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Abstract

We describe a systematic approach for engineering the dispersive properties of elastic metamaterials in order to band-gap,
at user-defined frequency ranges, the propagation of elastic waves, accounting simultaneously for both P and SV waves. To
this end, we focus on the inverse design of a metamaterial’s unit cell, and cast the design problem as an optimization problem,
driven by the desired band gap, and constrained only by the cell’s dispersive characteristics; the latter are expressed in terms of
the Floquet–Bloch eigenvalue problem. Numerical results in the time-domain, using metamaterial assemblies with only narrow
periodicity, demonstrate that the engineered metamaterial attains the desired behavior. Extensions to wave steering, shielding,
and other wave-control applications, follow naturally.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Fueled by recent advances in solid state physics, photonics, and phononics, dispersion engineering refers to the
emerging field of engineering the properties of materials in order to achieve user-defined behavior, often uncommon
in nature (thus giving rise to the metamaterial designation of such materials), which, in the context of wave
propagation, would allow for novel ways of wave motion control. To attain the desired behavior, the materials
need not necessarily be engineered ab initio; instead, for example, one could engineer the spatial arrangement of
real materials in periodic (or even aperiodic) assemblies, in a manner that would then endow the assembly with
the target dispersive behavior. In this way, wave-steering [1], wave-control [2], cloaking [3–5], band-gapping [6],
lensing [7,8], and other wave-control effects become possible.

To date, engineering the dispersive behavior has been attempted mostly on an ad hoc basis, and primarily in
the context of acoustics or electromagnetics, which enjoy the benefit of a single wave type/wave velocity. By
contrast, in elastodynamics, the presence of two distinct wave types turns the engineering of the medium’s dispersive
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Fig. 1. The unit cell and the metamaterial assembly consisting of periodically arranged heterogeneous unit cells.

characteristics into a particularly challenging task. There are at least two paths to engineering the dispersive
behavior: either by topological optimization or by engineering the material composition, or both. Thus far, the few
systematic approaches that have been pursued are based almost exclusively on topological optimization: classified
by design objective, examples include the works reported in [9–12] for band gap design, in [13,14] for anomalous
reflections or refractions, in [15–18] for auxetic or hyperbolic metamaterials, in [19,20] for energy dissipation, and
in [21,22] for wave amplitude control.

Engineering material behavior, based on user-defined performance metrics, is, fundamentally, an inverse medium
problem, and, therefore, it can be treated using established mathematical approaches for inversion. Here, we build
upon recent advances in engineering metamaterials for band-gapping scalar waves (single wave type) [23,24], to
the all important and more challenging case of vector waves (two wave types). The goal is to be able to intercept
propagating waves with suitably engineered metabarriers in order to arrest (filter) the propagation of elastic waves
at user-defined frequency ranges (the band gaps). While the discussion herein is driven by band gaps, other wave
control objectives can be similarly pursued by appropriately adapting the developed framework.

2. Preliminaries

Let us assume that the metamaterial, whose dispersive behavior we intend to engineer, consists of identical,
periodically distributed, unit cells (Fig. 1): due to the periodicity, it is sufficient to engineer the unit cell in order to
endow the metamaterial with the desired target behavior. The dispersive behavior of the unit cell is completely
defined by the associated eigenvalue problem (EP), cast over the unit cell and subject to periodic boundary
conditions. While the EP captures the unit cell’s dispersive characteristics, it cannot be readily manipulated to
meet a specific design goal: instead, we use the EP to extract the band structure, i.e., the dispersion curves/surfaces
associated with the irreducible Brillouin zone (IBZ). The IBZ affords us the necessary flexibility to accommodate
wave-control design goals, and in particular when targeting directionality constraints. We highlight next the steps
leading to the unit-cell design informed by the IBZ: in short, dispersion engineering design goals are first translated
to specific group velocity design profiles, which are, in turn, shown to uniquely depend on the characteristics of the
unit cell’s EP and IBZ.

2.1. The eigenvalue problem for elastic waves in periodic media

In the frequency domain, the propagation of elastic waves in a heterogeneous domain is described by Navier’s
equations:

0 = div C (x)
[
grad U (x)

]
+ ρ (x) ω2U (x) , x ∈ RNd , (1)

where Nd denotes the order of the spatial dimensionality, U (x) is the displacement vector, ω is the circular
frequency, ρ (x) is mass density, and C (x) is the elasticity tensor. We use regular font to denote scalars, and
boldfaced font for vectors, matrices, and first-rank tensors; a single underline is used for second-rank tensors; and
a double underline is used for fourth-rank tensors. The elasticity tensor C for a linear isotropic medium reads:

C (x) [ ] = µ (x) [ ]+ µ (x) [ ]⊺ + λ (x) tr [ ] I, (2)
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where λ (x) and µ (x) are the Lamé parameters, I is the identity tensor and [ ]⊺ denotes the transpose of the
subtended quantity. The problem implied by (1) becomes periodic when the material properties are periodic,
i.e., when ∀x ∈ RNd and ∀mi ∈ Z,

λ (x) = λ

(
x +

Nd∑
i=1

mi pi

)
, (3a)

µ (x) =µ

(
x +

Nd∑
i=1

mi pi

)
, and (3b)

ρ (x) = ρ

(
x +

Nd∑
i=1

mi pi

)
. (3c)

In the above, pi ∈ RNd is the primitive vector that defines the periodicity in the i th spatial direction. Then, the
Floquet–Bloch theorem [25] provides the general solution of the periodic problem as:

U (x) = eik·xu (x) , (4)

where the displacement-like quantity u (x) is periodic with the same periodicity of the original problem, and k
denotes the Floquet–Bloch wavevector. Substituting (4) into the Navier equation (1), yields the Floquet–Bloch EP.
In weak form, the EP reads: given ω ∈ R and d ∈ RNd , find k ∈ C and u ∈ VNd \ {0} such that

