j) consists of all nodes exterior to N , which are directly connected to j ∈ Ne

(Fig. 1).
The main reason for choosing (2) over (1) is because it is well-suited for analyzing defective lattices. Such a

defective lattice is formed by removing a few bars from the pristine lattice L. The defective lattice can be also viewed
as the pristine lattice in which some of the bars are assigned zero conductance. This perspective is particularly useful
for our approach, as the pristine and defective lattices can be regarded as geometrically and topologically identical.

A defective bar α is simulated with a polarization dipole, defined by the sources µ(α) and −µ(α), applied at the
end nodes of the bar in the pristine lattice. The polarization sources, representing a set of defective bars Bµ, can
be simply regarded as additional nodal sources applied in the pristine lattice. These sources are expressed as

f (i) =
∑
α∈Bµ

µ(α)
[
δ(i, α+)− δ(i, α−)

]
i ∈ N , (3)

where δ is the Kronecker symbol, and α+ and α− denote the end nodes of bar α.
In the presence of the polarization sources, (2) is modified, so that it includes the additional term due to the

sources defined in (3):

u(i)+
∑
j∈Ne

∑
k∈N̄ ( j)

c [G(k, i)− G( j, i)] u( j) =

∑
j∈N

G( j, i) f ( j)+
∑
β∈Bµ

[
G(i, β+)− G(i, β−)

]
µ(β) i ∈ N .

(4)

his expression describes N equations relating 2N + Nµ unknowns, where

Nµ := dimBµ . (5)

he unknowns comprise N nodal temperatures, N nodal sources, and Nµ polarization dipoles. Thus, provided that
N components of either u or f are prescribed, the system of N equations in (4) alone is not sufficient for determining
he remaining N + Nµ unknowns. This necessitates the introduction of additional Nµ equations, which, as it will
e shown, establish the equivalence between defective bars of zero conductance and the corresponding polarization
ipoles.

The thermal flux flowing through a defective bar with zero conductance must equal zero. This condition can be
+ −
tated by considering a pristine bar subjected to the polarization sources µ(α) and −µ(α) at the nodes α and α ,

3



V. Bhamidipati, L.F. Kallivokas and G.J. Rodin Computer Methods in Applied Mechanics and Engineering 393 (2022) 114788

I
a

T
b

W
T
s

H
µ

respectively. Then the total thermal flux flowing through the pristine bar involves the polarization flux µ(α) and the
usual thermal flux. As a result, the equivalence condition for the defective bar α is stated in the form

µ(α)+ c
[
u(α+)− u(α−)

]
= 0 . (6)

t is expedient to formulate Nµ equations equivalent to (6) in a manner similar to (4). To this end, we evaluate (4)
t the nodes α+ and α−, and combine the resulting two equations with (6) to obtain the sought Nµ equations:

−
µ(α)

c
+∑

j∈Ne

∑
k∈N̂ ( j)

c
[
G(k, α+)− G( j, α+)− G(k, α−)+ G( j, α−)

]
u( j) =

∑
j∈N

[
G( j, α+)− G( j, α−)

]
f ( j)+∑

β∈Bµ

[
G(β+, α+)− G(β−, α+)− G(β+, α−)+ G(β−, α−)

]
µ(β), α ∈ Bµ .

(7)

he N + Nµ equations (4) and (7) can now be used to analyze defective lattices in the same manner as (2) can
e used for analyzing pristine lattices. Let us stress that the operations implied by (4) and (7) are defined on the

pristine lattice: no topological modification of the lattice to account for defective bars is needed.
Next, we restrict our attention to a class of problems for defective lattices characterized by the prescription

f (i) = 0, i ∈ Ni . (8)

ith this provision, (4) and (7) can be recast by simply replacing all occurrences of the set N with the set Ne.
he resulting system consists of Ne+ Nµ equations for 2Ne+ Nµ unknowns, i.e., Ne nodal temperatures, Ne nodal
ources, and Nµ polarization dipoles. We express the system in the symbolic form[

I+K −V −L
−M∗ L∗ N

] ⎧⎨⎩ue

fe

µ

⎫⎬⎭ = 0 . (9)

ere ue and fe are the column-vectors of nodal temperatures u(i) and sources f (i), respectively, with i ∈ Ne, and
is the column-vector of polarization dipoles µ(α), with α ∈ Bµ. The block-matrices in (9) are defined as follows:

K (i, j) :=
∑

k∈N̄ ( j)

c [G(k, i)− G( j, i)] ,

V (i, j) := G( j, i) ,
L(i, β) := G(i, β+)− G(i, β−) ,

M(α, j) := −
∑

k∈N̂ ( j)

c
[
G(k, α+)− G( j, α+)− G(k, α−)+ G( j, α−)

]
,

N (α, β) := −
δ(α, β)

c
−

[
G(β+, α+)− G(β−, α+)− G(β+, α−)+ G(β−, α−)

]
.

