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a b s t r a c t

We are concerned with elastic waves arising in plane-strain problems in an elastic semi-infinite
arbitrarily heterogeneous medium. Specifically, we discuss the development of a new mixed displace-
ment–stress formulation for forward elastic wave simulations in perfectly-matched-layer (PML)-trun-
cated heterogeneous media.

To date, most PML formulations split the displacement and stress fields, resulting in non-physical com-
ponents for each field. In this work, we favor unsplit schemes, primarily for the relative ease by which the
resulting forms can be incorporated into existing codes, the ease by which the resulting semi-discrete
forms can be integrated in time, and the ease by which they can be used in adjoint formulations arising
in inverse problems, contrary to most past and current developments. We start by following classical
lines, and apply complex-coordinate-stretching to the governing equations in the frequency domain,
while retaining both displacements and stress quantities as unknowns. With the aid of auxiliary variables
the resulting mixed form is rendered second-order in time, thereby allowing the use of standard time
integration schemes. We report on numerical simulations demonstrating the stability and efficacy of
the approach.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of wave motion in unbounded heterogeneous
media requires negotiation of the infinite or semi-infinite extent
of the unbounded domain. When domain discretization methods
are used, the reduction of the physical to a finite domain through
truncation is the only available computational strategy.1 Trunca-
tion introduces artificial (non-physical) boundaries surrounding
the finite computational domain. These boundaries require special
treatment in order for the finite domain of interest to mimic the
physical behavior of the non-truncated domain, while minimizing
spurious reflections that may pollute the solution within the finite
computational domain.

Two distinctly different strategies are possible for dealing with
truncation boundaries: either to truncate the semi-infinite extent
by introducing a transparent condition at the truncation interface,
or to truncate by introducing an absorbing condition or absorbing
buffer/layer. A transparent condition allows the passage of waves
with, ideally, no or minimal reflections from the interface. An
absorbing condition will typically force the decay of the wave

motion within a buffer zone, while, ideally, annihilating any inter-
face reflections as well.2

Both categories, transparent and absorbing/layer conditions,
have their own strengths and limitations. Broadly classified, trans-
parent conditions are either local or non-local, where the
non-locality refers to the temporal (convolution) and spatial
(boundary integral) coupling of the response at the truncation
interface. The published literature on the subject is considerable:
Tsynkov [1] provides an excellent review of both local and non-lo-
cal truncation conditions. Non-local conditions typically attempt to
simulate exactly the effect of the infinite (or semi-infinite) medium
[2–4], while assuming that the domain excluded from the compu-
tations is homogeneous. However, the benefit derived by providing
an exact condition comes at a computationally expensive, difficult
to implement, scheme. In addition, non-local conditions cannot
handle arbitrary heterogeneity. To overcome the difficulties arising
with non-local conditions, local conditions tend to relax both the
spatial and temporal non-locality, but result in approximate forms
that allow for reflections [5–9]. Local conditions are less accurate,
but computationally efficient, and easy to implement when they

0045-7825/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2010.07.013

⇑ Corresponding author.
E-mail addresses: ksezgin@mail.utexas.edu (S. Kucukcoban), loukas@mail.

utexas.edu (L.F. Kallivokas).
1 Domain discretization methods are, essentially, the only possibility when the

domain is heterogeneous.

2 Transparent conditions are sometimes termed absorbing too, and also, silent,
non-transmitting, non-reflecting, etc. Here, we adhere to a terminology based on
whether there is a zone where the waves are forcibly absorbed (absorbing) or not
(transparent).

Comput. Methods Appl. Mech. Engrg. 200 (2011) 57–76

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma



Author's personal copy

are of low-order (higher-order local conditions become more com-
plicated). Though, local conditions are often used at truncation
boundaries of heterogeneous domains without sufficient theoreti-
cal justification, the errors due to reflections are compounded.