P (k) (v, u) ≡ a0 (v, u)+ ka1 (v, u)+ k2a2 (v, u) = 0, ∀v ∈ VNd , (5)

where

V =
{

w ∈ H 1 (Ωcell) |w (x) = w

(
x +

Nd∑
i=1

mi pi

)
∀x ∈ ∂Ωcell

}
, (6a)

a0 (v, u) =

∫
Ωcell

{
grad v : C

[
grad u

]
− v · ω2ρ u

}
dΩ , (6b)

a1 (v, u) = i
∫
Ωcell

{
grad v : C [u⊗ d]− (v⊗ d) : C

[
grad u

]}
dΩ , and (6c)

a2 (v, u) =

∫
Ωcell

(v⊗ d) : C [u⊗ d] dΩ . (6d)

In the above, Ωcell is the domain of a unit cell, v is a test function, an overline ( ) denotes a complex-conjugate of
the subtended quantity, ( : ) denotes double contraction, ⊗ denotes tensor product, and d is a direction of interest
such that k = kd, with |d| = 1.

We prefer to drive the unit cell’s design using the quadratic EP (5), cast in terms of the wavenumber k, instead of
the more common choice of the linear EP (cast in terms of ω2), since, as discussed in [23], the quadratic EP provides
a direct, quantitative, description of the band gaps, whereas the linear EP can only offer an indirect description.
Thus, given a (real-valued) circular frequency ω, we use (5) to find the complex-valued wavenumbers (wavevectors)
k (k): the set of all dispersion curves/surfaces relating ω to k forms the band structure of the unit cell. We note
that the Floquet–Bloch wavevector k is periodic in the wavevector space (or reciprocal space); the periodicity in the
reciprocal space is captured by the reciprocal primitive vector qi , which is related to the physical space’s primitive
vector pi via pi · q j = 2πδi j , with δi j denoting the Kronecker delta. Similarly, the dispersion curves of a periodic
problem are also periodic in the wavevector space with periodicity equal to that of the primitive vector qi .

To study the band structure we turn to the unit cell (or Wigner–Seitz cell) in the reciprocal space: the Wigner–
Seitz cell defines the Brillouin zone, which is, effectively, the (periodic) trace of the dispersion curves in the
wavevector space. The dispersion curves have symmetries that allow a further reduction of the Brillouin zone to
the, so-called, irreducible Brillouin zone (IBZ), which is delineated off of the Brillouin zone while ensuring that
no information is lost. Practically, dispersion curves are often plotted over only the high-symmetry lines, which
are the edges of the IBZ. For example, a square unit cell in the physical space has a square Wigner–Seitz cell in
the reciprocal/wavevector space (i.e., a square Brillouin zone), which, upon reduction, results in a triangular IBZ
(Fig. 2). The vertices of the triangular IBZ are denoted by Γ , X , and M , and the three high-symmetry lines are Γ -X ,
Γ -M , and X -M . In this paper, we plot dispersion curves for wavevectors corresponding only to the propagating
states to avoid congesting the plots.
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Fig. 2. The Brillouin zone and the IBZ of a square unit cell in wavevector space.

We remark that to compute the band structure on the high-symmetry lines that do not connect back to the origin
Γ , e.g., X -M in Fig. 2, an offset direction do is required, such that k = kd+ do: the associated EP with an offset
direction is given in Appendix A.

2.2. Group velocity, energy velocity, and the band gap

We are interested in engineering the unit cell to exhibit user-defined dispersive behavior, and in particular, to
adhere to a user-prescribed group velocity profile. Band gaps are only a particular case of a group velocity profile.
Specifically, a band gap is a frequency range G for which there are no propagating states: at the band gap frequencies,
the Floquet–Bloch wavenumbers are complex-valued with nonzero imaginary parts (Im {k} ̸= 0, ∀ω ∈ G), whereas
outside the gap the wavenumbers are purely real-valued (k ∈ R, ∀ω /∈ G). As will be discussed, band gaps arise
when the group velocity vanishes. Then, to set up the inverse design problem, it is necessary to relate the group
velocity to the unit-cell EP.

The group velocity vg is defined as [26]:

vg = Re
{
gradkω

}
, (7)

while the directional group velocity along d is:

vg = vg · d = Re
{

∂ω

∂k

}
. (8)

To relate the group velocity to the EP, we differentiate (5) with respect to k, i.e.,

0 =
∂

∂k
P (k) (u, u)

= 2ω
∂ω

∂k
a0,2 (u, u)+ a1 (u, u)+ 2ka2 (u, u)+ 2Re

{
P (k)

(
∂u
∂k

, u
)}

. (9)

In the above, the last term vanishes, assuming that ∂u/∂k ∈ VNd . Then, by taking the real part of the remainder
of (9), while considering (8), yields:

vg = −
a1 (u, u)+ 2Re {k} a2 (u, u)

2 ω a0,2 (u, u)
, (10)

where

a0,2 (v, u) = −

∫
Ωcell

v · ρ u dΩ . (11)

Expression (10) is the sought relation between the (directional) group velocity vg and the eigenpair (u, k) of the
Floquet–Bloch unit-cell EP: it can be viewed as the elastodynamic equivalent of the Hellmann–Feynman theorem
in quantum mechanics, and it is a key element in the inverse unit-cell design problem, since, by specifying the
left-hand-side of (10), it is possible to invert for the unit-cell properties associated with the eigenpair (u, k) that
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appears on the right-hand-side of (10). If, for example, it is of interest to realize a band gap along any particular
direction d, then the directional group velocity must vanish [24], i.e.,

vg = 0, ∀ω ∈ G, (12)

or, equivalently, by virtue of (10):

a1 (u, u)+ 2Re {k} a2 (u, u) = 0. (13)