In (9), L∗ denotes the adjoint of L, and I is the identity matrix. Further, it is useful to identify these matrices in
(9) as maps:

I+K,V : Ne → Ne ,

L : Bµ→ Ne ,

M∗ : Ne → Bµ ,
N : Bµ→ Bµ .

(10)

For further details pertaining to (9) we refer to [13].
Provided that at every external node i ∈ Ne either the temperature or the source is prescribed (for a total of Ne

prescribed components), (9) can be solved for the remaining Ne + Nµ components. By appealing to an analogy
with the continuum case, we demand, in effect, that half of the Cauchy data be prescribed on the lattice boundary,
4
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Fig. 2. Schematic of a defective lattice: defective bars (set Bµ) are shown with dotted lines. Nodal data partitions Nd and Nn are shown
with blue and red solid circles, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

in order to be able to solve for the remaining Cauchy data and the polarization dipoles. Consider, for example, a
partition of the exterior node set Ne into a set Nd , where nodal temperatures are prescribed, and a set Nn , where
nodal sources are prescribed. The nodal partitions are such that Ne = Nd ∪ Nn and Nd ∩ Nn = ∅ (Fig. 2). The
subscripts d and n refer to Dirichlet and Neumann, respectively, and we will extend their use to column-vectors
and matrices.

Let the prescribed data be

u(i) = φ(i), i ∈ Nd , or ud = φ ,

f (i) = ψ(i), i ∈ Nn , or fn = ψ .
(11)

Accordingly, we can first recast (9) as,

⎡⎣(I+K)dd Kdn −Vdd −Vdn −Ldµ

Knd (I+K)nn −Vnd −Vnn −Lnµ

−M∗µd −M∗µn L∗µd L∗µn Nµµ

⎤⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ud

un

fd

fn

µ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0 , (12)

and then combine it with (11) to obtain:[
(I+K)nn −Vnd −Lnµ

−M∗µn L∗µd Nµµ

] ⎧⎨⎩un

fd

µ

⎫⎬⎭ =
[
−Knd Vnn

M∗µd −L∗µn

] {
φ

ψ

}
. (13)

e regard this system of equations for the unknowns un , fd , and µ as the statement of the forward problem for
efective lattices.

. The perturbation problem

In the inverse problem, in addition to the prescribed data φ and ψ , a few components of un and/or fd are
easured, and, thus, become known. If all of the components of un and fd are known, we refer to the data as the

omplete Cauchy data. Otherwise, the data are incomplete. The objective of the inverse problem is to solve (13) for
for known Cauchy data, whether complete or incomplete.
In addition to the usual challenges associated with inverse problems, we discovered that using (13) is particularly

hallenging because the Cauchy data turned out to be rather insensitive to defect location, as we demonstrate in
ection 3.1. To address this issue, in Section 3.2, we formulate a perturbation problem equivalent to (13), which

xhibits much better sensitivity of the Cauchy data to the defect location.

5
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Fig. 3. Lattice geometry: (a) Pristine lattice; (b) First defective lattice with the removed bar in the bottom-right quadrant; (c) Second defective
lattice with the removed bar in the top-left quadrant. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Temperature distribution for the pristine and two defective lattices. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.1. A motivational example

Consider a pristine square lattice plate that occupies the domain −1 ≤ x, y ≤ 1, and consists of identical
ars of length h = 1/16. Accordingly, for this lattice, n = 32, the total number of lattice nodes is N = 332,

and the lattice boundary comprises Ne = 128 nodes. The pristine lattice is shown in Fig. 3a; Fig. 3b and c
show two different defective lattices, each formed by removing a single vertical bar. For the first defective lattice
(Fig. 3b), that bar is x = 10h,−11h < y < −10h, and, for the second defective lattice (Fig. 3c) the removed
bar is x = −10h, 10h < y < 11h. The induced thermal states are such that each node along the top and right
edges is subjected to a unit source (Fig. 3a). Thus Nn = {i : (xi , yi ) ∈ {(−15h . . . 15h, 1)} ∪ {1, (−15h . . . 1)}},
and the number of nodes where the sources are prescribed is equal to 63. Further, the nodes on the left edge
(x = −1,−1 ≤ y ≤ h are assigned linearly-varying temperatures from 0.0625 to 2.0, such that u(−1,−15h) = 1/16
and u(−1, 1) = 2. Similarly, the nodes on the bottom edge −1 ≤ x ≤ 1, y = −1 are also assigned linearly-varying
emperatures such that u(−1,−1) = 1/16 and u(1,−1) = 33/16. The total number of nodes where the temperatures
re prescribed is equal to 65.