Absorbing/layer methods typically entail surrounding a trun-
cated finite computational domain with a layer of uniform thick-
ness within which the waves are forced to decay. Such absorbing
boundary layers presently offer the best possible alternative for
domain truncation in heterogeneous domains, due, by-and-large,
to the successful introduction of the perfectly-matched-layer
(PML) by Bérenger in the context of electromagnetic waves
[10,11]. PMLs, by construction, attenuate outwardly propagating
waves without reflection from the truncation interface for all an-
gles of incidence and frequencies. Once the waves enter the PML
zone, they decay with distance according to a user-defined decay
function. Although, in the continuous case, the PML can be shown
to be reflection-less at the truncation interface, the spatial discret-
ization introduces numerical reflections. However, the PML’s tun-
able parameters enable the minimization of these reflections and
allow increased accuracy even within thin layers, thereby reducing
the overall computational cost. Applications of PMLs span a broad
spectrum, and include, without being limited to, free-space simu-
lation problems, radiation and scattering problems, soil–structure
interaction, seismic survey problems, computational fluid dynam-
ics, geophysical subsurface sensing, waveguides, nondestructive
evaluation applications, etc.

The literature on PMLs is fairly extensive: to place in context the
present development, we discuss, in chronological order, develop-
ments on PMLs, by focusing on electromagnetics, for which PMLs
were first developed, and elastodynamics, which is the focus of this
work. In 1994, Bérenger [10] led the way by introducing the idea of
a perfectly-matched-medium in electromagnetics. Bérenger’s PML
was formulated based on field-splitting in order to avoid convolu-
tional operations in the time domain, when the resulting forms are
inverted back from the frequency domain. The contribution of a
spatial derivative in each coordinate direction was isolated, result-
ing in non-physical components for each field (as the name split-
field implies; the number of non-physical components equals the
dimensionality of the problem). Chew and Weedon [12] suggested
a reinterpretation of the PML in the context of complex-coordi-
nate-stretching – a change of variables where spatial coordinates
are mapped onto the complex space via complex stretching func-
tions. Their viewpoint transformed the PML into a superior tool
by endowing it with a straightforward and consistent formulation.
Even though the split-field formulation doubles the number of un-
knowns, its remarkable absorptive performance compensated for
the added cost.

However, the field-splitting alters the initial form of the system,
and results in a non-Maxwellian system of equations that makes
implementations into existing Maxwell-based codes difficult. An
alternative (also true for elastodynamics) that maintains the origi-
nal Maxwellian form of the governing equations, is to reinterpret
the medium as anisotropic, while simultaneously avoiding the
field-splitting, as suggested by Gedney [13]. The interpretation of
PML as an artificially anisotropic material necessitated the verifica-
tion of causality. Kuzuoglu and Mittra [14] claimed that the aniso-
tropic PML is not causal, and proposed a correction by introducing
a frequency-dependent real part for the stretching functions. The
discussion of causality that ensued showed that Kuzuoglu and
Mittra’s claim was based on an error in their application of the
Kramers–Krönig relationships [15]; however, their proposed cor-
rection, though not needed for causality purposes, introduced an
innovative formulation of the PML, the, so-called, ‘‘complex-fre-
quency-shifted PML” (CFS–PML). The frequency-dependent real
part of the stretching functions proved onerous when inverting
the resulting equations back into time domain. By means of

specialized convolutional operations, the difficulty was overcome,
yielding an efficient implementation of the CFS–PML in electro-
magnetics, referred to as ‘‘convolution PML” (CPML) [16]. The rela-
tions between the various PML formulations (up to about 2000)
were nicely summarized by Texeira and Chew [17]. The equiva-
lence between the complex-coordinate-stretching and the aniso-
tropic formulation was shown also in [18].