We note that the group velocity is defined with respect to the Floquet–Bloch wavevector corresponding to the
ansatz (4), which differs from the usual definition for plane waves, and obscures the physical interpretation of
the group velocity. However, as it was first shown in [27] for Floquet–Bloch wavenumbers k corresponding to
propagating states (k ∈ R), the group velocity is identical to the energy velocity, i.e.,

vg = ve, ∀ω /∈ G, (14)

where ve = ve · d is the directional energy velocity. Here, we show again the velocity equivalence relation for
Floquet–Bloch wavenumbers, following a slightly different path than the one in [27], which has the benefit of
explicitly relating the energy velocity to the Floquet–Bloch eigenpair and the sesquilinear forms of the eigenvalue
problem, as was earlier done for the group velocity in (10). Accordingly, the energy velocity ve for a time-harmonic
elastic wave is defined as [28,29]:

ve =
Re {⟨F⟩}
⟨E⟩

, (15)

where ⟨ ⟩ denotes spatial average, F is the time-averaged Umov–Poynting vector, and E is time-averaged
energy [28]. The time-averaged Umov–Poynting vector F and time-averaged energy E (assuming an e−iωt harmonic
factor) are defined as:

F = −
1
2
τ⊺(−iω) U, and (16)

E =U + K =
1
4

Re
{
ε : τ

}
+

1
4
ρ(−iω) U · (−iω) U, (17)

where U is time-averaged strain energy, K is time-averaged kinetic energy, τ is a stress tensor, ε is a strain tensor.
Then, the time-averaged Umov–Poynting vector in the direction d is:

F · d = −
1
2

(
τ⊺(−iω) U

)
· d

= −
1
2
τ :
(
(−iω) U⊗ d

)
= −

1
2

C
[
grad U

]
:
(
iωU⊗ d

)
= −

1
2

C
[
grad u+ u⊗ ik

]
eik·x
:
(
iωue−ik·x

⊗ d
)

= −
1
2

iω (u⊗ d) : C
[
grad u

]
+

1
2
ωk (u⊗ d) : C [u⊗ d] . (18)

In the above, the identity
(
A⊺a

)
· b = tr

(
A⊺a⊗ b

)
= A : (a⊗ b) is used [30]. Taking the spatial average of the

real part of (18), yields:

|Ωcell|Re {⟨F · d⟩} =
1
2
ωRe

{
−i
∫
Ωcell

(u⊗ d) : C
[
grad u

]
dΩ

}
+

1
2
ωRe

{
k
∫
Ωcell

(u⊗ d) : C [u⊗ d] dΩ
}

=
1
4
ωRe

{
i
∫
Ωcell

{
C
[
grad u

]
: (u⊗ d)− (u⊗ d) : C

[
grad u

]}
dΩ

}
+

1
2
ωRe

{
k
∫
Ωcell

(u⊗ d) : C [u⊗ d] dΩ
}

=
1
4
ω [a1 (u, u)+ 2Re {k} a2 (u, u)] , (19)
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where |Ωcell| is the area of the unit cell. Next, we compute the time-averaged energy by

E =U + K

=
1
4

Re
{
τ : ε

}
+

1
4
ρ (−iω) U · (−iω) U

=
1
4

Re
{

C
[
grad U

]
: grad U

}
+

1
4
ρ ω2U · U

=
1
4

Re
{

C
[
grad u+ u⊗ ik

]
: (grad u− u⊗ ik)

}
+

1
4
ρ ω2u · u

=
1
4

Re
{

grad u : C
[
grad u

]}
+

1
4

Re
{

ik
(

grad u : C [u⊗ d]− (u⊗ d) : C
[
grad u

])}
+

1
4

Re
{

k2 (u⊗ d) : C [u⊗ d]
}
+

1
4
ρ ω2u · u. (20)

The energy’s spatial average reads:

|Ωcell| ⟨E⟩ =
1
4

Re
{∫

Ωcell

grad u : C
[
grad u

]
dΩ

}

+
1
4

Re
{

k
∫
Ωcell

i
{

grad u : C [u⊗ d]− (u⊗ d) : C
[
grad u

]}
dΩ

}

+
1
4

Re
{

k2
∫
Ωcell

(u⊗ d) : C [u⊗ d] dΩ
}
+

1
4

∫
Ωcell

ρ ω2u · udΩ

=
1
4

Re {P (k) (u, u)} +
1
2

∫
Ωcell

ρ ω2u · udΩ

= −
1
2
ω2a0,2 (u, u) . (21)

Substituting (19) and (21) into (15), yields

ve =
Re {⟨F · d⟩}
⟨E⟩

= −
a1 (u, u)+ 2Re {k} a2 (u, u)

2 ω a0,2 (u, u)
, ω /∈ G. (22)

This completes the proof and reaffirms the result in [27]: Eq. (22) is identical to (10) and confirms that the group
velocity is, for propagating states, physically identical to the energy velocity, while both are cast in terms of the
Floquet–Bloch eigenpair.

3. The metamaterial unit-cell design

In general, the unit-cell design is driven by a user-defined group velocity profile: this, for example, could drive
designs that allow for slow or fast wave regimes at specific frequency ranges. Moreover, for the applications
considered herein, a user-defined band gap is tantamount to requiring that the group velocity vanish within the
desired frequency range. We describe next the inverse medium framework that would produce the unit-cell’s design
parameters, when given a target group velocity profile.