Next, (13) is solved for the three lattices shown in Fig. 3. For the pristine lattice, the solution is for the remaining
Ne = 128 components of the Cauchy data; the polarization dipole is set equal to zero. For each defective lattice,
he solution involves the remaining Cauchy data and the polarization dipole. Once (13) has been solved, the nodal
emperatures in the interior are computed using (4) for i ∈ Ni . The results for all three lattices are shown as contour
lots in Fig. 4: as it can be seen, there are no visually discernible differences among the three cases, despite the
act that the three lattice problems are not the same.

To get a closer look at the results, in Fig. 5 we plot the computed Cauchy data along the lattice edges. Specifically,
n Fig. 5a, the nodal temperatures for all three lattices are plotted as functions of the arc-length coordinate ∆s1 along

the top and right lattice edges (where the Neumann data were prescribed), and in Fig. 5b, the (reaction) sources are
plotted as functions of the arc-length coordinate ∆s2 along the bottom and left lattice edges (where the Dirichlet
data were prescribed). The arc-length origins for both ∆s1 and ∆s2 are shown in Fig. 3a. In both cases, the boundary

is traversed clockwise. As it can be seen in Fig. 5, the presence of the defect had hardly any effect on the computed

6
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Fig. 5. The nodal temperatures and reaction sources along the lattice boundary for the pristine and two defective lattices. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

irichlet data (Fig. 5a), whereas the effect of the defect was highly localized for the computed Neumann data
Fig. 5b).

Results presented in Figs. 4 and 5 are characteristic of other pristine and defective lattices, and suggest that the
auchy data are rather insensitive not only to defect location but even to defect presence. Since defect detection is
riven by Cauchy data, it is imperative to improve the sensitivity. To this end, in the next subsection we reformulate
he forward problem in a way that appears to achieve this objective.

.2. Problem formulation

The perturbation forward problem is formulated for the difference between solutions of two problems. The first
roblem is for the defective lattice and data φ and ψ . The second problem involves the same data but the pristine,

rather than the defective lattice. Thus, the perturbation forward problem is characterized by zero prescribed boundary
data, and its solution is driven by the polarization dipoles. Schematically, this is shown in Fig. 6.

Mathematically, the perturbation problem is formulated by specifying (12) for both defective and pristine lattices.
Accordingly, for the defective lattice we obtain

⎡⎣(I+K)dd Kdn −Vdd −Vdn −Ldµ

Knd (I+K)nn −Vnd −Vnn −Lnµ

−M∗µd −M∗µn L∗µd L∗µn Nµµ

⎤⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ

u(D)
n

f(D)
d
ψ

µ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0 . (14)

or the pristine lattice, the last row of the block-matrix is omitted because the polarization dipoles are not involved,
nd therefore (12) yields

[
(I+K)dd Kdn −Vdd −Vdn

Knd (I+K)nn −Vnd −Vnn

] ⎧⎪⎪⎨⎪⎪⎩
φ

u(P)
n

f(P)
d
ψ

⎫⎪⎪⎬⎪⎪⎭ = 0 . (15)

y subtracting (15) from (14), and rearranging terms, we obtain the perturbation forward problem statement:⎡⎣(I+K)nn −Vnd −Lnµ

−Kdn Vdd Ldµ

−M∗µn L∗µd Nµµ

⎤⎦ ⎧⎨⎩δun

δfd

µ

⎫⎬⎭ =
⎧⎨⎩ 0

0
λµ

⎫⎬⎭ , (16)

here
δun = u(D)

n − u(P)
n ,

δfd = f(D)
d − f(P)

d ,

∗ ∗ (P) ∗ (P) ∗

(17)
λµ =Mµdφ +Mµnun − Lµd fd − Lµnψ .

7
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Fig. 6. Perturbation forward problem as the difference between two problems.

Fig. 7. Differences among the three lattices obtained by solving the perturbation forward problem (16). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

In effect, the column-vectors δun and δfd capture the differences between the unknown Cauchy data for the defective
and pristine lattice; the number of unknowns remains Ne. The expectation now is that the Cauchy data differences

ill prove to be more sensitive to defects than the original Cauchy data were. We note that similarly-cast perturbation
roblems have been often used for various problems in the mechanics of the continuum; they are of particular
sefulness in inverse problems: see, for example, [19], where an approach based on differential measurements of
ar-field operators has been proposed for detecting defects embedded in an unknown host.

.3. The motivational example revisited

Let us revisit the motivational example introduced in Section 3.1 using (16) rather (13). Accordingly, now we
lot δun rather than un , and δfd rather than fd , along ∆s1 and ∆s2, respectively (Fig. 7). It is clear that differences
mong the lattices are now quite pronounced, much more so than in Fig. 5.