3.1. Dispersion-constrained inverse problem

The design problem is cast as a dispersion-constrained inverse problem, where the Lagrangian L consists of a
misfit objective functional M , and of the dispersion constraint E . Accordingly, it reads: given vm

g ∈ R, find ρ ∈W ,
λ ∈W , and µ ∈W such that

min L [u, k, v, ξ, ρ, λ, µ] , (23)
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where,

L [u, k, v, ξ, ρ, λ, µ] =M [u, k, ρ, λ, µ]+ E [u, k, v, ξ, ρ, λ, µ] , (24a)

M [u, k, ρ, λ, µ] =
Nfreq∑

α

Ndir∑
β

Nmode∑
γ

1
2

(
vg,αβγ − vm

g,αβγ

)2
, (24b)

E [u, k, v, ξ, ρ, λ, µ] =
Nfreq∑

α

Ndir∑
β

Nmode∑
γ

[
Re {P (k) (v, u)} +

ξ

2
{a2 (u, u)− 1}

]
αβγ

, and (24c)

W =
{

w ∈ H 0 (Ωcell) |w (x) = w

(
x +

Nd∑
i=1

mi pi

)
∀x ∈ ∂Ωcell

}
. (24d)

In the above, M is an objective functional defined as the misfit between the target (vm
g ) and the trial (vg) group

velocities, where the latter are computed based on trial unit-cell design parameters. In addition, E is the dispersion
constraint, side-imposed in (24a) in terms of the Floquet–Block EP P(k) of (5) and the corresponding orthonormality
condition for the eigenfunctions u; v is the adjoint eigenfunction, and ξ is the adjoint eigenvalue. We note that Nfreq

is the set of the discrete frequencies spanning the target band gap G, Ndir are the user-defined directions along which
the propagating waves will be band-gaped, and Nmode is the number of modes. For an omnidirectional band gap,
the set of directions Ndir must cover the entire IBZ, or, at a minimum contain all the high-symmetry lines. It should
be noted that for each frequency, direction, and mode, a separate EP arises, and thus, the dispersion constraint E
consists of Nfreq × Ndir × Nmode eigenvalue problems: this explains the triple αβγ subscripting of the EP in (24b),
and of the computed vg,αβγ and prescribed vm

g,αβγ group velocities, respectively; however, henceforth, we drop the
subscripting to reduce notational congestion.

3.2. Solution method

We seek solutions for the design variables of the unconstrained minimization problem (23) by requiring that
the first-order optimality conditions be satisfied, i.e., by setting to zero the first-order derivatives of the Lagrangian
(M + E) with respect to the state variables (u and k), adjoint variables (v and ξ ), and design variables (λ, µ, and
ρ). The process is iterative: first, we choose a trial solution for the triad of the design variables; then, the derivative
of L with respect to the adjoint variables v and ξ , yields:
State problem: given ρ ∈W , λ ∈W , and µ ∈W , find u ∈ VNd \ {0} and k ∈ C such that

P (k) (ṽ, u) = 0 ∀ṽ ∈ VNd and (25a)

ξ̃

2
{a2 (u, u)− 1} = 0 ∀ξ̃ ∈ R. (25b)

Next, we take derivatives of L with respect to the state variables u and k, which results in the
Adjoint problem: given the solutions to the state problem u ∈ VNd \ {0}, and k ∈ C, and the triad of trial design
variables ρ ∈W , λ ∈W , and µ ∈W , find v ∈ VNd and ξ ∈ R such that

P (k) (v, ũ)+ ξa2 (u, ũ) =
a1 (u, ũ)+ 2Re {k} a2 (u, ũ)

ω a0,2 (u, u)

(
vg − vm

g

)
−

a1 (u, u)+ 2Re {k} a2 (u, u)

ω
[
a0,2 (u, u)

]2 a0,2 (u, ũ)
(
vg − vm

g

)
∀ũ ∈ VNd and (26a)

k̃a1 (v, u)+ 2kk̃a2 (v, u) =
k̃a2 (u, u)

ω a0,2 (u, u)

(
vg − vm

g

)
∀k̃ ∈ C. (26b)

Finally, given the state and adjoint solutions, we take derivatives of L with respect to the design variables ρ, λ,
and µ to obtain the gradients gρ , gλ, and gµ, respectively, i.e.,
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Gradient of L: given v ∈ VNd , ξ ∈ R, u ∈ VNd \ {0}, k ∈ C, ρ ∈W , λ ∈W , and µ ∈W , there result:∫
Ωcell

ρ̃gρdΩ =
Nfreq∑

α

Ndir∑
β

Nmode∑
γ

(
a1 (u, u)+ 2Re {k} a2 (u, u)

2 ω
[
a0,2 (u, u)

]2

)(
−

∫
Ωcell

u · ρ̃udΩ
) (

vg − vm
g

)
+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{
−

∫
Ωcell

v · ρ̃ ω2udΩ
}
∀ρ̃ ∈W, (27a)

∫
Ωcell

λ̃gλdΩ =
Nfreq∑

α

Ndir∑
β

Nmode∑
γ

⎛⎝− i
∫
Ωcell

{
grad u : δλC [u⊗ d]− (u⊗ d) : δλC

[
grad u

]}
dΩ

2 ω a0,2 (u, u)

−

2Re {k}
∫
Ωcell

(u⊗ d) : δλC [u⊗ d] dΩ

2 ω a0,2 (u, u)

⎞⎠(vg − vm
g

)

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{∫

Ωcell

grad v : δλC
[
grad u

]
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ik
∫
Ωcell

{
grad v : δλC [u⊗ d]− (v⊗ d) : δλC

[
grad u

]}
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

k2
∫
Ωcell

(v⊗ d) : δλC [u⊗ d] dΩ
}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ξ

2

∫
Ωcell

(v⊗ d) : δλC [u⊗ d] dΩ
}
∀λ̃ ∈W, and (27b)

∫
Ωcell

µ̃gµdΩ =
Nfreq∑

α

Ndir∑
β

Nmode∑
γ

⎛⎝− i
∫
Ωcell

{
grad u : δµC [u⊗ d]− (u⊗ d) : δµC

[
grad u

]}
dΩ

2 ω a0,2 (u, u)

−

2Re {k}
∫
Ωcell

(u⊗ d) : δµC [u⊗ d] dΩ

2 ω a0,2 (u, u)

⎞⎠(vg − vm
g

)

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{∫

Ωcell

grad v : δµC
[
grad u

]
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ik
∫
Ωcell

{
grad v : δµC [u⊗ d]− (v⊗ d) : δµC

[
grad u

]}
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

k2
∫
Ωcell

(v⊗ d) : δµC [u⊗ d] dΩ
}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ξ

2

∫
Ωcell

(v⊗ d) : δµC [u⊗ d] dΩ
}
∀µ̃ ∈W, (27c)

where,

δλC [ ] = λ̃ tr [ ] I and (28a)

δµC [ ] = µ̃ [ ]+ µ̃ [ ]⊺ . (28b)
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Fig. 3. Unit cell design for an omnidirectional band gap at G = (5, 10) Hz.

The detailed derivations are provided in Appendix B. The gradients (27) vanish only at a stationary point of the
Lagrangian L; they are used, in the context of a conjugate gradient method [31], in order to update the design
variables. The algorithm for the inverse metamaterial design is summarized in Algorithm 1.
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Algorithm 1 Inverse design process

1: Sample the target group velocity vm
g (vm

g = 0 for band gaps) at discrete frequencies, directions, and modes
2: Define the geometry of the unit cell (e.g., periodicity, number of distinct material elements, etc.)
3: Set the error tolerance ε.
4: Initialize the iteration counter l ← 0
5: Set the initial search length
6: Set initial guesses for the material properties ρ0, λ0, and µ0
7: for ∥Ml+1 − Ml∥ > ε ∥Ml∥ do
8: Solve the state problem and evaluate Ml ▷ equations (24b) and (25)
9: Solve the adjoint problem ▷ equation (26)

10: Compute the reduced gradient of L ▷ equations (27)
11: Obtain the search direction (e.g., conjugate gradient method)
12: Update the material properties ρl+1, λl+1, and µl+1 using backtracking algorithm; stop if sufficient-decrease

condition is violated
13: Set l ← l + 1
14: end for

Fig. 4. Complete band structure showing an omnidirectional target band gap at G = (5, 10) Hz.

4. Metamaterial band-gap design examples

The proposed design method can invert for a unit cell’s properties when provided with a user-defined group
velocity profile. In the following examples, we demonstrate the method by inverting for the mass density and the
Lamé parameters of multi-material unit cells to effect either uni- or omnidirectional user-defined band gaps. In all
cases, we use finite elements (biquadratic serendipity elements) to solve the state and adjoint problems.

An omnidirectional band gap. First, we attempt to invert for the properties of a square unit cell to effect an
omnidirectional band gap at G = (5, 10) Hz. The unit cell consists of three concentric squares of different materials,
with sides 4 m, 8/3 m, and 4/3 m, respectively (Fig. 3); the properties were seeded to ρ1 = 10081.370 kg/m3,
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Fig. 5. Unit cell design for two omnidirectional band gaps at G = (5, 10) ∪ (13, 15) Hz.

λ1 = 63.266 MPa, µ1 = 33.266 MPa, for the innermost square, ρ2 = 7730.992 kg/m3, λ2 = 41.213 MPa,
µ2 = 21.213 MPa, for the middle, and ρ3 = 73.61 kg/m3, λ3 = 7.443 MPa, µ3 = 3.843 MPa for the outermost
square.
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Fig. 6. Complete band structure showing two omnidirectional band gaps at G = (5, 10) ∪ (13, 15) Hz.

We use fifty frequencies (Nfreq = 50) to span G, and ten directions to sweep over the IBZ (Ndir = 10) in order
to enforce omnidirectional behavior; the number of modes Nmode equals the number of wavenumbers within the
first Brillouin zone, and, thus, it varies per frequency. The target group velocities for all of the Nfreq frequencies,
the Ndir directions, and the Nmode modes are set to zero, i.e., vm

g,αβγ = 0. Fig. 3(a) depicts the unit cell’s converged
material properties, while Fig. 3(b) and Fig. 3(c) show the band structure and group velocity profiles along the
high-symmetry lines, respectively. As it can be deduced from the band structure the target band gap, shown in the
figures with the shaded strip, was indeed realized (to minimize graphical congestion in the band structure, only the
real-valued wavenumbers are plotted). Fig. 4 shows the complete three-dimensional dispersion surfaces in the IBZ
(Fig. 4(a)), and by using graphic mirroring, in the Brillouin zone as well (Fig. 4(b)): each plane represents a single
wavevector computation, the width of which is proportional to the magnitude of the wavevector, and the slope is
guided by the group velocity.

Two omnidirectional band gaps. Next, we exercise the inversion algorithm by seeking a metamaterial that would
simultaneously exhibit two user-defined band gaps, i.e., G = (5, 10) Hz ∪ (13, 15) Hz. We seed the inversion
algorithm with the converged properties of the preceding example’s unit cell. Fig. 5(a) shows the converged
material profile, while Figs. 5(b) and (c) depict again the corresponding band structure and group velocity profiles,
respectively. As it can be seen, the inversion algorithm successfully resulted in opening a second band gap at the
target frequency range (13,15) Hz, while still maintaining the first gap at (5,10) Hz. Fig. 6 shows the metamaterial’s
three-dimensional dispersion map.

A unidirectional band gap at (5, 10) Hz. Next, we target a unidirectional band gap at (5, 10) Hz along Γ -X only.
Fig. 7 shows that a unidirectional band gap is achieved exactly at the target frequency range. Fig. 8 shows the
three-dimensional dispersion map.

5. Metabarrier time-domain performance

The preceding development is predicated upon infinite periodicity, while, in practice, one may be able to install
only a finite number of unit cells in a host medium. In this section, we assess the performance of the unit cells in the
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Fig. 7. Unit cell design for a unidirectional band gap at G = (5, 10) Hz.

time-domain – where it matters most for applications – by using the inverted-for unit cells to construct finite-size
metabarriers. The unit cells appear with a fairly narrow periodicity: only 2- or 4-unit-cell wide. The intent is to
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Fig. 8. Complete band structure showing an unidirectional band gap at G = (5, 10) Hz.