Based on results presented in Figs. 5 and 7, we proceed to analyzing the inverse problem for defective lattices
sing the perturbation (16) rather than the original forward problem formulation (13).

. The inverse problem

As far as (16) is concerned, the inverse problem is to determine µ in terms of prescribed Cauchy data, which
nclude not only φ and ψ , but also some or all components of δun and/or δfd . This requires one to determine both
µ and the set of all defective bars Bµ: computing this set presents the most challenging aspect of the problem, and,
consequently, our approach is significantly affected by this challenge.

4.1. Functionals

We cast the inverse problem within a model-constrained optimization framework [14], whereby the Lagrangian
to be minimized consists of three terms, corresponding to the misfit, the forward problem side constraint, and the

regularization functionals.

8
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To formulate the misfit term, we rewrite (16) as:⎡⎣(I+K)nn −Vnd 0
−Kdn Vdd 0
M∗µn −L∗µd Iµµ

⎤⎦ ⎧⎨⎩δun

δfd

λµ

⎫⎬⎭ =
⎡⎣ Lnµ

−Ldµ

Nµµ

⎤⎦µ . (18)

his system of equations emphasizes that for any chosen µ, we can solve it for the column-vector

bp :=

⎧⎨⎩δun

δfd

λµ

⎫⎬⎭ =
⎡⎣(I+K)nn −Vnd 0
−Kdn Vdd 0
M∗µn −L∗µd Iµµ

⎤⎦−1 ⎡⎣ Lnµ

−Ldµ

Nµµ

⎤⎦µ := Aµ . (19)

ere we use the subscript “p” to emphasize that the column-vector bp is predicted. On the other hand, if complete
auchy data are prescribed and the set Bµ is known, we can use (17) to compute bm, where the subscript “m”

mplies that bm is in effect a measured, a priori known, column-vector. Thus, we can express the misfit functional
M for µ as

LM :=
(
bp − bm

)T (
bp − bm

)
= (Aµ− bm)

T (Aµ− bm) . (20)

ote that, for any chosen µ, LM is constructed so that the forward problem stated in (16) is solved exactly. Therefore,
he side constraint is satisfied exactly and the corresponding functional can be omitted.

The regularization functional adopted here is chosen so that it is capable of discriminating between defective and
ristine bars. For this purpose, the standard ℓ2(µ) norm is not useful as it invites a broad spectrum of µ values, which
oes not allow one to discriminate between defective and pristine bars. In contrast, the ℓ1(µ) norm is well-suited
or our purposes [20,21]. For this reason, we define the Lagrangian L in the form

L := LM + R ∥µ∥1 = (Aµ− bm)
T (Aµ− bm)+ R ∥µ∥1 , (21)

here R is a scalar regularization factor.
The Lagrangian in (21) is difficult to exploit as the matrix A cannot be computed without defining the trial set

µ a priori. Of course, one can start the inversion process by assuming that the set Bµ is very large, potentially
onsisting of all lattice bars, but this will result in a prohibitively expensive problem size. To compensate, we devise
two-stage algorithm, where, at the first stage, we seek to reduce the size of the initial set Bµ, and, during the second

tage, determine the actual Bµ and the corresponding µ. The proposed algorithm structure can be easily explained.
t the first stage, we disregard the fact that the defects are removed bars. That is, we disregard the equivalence

elationship (6), and, ultimately, the last row in (16). Accordingly, we search for a set of dipoles to be placed in
he pristine lattice that would match the measured data. This set of dipoles serves as the basis for identifying the
rial set Bµ. At the second stage, we take into account that the defects have zero conductance, restore the last row
n (16), and solve for µ (and Bµ) using (21).

The forward problem corresponding to the first stage is derived from the first two rows of the block-matrix in
16). Accordingly, following (19), it is formulated as

b∗p :=
{
δun

δfd

}
=

[
(I+K)nn −Vnd

−Kdn Vdd

]−1 [
Lnµ

−Ldµ

]
µ := A∗µ . (22)

ote that the block-matrices in this equation are independent of Bµ, simply because here the dipoles are treated
s ordinary rather than polarization ones. The Lagrangian corresponding to (22) is structured exactly as the one in
21), i.e.,

L∗ :=
(
A∗µ− b∗m

)T (
A∗µ− b∗m

)
+ R ∥µ∥1 . (23)