Fig. 9. Schematic of an omnidirectional P and SV metabarrier.

study via numerical simulations whether the metabarriers could still realize the directional or omnidirectional band
gaps their constituent unit cells were designed for, even when the infinite periodicity assumption is violated.

An omnidirectional P and SV metabarrier. First, we discuss the P and SV omnidirectional band-gap case. As shown
in Fig. 9, a two-unit-cell-wide metabarrier Ωm is embedded within an infinite homogeneous domain truncated by
Perfectly-Matched-Layers (PMLs) [32,33]. The metabarrier is constructed using the unit cell of the first design
example exhibiting a band gap at G = (5, 10) Hz (Fig. 3). The host medium’s properties are ρ = 2000 kg/m3,
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Fig. 10. Omnidirectional metabarrier performance: snapshots and DFT response of wavefields induced by a Ricker pulse with a central
frequency of fc = 9 Hz.

λ = 160 MPa, and µ = 80 MPa. A Ricker pulse with a central frequency of fc = 9 Hz is applied at
(x, y) = (−36, 0) m. The point source creates cylindrical wave fronts impinging on the metabarrier at various
angles of incidence.

Fig. 10(a) and (b) depict snapshots of the displacement-field at t = 0.26 s for cases without and with the
metabarrier, respectively. Visually, it appears that the metabarrier, despite its narrow periodicity, effectively arrested
the propagation of the waves past the barrier. Fig. 10 show the response DFT at two locations past the barrier: the
dotted trace corresponds to the case without the metabarrier, whereas the dashed and solid lines correspond to a
two-unit-cell-wide and a four-unit-cell-wide metabarriers, respectively. The shaded strip delineates the frequency
range of the design band gap: as it can be seen both barriers suppressed the motion at the band gap, as intended.
Moreover, notice that even though the suppression is somewhat stronger with the four-unit-cell-wide metabarrier,
the difference between the two is relatively small.
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Fig. 11. Schematic of an omnidirectional vertical screen.

An omnidirectional vertical screen. We are interested in assessing whether the same finite-width engineered
metabarrier of the preceding example can be used as a vertical screen in a halfspace, when the halfspace is subjected
to a surficial line load in the vicinity of the screen. While the unit cell has been engineered for band-gapping P and
SV waves, the line load on the halfspace’s surface introduces additional waves (Rayleigh, and the S head wave) that
were not accounted for in the unit-cell design. Fig. 11 captures the setting: a two-unit-cell-wide and eleven-unit-
cell-long, or 44-meter-long, metabarrier is embedded in a two-dimensional semi-infinite domain truncated by PMLs.
The screen’s length is approximately equal to 2.2 λR , where λR denotes the Rayleigh wavelength corresponding to
the surrounding medium’s properties. At a depth of 2.2 λR , the motion amplitudes are significantly smaller than
those on the surface: for example, the vertical component of the Rayleigh wave is approximately 1% of the surface
amplitude, and thus the screen’s length is approximately equal to the full extent of the Rayleigh wavefront. We use
the unit cell of the first design example exhibiting a band gap at G = (5, 10) Hz to construct the metabarrier/vertical
screen. A vertical line load is applied on the surface of the host medium. We visualize the response using waterfall
plots, i.e., a horizontal stack of displacement-field snapshots over a time period of t ∈ [0, 0.5] s.

Three different signals are used to exercise the screen. A monochromatic source with frequency of f = 2.5 Hz
is used first: the frequency lies outside of the unit cell’s band gap, and, thus, propagation should not be arrested.
Indeed, as shown in the waterfalls of Fig. 12(a),(b), the wave front propagates unimpeded through the screen, albeit
with a phase delay. By contrast, when the monochromatic source operates at 8 Hz, which lies within the design
band gap, the waves are reflected by the screen, effectively arresting propagation in the forward scatter region of
the screen (Fig. 12(c),(d)). Next, we apply a Ricker pulse with a central frequency of fc = 9 Hz; the Ricker pulse
has a broad spectrum support, roughly between 3 and 27 Hz (three times the central frequency on each side of fc).
Figs. 12(e),(f) capture the effect of the screen: as it can be seen, it appears that propagation has been arrested, as
it was expected for at least the range for which the screen was designed (5 to 10 Hz).

To better quantify our observations, we compute the DFT of the response at four locations, two in the backscatter
region (between the source and the metabarrier), and two in the forward scatter region of the metabarrier. In Fig. 13,
figures (a) and (b) pertain to two points on the surface of the halfspace, whereas figures (c) and (d) pertain to two
points at depth. For each of the four locations, four DFT curves are shown, corresponding to metabarriers of different
lengths, as well as the case of the homogeneous medium without a metabarrier (black-dotted line). The three screens
have lengths of 44 m (red-solid line), 20 m (blue-dash-dotted line), and 12 m (green-dashed line), respectively. The
lengths correspond to depths at which the amplitude of the Rayleigh vertical component is 1%, 20%, and 50% of
the amplitude on the surface, respectively.

The shaded strip in the DFT spans the design band gap: as it can be seen from the right figure-column,
which corresponds to points in the forward scatter region, the 44-meter-long screen, almost perfectly, arrested
propagation for frequencies within the band gap. The 20-meter-long screen also shows relatively good band-gapping
performance. However, the 12-meter-long screen is less effective on the surface (still resulting in more than 50%
amplitude reduction), but fails, expectedly, to arrest wave propagation at y = −14 m, which is located deeper than
the screen. The DFT on the left column shows that there is motion amplification in the backscatter region at depth,
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Fig. 12. Response of an engineered vertical metabarrier to various excitations.

and, to a lesser extent, on the surface. The amplification on the surface is due to the constructive interference of
the incoming motion with the waves reflected off of the metabarrier, and can be alleviated, as was shown in [24],
by introducing small amount of damping in the screen.

Wave steering and shielding. Next, we turn to applications that could benefit from an omnidirectional design. First,
we consider an infinite two-dimensional domain, which we truncate to a finite computational domain of 140 m
× 48 m, surrounded on all sides by PMLs. We impregnate the mid half of the domain (80 m × 48 m) with the
engineered unit cells (each cell is 4 m × 4 m) of the first design example, exhibiting an omnidirectional band gap at
(5, 10) Hz. Then, we intentionally modify part of the metastructure, by creating a one-unit-cell-wide channel made
of the same material as the infinite domain. We then trigger a point load, located in the exterior of the metastructure
and in the vicinity of the channel. The generated waves impinge at various angles on the metastructure: owing to
the omnidirectional band gap, the motion in the metastructure is inhibited, allowing the waves to propagate only
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Fig. 13. DFT responses at various locations before (left column) and after (right column) the metabarrier.

Fig. 14. Wave steering in a homogeneous medium impregnated with metamaterials.

within the channel, effectively steering the waves through the artificial waveguide. Fig. 14 shows a snapshot in time
of the waveguide effect.
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Fig. 15. Schematic of a wave shield.

Next, we use again the same unit-cell design, and create a hollow rectangle (Fig. 15) of two-unit-cell width. The
intent is to examine whether the interior of the rectangle could be protected/shielded from propagating waves that
originate in the exterior of the shield, and impinge, asynchronously, on the shield at various angles. To this end,
we place four point sources in the exterior of the shield (Fig. 15), which are triggered at different moments in time
(Ricker pulses operating at a central frequency of fc = 9 Hz), along different directions (see Fig. 16).

To quantify the response of the shield, and compare it with the unshielded case, we compute the energy density
EΩe , normalized by the input energy, in order to track energy propagation within the computational domain. To
this end, let:

EΩe =

1
2

∫ T
0

{∫
Ωe grad Ut : C

[
grad Ut

]
dΩ +

∫
Ωe

∂Ut
∂t · ρ

∂Ut
∂t dΩ

}
dt

1
2

∫ T
0

∫
Ω f · Ut dΩ dt

, (29)

where Ut is the displacement field in the time-domain, and f is the source. Fig. 17 depicts the energy density without
and with the shield. We note the near-silent center section of the domain, attesting to the shielding efficacy of the
finite metabarrier, under the asynchronous P and SV wave load impinging on the shield at arbitrary angles.

6. Conclusions

We proposed a systematic design method for engineering the dispersive properties of periodic media as a means
of controlling elastic wave propagation. Specifically, we cast the design problem as a dispersion-constrained inverse
problem, comprising: (a) a misfit functional between the design group velocity profile and the group velocity
profile corresponding to trial design unit-cell variables, and: (b) the side-imposition of the unit-cell Floquet–Bloch
eigenvalue problem. The group velocity is expressed in terms of an eigenpair, thus readily allowing the use of any
standard optimization scheme to resolve the inverse problem. The proposed inverse design framework can handle
various unit-cell variables, including geometric and material parameters. We demonstrated the proposed method by
designing unit cells exhibiting unidirectional or omnidirectional band gaps at user-specified frequency ranges. The
time-domain analyses showed that metabarriers constructed with only a few unit cells, i.e., by severely limiting
the periodicity, can still harness the benefits of the engineered unit-cell dispersive behavior. We showed that the
developed framework can lead to metamaterial designs capable of band-gapping, wave steering, and shielding, in
the presence of both P and SV waves, and, in fact, proved effective even for surface interface waves.
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Fig. 16. Snapshots of a wave shield’s response to asynchronously triggered sources.



H. Goh and L.F. Kallivokas / Computer Methods in Applied Mechanics and Engineering 370 (2020) 113263 21

Fig. 17. Normalized energy density distribution due to four point source Ricker pulses operating at fc = 9 Hz.
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Appendix A. Floquet–Bloch eigenvalue problem with an offset direction

A non-zero offset direction do is required for high-symmetry lines that do not connect to the origin Γ .
Decomposing the Floquet–Bloch wavevector as k = kd+ do, the EP (5) is rewritten as

Given ω ∈ R, d ∈ RNd , and do ∈ RNd , find k ∈ C and u ∈ VNd \ {0} such that

0 = b0 (v, u)+ kb1 (v, u)+ k2b2 (v, u) ∀v ∈ VNd , (A.1)

where

b0 (v, u) =

∫
Ωcell

{
grad v : C

[
grad u

]
− v · ω2ρ u

}
dΩ

+ i
∫
Ωcell

{
grad v : C [u⊗ do]− (v⊗ do) : C

[
grad u

]}
dΩ

+

∫
Ωcell

(v⊗ do) : C [u⊗ do] dΩ , (A.2a)

b1 (v, u) = i
∫
Ωcell

{
grad v : C [u⊗ d]− (v⊗ d) : C

[
grad u

]}
dΩ

+

∫
Ωcell

{
(v⊗ d) : C [u⊗ do]+ (v⊗ do) : C [u⊗ d]

}
dΩ , and (A.2b)

b2 (v, u) =

∫
Ωcell

(v⊗ d) : C [u⊗ d] dΩ . (A.2c)

For example, the directions for a two-dimensional square Brillouin zone are d = (1, 0) and do = (0, 0) for Γ -X ;
d = (1, 1)/

√
2 and do = (0, 0) for Γ -M ; and d = (0, 1) and do = (π/p, 0) for X -M ; where p = |pi | is the width

of a square unit cell.