.2. The first inversion stage

The first stage of the proposed algorithm involves minimization of L∗. This problem is closely related to a
ell-established problem in statistics: Least Absolute Shrinkage and Selection Operator (LASSO) [22]. To this end,
e rewrite the minimization problem for the Lagrangian L∗ in the LASSO-consistent form

min
µ

L∗ ⇔ argmin
µ∈Rp

⎡⎢⎣ n∑
i=1

⎛⎝b̃∗i − b∗0 −
p∑

j=1

Ã∗i jµ j

⎞⎠2

+ R
p∑

j=1

|µ j |

⎤⎥⎦ , (24)
9
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where p is the total number of bars, and n is the number of available measurements. The column entries of the
atrix Ã∗ are computed as the mean-adjusted columns of A∗:

Ã∗i j = A∗i j −
1
n

n∑
k=1

A∗k j . (25)

imilarly, b̃∗ is computed as the mean-adjusted column-vector of measurements b∗m:

b̃∗i = (b∗m)i −
1
n

n∑
k=1

(b∗m)k . (26)

inally, the intercept b∗0 is computed as:

b∗0 =
1
n

n∑
k=1

p∑
j=1

A∗k jµ j −
1
n

n∑
k=1

(b∗m)k . (27)

or a fixed value of the regularization factor R, LASSO minimization reduces the inversion target µ, by forcing
ost of its components to zero, while allowing only a small number of non-zeros. This behavior is highly desirable

s it indirectly treats the dipoles in a binary manner (zero and non-zero), consistent with the problem physics.
We note that the interplay between the misfit and regularization terms in (23) or (24) is rather important. In

articular, for small R, the misfit would be dominant, likely leading to solutions for µ corresponding to many
ars with small, but non-zero, conductance. For large R, one would unduly emphasize the regularization term over
he misfit, leading to a small Bµ, which may exclude some of the defective bars. In fact, as discussed below, the
ASSO minimization algorithm for R larger than a critical value, is guaranteed to return an empty trial set Bµ,

and, consequently, µ = 0.
To address the interplay between the misfit and regularization terms, we use a continuation scheme that seeks

o balance the two terms of the Lagrangian. Specifically, once the minimization of L∗ is completed for a fixed R,
uring the second stage, we re-enlist the complete set of Eqs. (18) and attempt to minimize L (instead of L∗), while

also assessing whether the first-stage Bµ and µ satisfy (18). The second-stage algorithm will terminate successfully
if and only if the trial set Bµ contains all defective bars. If the second stage fails, this implies that the trial set Bµ
computed at the first stage did not contain all defective bars. Then, the first stage is restarted with a smaller value
of the regularization factor R, so that the trial set Bµ is enlarged. Note that the enlarged set is not guaranteed to
be a superset of the sets corresponding to larger R values. The motivation for the regularization factor continuation
scheme stems from the following theorem [23]:

Theorem 1. If R > Rcr, then the minimizer of the LASSO functional (24) is µ = 0, where

Rcr =
1
n

Ã∗T b̃∗

∞

. (28)

This theorem guarantees that for any value of R greater than the critical Rcr, there are no solutions for µ other
than the trivial. Accordingly, we initiate the first stage with R = γ Rcr, and proceed to continuously decrease R
based on the outcome of the second inversion stage. In our experience, γ = 0.955 is a good choice.

.3. The second inversion stage

The polarization dipoles identified at the first stage are not required to represent zero-conductance bars. This is
roblematic for the minimization of L, because the trial set may include pristine bars, for which the equivalence
ondition (6) is inapplicable, and therefore (18) or (19) become invalid. We address this issue by assigning weights
o the last Nµ equations of (19). Accordingly, the weighted form of the matrix Â is defined as:

Âi j = Ai j for i ∈ Ne and Âi j =
√
wi Ai j for i ∈ Bµ , (29)

here
√
wi denotes the i th equation weight. Similarly the measurements are weighted as

(b̂ ) = (b ) for i ∈ N and (b̂ ) =
√
w (b ) for i ∈ B . (30)
m i m i e m i i m i µ

10
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Fig. 8. The trial set Bµ computed at the first stage. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

onsequently, the misfit term is modified, and, therefore, (20) is rewritten as

L̂M :=

(
b̂p − b̂m

)T (
b̂p − b̂m

)
=

(
Âµ− b̂m

)T (
Âµ− b̂m

)
. (31)

Initially, all weights wi are set equal to one. The weights are updated using the Iteratively Reweighted Least-Squares
IRLS) algorithm [24], until all weights converge to either zero or one. The IRLS algorithm updates the weights
ased on the residuals ri after each Ordinary Least-Squares (OLS) solve; the residuals ri , and their sum Rw are
efined as

ri =

Ne+Nµ∑
j=1

Âi jµ j − (b̂m)i , i ∈ Bµ, and Rw =

Nµ∑
i=1

|ri | . (32)

quations with large residuals are progressively assigned smaller weights, until the weights converge. If the trial
et Bµ includes all defective bars, then the weights converge to one for those bars, and to zero for pristine bars in
he trial set Bµ. Thus, (19) is satisfied for the defective bars, and the equivalence conditions for the pristine bars
re discarded. In contrast, if the trial set Bµ does not include all defective bars, then the weights converge to zero
or the entire set. Thus, the termination condition of the second inversion stage was set as:

Rw < ϵ and ∥w∥1 > ϵ , (33)

here ϵ denotes a small tolerance. We note that the number of bars contained in the trial set Bµ is usually relatively
mall, much smaller than the total number of bars, which makes the OLS solve computationally inexpensive.