Appendix B. The Gâteaux derivatives of the Lagrangian L

The gradient of a functional L [u] with respect to u, denoted by gu , is defined as [34]:∫
Ωcell

ũ · gudΩ = δu L [u] (ũ) . (B.1)
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In the above, the Gâteaux derivative δu L [u] (ũ) is defined as:

δu L [u] (ũ) =
d
dε

⏐⏐⏐⏐
ε=0

L
[
u+ εũ

]
, (B.2)

where ũ is a direction of the Gâteaux derivative. Then, the first-order optimality conditions read

δv L [. . .] (ṽ) = 0 ∀ṽ ∈ V, δξ L [. . .]
(
ξ̃
)
= 0 ∀ξ̃ ∈ R (B.3a)

δu L [. . .] (ũ) = 0 ∀ũ ∈ V, δk L [. . .]
(

k̃
)
= 0 ∀k̃ ∈ C and (B.3b)

δρ L [. . .] (ρ̃) = 0 ∀ρ̃ ∈W, δλL [. . .]
(
λ̃
)
= 0 ∀λ̃ ∈W, δµL [. . .] (µ̃) = 0 ∀µ̃ ∈W. (B.3c)

In the above, [. . .] is used to abbreviate arguments. First, the Gâteaux derivatives with respect to the adjoint
variables (B.3a) are:

δv L [. . .] (ṽ) =Re
{

P (k) (ṽ, u)
}

and (B.4a)

δξ L [. . .]
(
ξ̃
)
=Re

{
ξ̃

2
[a2 (u, u)− 1]

}
. (B.4b)

Secondly, the Gâteaux derivatives with respect to the state variables (B.3b) are:

δu L [. . .] (ũ) = δu M [. . .] (ũ)+ δu E [. . .] (ũ) and (B.5a)

δk L [. . .]
(

k̃
)
= δk M [. . .]

(
k̃
)
+ δk E [. . .]

(
k̃
)

, (B.5b)

where

δu M [. . .] (ũ) = −
Re
{
a1 (u, ũ)

}
+ 2Re {k}Re

{
a2 (u, ũ)

}
ωa0,2 (u, u)

(
vg − vm

g

)
+

a1 (u, u)+ 2Re {k} a2 (u, u)

ω
[
a0,2 (u, u)

]2 Re
{
a0,2 (u, ũ)

} (
vg − vm

g

)
, (B.6a)

δk M [. . .]
(

k̃
)
= −

Re
{

k̃
}

a2 (u, u)

ωa0,2 (u, u)

(
vg − vm

g

)
, (B.6b)

δu E [. . .] (ũ) =Re
{

P (k) (v, ũ)
}
+ Re

{
ξa2 (u, ũ)

}
, and (B.6c)

δk E [. . .]
(

k̃
)
=Re

{
k̃a1 (v, u)+ 2kk̃a2 (v, u)

}
. (B.6d)

Finally, the Gâteaux derivatives with respect to the design variables (B.3c) are:

δρ L [. . .] (ρ̃) = δρ M [. . .] (ρ̃)+ δρ E [. . .] (ρ̃) , (B.7a)

δλL [. . .]
(
λ̃
)
= δλM [. . .]

(
λ̃
)
+ δλE [. . .]

(
λ̃
)

, and (B.7b)

δµL [. . .] (µ̃) = δµM [. . .] (µ̃)+ δµE [. . .] (µ̃) , (B.7c)

where

δρ M [. . .] (ρ̃) =

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

(
a1 (u, u)+ 2Re {k} a2 (u, u)

2 ω
[
a0,2 (u, u)

]2

)(
−

∫
Ωcell

u · ρ̃udΩ
) (

vg − vm
g

)
, (B.8a)

δρ E [. . .] (ρ̃) =

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{
−

∫
Ωcell

v · ρ̃ ω2udΩ
}

, (B.8b)
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δλM [. . .]
(
λ̃
)
=

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

⎛⎝− i
∫
Ωcell

{
grad u : δλC [u⊗ d]− (u⊗ d) : δλC

[
grad u

]}
dΩ

2 ω a0,2 (u, u)

−

2Re {k}
∫
Ωcell

(u⊗ d) : δλC [u⊗ d] dΩ

2 ω a0,2 (u, u)

⎞⎠(vg − vm
g

)
, (B.8c)

δλE [. . .]
(
λ̃
)
=

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{∫

Ωcell

grad v : δλC
[
grad u

]
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ik
∫
Ωcell

{
grad v : δλC [u⊗ d]− (v⊗ d) : δλC

[
grad u

]}
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

k2
∫
Ωcell

(v⊗ d) : δλC [u⊗ d] dΩ
}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ξ

2

∫
Ωcell

(v⊗ d) : δλC [u⊗ d] dΩ
}

, (B.8d)

δµM [. . .] (µ̃) =

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

⎛⎝− i
∫
Ωcell

{
grad u : δµC [u⊗ d]− (u⊗ d) : δµC

[
grad u

]}
dΩ

2 ω a0,2 (u, u)

−

2Re {k}
∫
Ωcell

(u⊗ d) : δµC [u⊗ d] dΩ

2 ω a0,2 (u, u)

⎞⎠(vg − vm
g

)
, and (B.8e)

δµE [. . .] (µ̃) =

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{∫

Ωcell

grad v : δµC
[
grad u

]
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ik
∫
Ωcell

{
grad v : δµC [u⊗ d]− (v⊗ d) : δµC

[
grad u

]}
dΩ

}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

k2
∫
Ωcell

(v⊗ d) : δµC [u⊗ d] dΩ
}

+

Nfreq∑
α

Ndir∑
β

Nmode∑
γ

Re
{

ξ

2

∫
Ωcell

(v⊗ d) : δµC [u⊗ d] dΩ
}

. (B.8f)

In the above, we used:

δλC [ ] = λ̃ tr [ ] I and (B.9a)

δµC [ ] = µ̃ [ ]+ µ̃ [ ]⊺ . (B.9b)
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