To update the weights wi , we use standardized adjusted residuals vi , which are computed using the equation
residuals ri and leverages hi . A leverage provides a metric for the sensitivity of the regression coefficients to the
measured response after each OLS solve. Specifically, if QR is a factorization of Â into an orthogonal matrix Q and
an upper-triangular matrix R, so that the columns of Q span the range of Â, then the leverages hi are the diagonal
elements of the projection matrix H = QQT . In statistics, the leverages allow one to identify outliers. In terms of
the residual ri for each equation, the standard deviation of error ϵsd, and the leverage hi , the adjusted residuals are
defined as

vi =
ri

c ϵsd
√

1− hi
, (34)

where c is a tuning constant (we used c = 4.685 throughout), and ϵsd is estimated using the median absolute
deviation of the residuals from their median [22,25].

Lastly, we used a bi-square weighting function that uses the standardized adjusted residuals vi to update the
weights according to

wi =

{
(1− v2

i )2 if |vi | < 1
. (35)
0 if |vi | ≥ 1

11
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Failure to satisfy the second inversion stage termination condition (33) would imply that one or more defective
bars are missing from the trial set Bµ. Then, the algorithm returns to the first stage with a smaller value for
the regularization factor R, which would promote an enlarged set Bµ during the first inversion stage. When all
true defective bars are included in the trial set Bµ, the weights during the second stage will correctly identify the
defective bars. The two-stage inversion algorithm is summarized in the following Algorithm:

Algorithm Two-Stage Inversion for Localizing Lattice Defects

1: procedure TWOSTAGEMINIMIZER
2: Set γ = 0.955 (Regularization factor R decrement)
3: Set ϵ = 10−10 (weighted OLS tolerance)
4: Set Rmin = 0.01Rcr ▷ Theorem 1
5: Initialize polarization dipoles µ = 0
6: Initialize regularization factor R = γ Rcr
7: while R > Rmin do ▷ First stage LASSO loop
8: Minimize Lagrangian L∗, obtain µ ▷ Eq. (24)
9: Identify the trial set Bµ

10: Initialize IRLS weights w = 1
11: Set Rw = 1+ ϵ
12: while (Rw > ϵ & ∥w∥1 > ϵ) do ▷ Second stage IRLS loop
13: Minimize L̂M, obtain w,µ
14: if ∥w∥1 > ϵ then
15: Rw ← sum of weighted OLS residuals ▷ Eq. (33)
16: else
17: break
18: end
19: R← γ R
20: end

5. Numerical experiments

In this section, we present results of four numerical experiments that were used to assess the efficacy of the
wo-stage inversion Algorithm in localizing lattice defects.

The first experiment involved lattices with a single removed bar. Specifically, we considered a lattice that occupied
he square region −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, with a lattice spacing of h = 1/16. Accordingly, there are 128

boundary nodes (Ne = 128) and 1860 internal bars, and, consequently, the matrix A, which was constructed using
19), has 128 rows and 1860 columns. We applied linearly varying temperatures along the bottom and left edges,
nd a unit source at every node along the right and top edges. This prescription realizes equal bi-linear temperature
istribution in the pristine lattice. The single defective bar was located at x = 2h and 8h ≤ y ≤ 9h; it is indicated
y red color in Fig. 8a.

First, we assumed that the complete Cauchy data were available; we refer to this case as the complete Cauchy
ata case. For the chosen data, (28) yielded Rcr = 6.82×10−4. Since the decrement factor had been set to γ = 0.955,
he first-stage LASSO solution started with R = 6.51× 10−4, and concluded with the trial set Bµ, which included

two bars: the actual defective bar and a pristine bar at x = h and 9h ≤ y ≤ 10h (these bars are shown by cyan
color in Fig. 8b). We note that the conductance of both bars was close to one: that is, at the end of the first stage,
it was not possible to distinguish between the defective and pristine bars.

Next, the second stage was initiated with the 2-bar trial set Bµ. As the IRLS algorithm iteratively updated the
weights, it ultimately assigned unit weight to the defective bar and zero weight to the pristine bar. Not surprisingly,
the polarization dipole converged to the true value. Table 1 summarizes the results for both stages, and for both
bars included in the trial set Bµ.

When a different single missing bar was selected, the result was equally successful. In short, in all cases of a

single missing bar, under complete Cauchy data, the inversion algorithm successfully localized the defect.

12
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Table 1
Polarization dipoles and conductances for the 2-bar trial set Bµ shown in Fig. 8b.

Bar First stage (LASSO) Second stage (IRLS)

Dipole µ j Conductance c Dipole µ j Conductivity c

1 (pristine) 0.0025 0.9608 0.0 1.0
2 (defective) 0.0764 0.9474 0.1249 0.0

Fig. 9. The trial set Bµ for the incomplete Cauchy data case. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 10. Set of all single defective bars, shown in red, for which the first stage failed to produce a trial set Bµ that included the defective
bar (incomplete Cauchy data case). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

In the second set of numerical experiments, we restricted the availability of measurements to the top edge, while
keeping the rest of the setting identical to the first set of numerical experiments; we refer to this set of experiments
as the incomplete Cauchy data case.

In this case, the first stage produced a trial set Bµ with 3 bars, which included two pristine bars and the true
defective bar. The pristine bars are shown in Fig. 9 in cyan color, whereas the defective bar is shown in red color.
In this particular case, the second inversion stage, initialized with the 3-bar trial set Bµ, successfully located the
defective bar. We note though that when similarly incomplete Cauchy data were used to locate a different missing
bar, the first-stage LASSO iterations were not always successful in including the true defective bar in the trial set.
The set of all unsuccessful cases is captured pictorially by the red color bars in Fig. 10. Evidently, the algorithm
was unsuccessful when the missing bar was sufficiently distant from the top edge, where the Cauchy data were
prescribed.

The preceding experiments suggest that once the first stage produced a trial set Bµ that included the true defective
bar, the second stage would be able to correctly locate it, independently of the presence of pristine bars in the trial
set. Thus, to better quantify the ability of the first stage to identify trial sets that are supersets of the true Bµ, for the
third set of numerical experiment we chose to study the success rate of the first stage of the algorithm in including
pairs of missing bars in the trial set, when complete Cauchy data were available. Since there are approximately

1.7 million possible pairs of bars, we chose a random sample of 1000 pairs, instead of exhaustively accounting

13
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Table 2
Defect localization success rate for the complete Cauchy data for a random sample
of 1000 pairs of missing bars.

Defect orientation First-stage success rate

Single-state Two-state

(v,h) 76.8% 99.1%
(v,v) 95.1% 94.1%
(h,h) 94.0% 94.9%

Fig. 11. Localization of a single void: (a) target void, realized by removing seven bars; (b) after the first inversion stage, the trial set Bµ
includes five of the missing bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

for all pairs. Unlike the single defective bar case, even for complete Cauchy data, the first-stage LASSO iterations
were not always successful in including the pair in the trial set Bµ. The success rate is listed in Table 2 under the
single-state case column. As it can be seen, the success rate was higher (and fairly high) when the two missing
bars were both vertical ((v,v) orientation) or both horizontal ((h,h) orientation), than when the bars were of mixed
orientation (v,h).

To improve on the ability of the algorithm to include the pair in the trial set, we subjected the lattice to two
successive, instead of just one, thermal states, and then used the sum of the misfits defined over both states to
drive the inversion. Thus, instead of a Cauchy data set obtained from a single bi-linear probing state, we used the
combination of two Cauchy data sets, corresponding to two linear states, one in x and the other in y. Naturally, the
unknown polarization dipoles doubled in number, since their magnitude (but not the set Bµ) was state-dependent.
The success rate for the two-state case is also included in Table 2, showing remarkable improvement over the
single-state case for pairs formed by one horizontal and one vertical bar.

For the fourth set of numerical experiments, we focused on a constellation of missing bars, forming a lattice
void. Specifically, the synthetic void was created by removing seven bars within the region defined by 6h ≤ x ≤ 9h
and −8h ≤ y ≤ −6h, as shown in Fig. 11a. Note that the forward problem for this void involves seven polarization
dipoles, out of which only five are independent, because the sum of dipoles at the two interior nodes of the void
must be equal to zero: this fact, as will be discussed, reduces the rank of Ã∗ in (25), and may compromise the
ability of the first-stage LASSO to include sufficient number of bars in the trial Bµ set to lead to the localization
of the true void.

To localize the void, we used measurements (complete Cauchy data) obtained from two linear thermal states of
the lattice, and report successful void localization, for R = 6.98× 10−4. We note that it was sufficient to identify
only five out of seven defective bars during the first inversion stage: the 5-bar Bµ set is shown in Fig. 11b.

As a variation of the fourth experiment, the synthetic void was moved towards the middle of the lattice, in the
region defined by −2h ≤ x ≤ h and −2h ≤ y ≤ 0, as shown in Fig. 12a. In this case, out of seven missing
bars, the first-stage LASSO iterations returned a trial set Bµ that included only four missing bars together with
several pristine bars (see Fig. 12b; the regularization factor was R = 3.91× 10−5). Since, for this particular void’s
14
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Fig. 12. Localization of a single void in the middle of the lattice: (a) target void, realized by removing seven bars; (b) after the first inversion
stage, the trial set Bµ includes several pristine bars and only four of the missing bars. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Lattice bar topologies that lead to linear column dependence in the L matrices of (18).

geometry, at least five defective bars have to be included in the Bµ set at the end of stage one, the second stage did
not succeed in successfully localizing the void.

The difficulty with the first-stage LASSO iterations in the mid-lattice void case can be explained by examining
the linear dependence structure of the L matrices in (18). Consider the bar configurations shown in Fig. 13 — a
unction and a loop. The polarization dipoles are of the same magnitude and oriented as indicated by the circles
ith “positive” or “negative” signs. For each of these two configurations there are only three independent columns

n the L matrices. The column dependence carries over to the matrix Ã∗ in (25), and, as is known (e.g., [26]),
xacerbates solution multiplicity, despite the ℓ1 regularization.

A relatively straight-forward remedy is to use a linear combination of the ℓ1 and ℓ2 norms in the regularization
erm of (24); accordingly, the first inversion stage becomes:

argmin
µ∈Rp

⎡⎢⎣ n∑
i=1

⎛⎝b̃∗i − b∗0 −
p∑

j=1

Ã∗i jµ j

⎞⎠2

+ R

⎧⎨⎩θ
p∑

j=1

|µ j | + (1− θ )
p∑

j=1

µ2
j

⎫⎬⎭
⎤⎥⎦ , (36)

This generalization of LASSO minimization, commonly referred to as elastic net minimization in the statistics
iterature [22], introduces a new parameter θ that balances the ℓ1 and ℓ2 norm penalties: for θ close to 1.0, the
lastic net solution is very similar to a LASSO solution except for bars that exhibit the aforementioned linear
ependencies. In the latter case, elastic net chooses a maximal set of bars for the trial set Bµ. For example, using
he elastic net Lagrangian of (36), the mid-lattice void of the previous numerical experiment was successfully
15
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v

Fig. 14. Trial set Bµ using elastic net minimization after first stage inversion (R = 6.06× 10−4); five missing bars are included, leading to
oid localization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Localization of two voids: (a) target voids; (b) after the first inversion stage, the trial set Bµ includes five of the missing bars for
each void, leading to successful void localization. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

localized, since the Bµ set included five out of the seven missing bars, as shown in Fig. 14. We also note that the
modified first-stage elastic-net-based inversion (36), while useful for void localization, has no appreciable effect
in the preceding experiments that involved either a single or a pair of missing bars. It has, thus, emerged as the
preferred first-stage Lagrangian, since it is capable of localizing voids and groups of single-bar defects.

The last numerical experiment involved a lattice with two voids that are near symmetrically oriented about the
diagonal of the lattice grid, as shown in Fig. 15. This lattice was probed using measurements from the two thermal
states used in the experiments involving pairs of defective bars and single voids. The elastic net minimization was
used in the first stage of inversion with θ = 0.95. The algorithm successfully located both voids by including in
the trial set Bµ five out of seven bars for each void (Fig. 15b).

6. Closure

In this article, we developed an approach to the inverse problem of localizing removed bars in otherwise pristine
lattices. First, with the aid of polarization dipoles, we showed that localizing the lattice defects is equivalent to
solving an inverse source problem where the polarization dipoles become the inversion variables. This allowed us
to operate always on the pristine lattice, without the need to modify the lattice grid during inversion iterations.
Secondly, we devised a two-stage inversion algorithm with an embedded regularization factor continuation scheme
that proved reasonably successful in localizing defects.

Although our overall approach followed standard ideas of model-constrained optimization, we had to address
several aspects that arise naturally in discrete but not in continuum inverse problems. Perhaps the most significant
of those issues is the identification of trial sets of bars that allow one to ultimately locate the actual defective
bars. The proposed two-stage algorithm borrows elements from well-established methods in computational statistics

(LASSO and elastic net), which were adapted to the lattice problem. Results of numerical experiments involving
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single defective bars and pairs of defective bars suggest that the first-stage trial set must be a superset of the
actual set of the defective bars Bµ for the second-stage optimizer to successfully localize the defects. Results
of numerical experiments involving voids revealed additional challenges due to the linear dependence of the
equivalence conditions of the bars forming the void: to address the difficulty, we proposed a weighted regularization
term that appeared to overcome the linear dependence and led to successful void localization, including cases
involving well-separated voids.
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