Most of the PML developments are predicated upon straight-
edge or planar boundaries. But for certain problems, the general-
ization of PML formulations to other coordinate systems is of
importance. Maloney in [19] provided an extension to cylindrical
coordinates, based on geometric arguments. Using the complex-
coordinate-stretching viewpoint, the cartesian PML was extended
to cylindrical and spherical coordinates in [20–23]. A theoretical
analysis of Bérenger’s system in curvilinear coordinates was per-
formed by Collino and Monk [24], and optimal PML parameters
were studied for the best computational performance in [25]. In
[26], Liu and He pointed out that the straightforward extension
of the original PML formulation to cylindrical coordinates (quasi-
PML) was not reflection-less in cylindrical coordinates even in
the continuum limit. The quasi-PML was simpler and computation-
ally less demanding when compared to other PML implementa-
tions in cylindrical coordinates, since the same stretching
functions were used in both the radial and angular directions. Later
on, the same authors introduced a true PML formulation with dif-
ferent stretching functions for the radial and angular directions,
and compared its performance against the quasi-PML [27]. A sys-
tematic derivation of the PML in curvilinear coordinates was also
presented by Zhao [28]. Next, the generalization of PML to carte-
sian, cylindrical, and spherical coordinates was reviewed in [17].
Recently, for transient Maxwell equations, Donderici and Teixeira
[29] developed a mixed finite element time-domain implementa-
tion of PML in doubly dispersive media, and in [30], a conformal
PML was introduced for which the late-time stability and energy
conservation properties have been verified numerically. The con-
formal PML allowed for a considerable reduction of buffer space
by tightly circumscribing the scattering source.

Most PMLs are, by construction, excellent absorbers of propa-
gating waves. Though evanescent waves too are absorbed effi-
ciently [11], there is evidence that, for some frequencies, the
strong attenuation might produce reflections caused by inade-
quately meshed PML zones [31]. In [32], Roden and Gedney
showed that the CFS–PML implementation is highly absorptive of
evanescent waves as well. A comparison of the split, unsplit, and
CFS–PMLs revealed that split and unsplit formulations perform
identically, whereas the CFS–PML forces a rapid decay of evanes-
cent waves [33]. However, at low-frequencies, the CFS–PML suffers
from degrading absorption of propagating waves. In [34], Bérenger
discussed optimal CFS–PML parameters in order to absorb both
evanescent and propagating waves. The CFS–PML was also effec-
tive in eliminating the observed long-time linear growth (instabil-
ity) behavior of the unsplit PML [35]. Although the CFS–PML has
several advantages over the standard PML, the low-frequency
propagating waves are absorbed better in the standard PML. A re-
cently developed second-order PML [36] allowed the combination
of the best properties of the standard and CFS–PMLs in one PML, by
simply using a stretching function that is the product of a standard
and a CFS–PML stretching function. The resulting PML is as good as
the CFS–PML in absorbing evanescent waves, while better attenu-
ating the low-frequency propagating waves for waveguide
problems [37]. Lou [38] presented a successful finite element
time-domain implementation of this second-order PML.

Chew and Liu [39] were the first to extend the PML develop-
ments from electromagnetics to elastodynamics using a split-field,
velocity–stress formulation, implemented using finite differences.
Concurrently, Hastings et al. [40] developed a PML for elastic
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waves using displacement potentials and a velocity–stress formu-
lation, implemented using finite differences, which, however,
could not be used in the presence of interface boundaries, such
as those arising in layered media. Liu [41] introduced a PML in
cylindrical and spherical coordinates in elastodynamics based on
split-fields. Later on, Collino and Tsogka [42] discussed a finite dif-
ference, time-domain, velocity–stress, split-field formulation and
implementation, which appears identical to Chew and Liu [39],
but was also used for applications involving anisotropic media. A
mixed finite element implementation of the velocity–stress split-
field formulation, in the context of a fictitious domain method,
was discussed by Bécache et al. [43]. All of the above key develop-
ments were based on velocity–stress schemes that are first-order
in time.

In [44], Komatitsch and Tromp introduced a new split-field ap-
proach, whereby stress terms are eliminated, but the displacement
field is split into four components, resulting in either third-order
(in time) semi-discrete forms for the four displacement fields, or
a second-order system coupled with one first-order equation for
one of the displacement fields. Despite its complexity, their
scheme was the first to create a displacement-only PML formula-
tion in elastodynamics.

An unsplit-field finite difference PML formulation was intro-
duced by Wang and Tang [45] for elastodynamics, using the recur-
sive convolution method of CPML developed originally for
electromagnetics. However, in [45], the authors used standard
stretching functions for their PML implementation, by contrast to
the complex-frequency-shifted stretching functions of the original
CPML formulation.

In [46], Basu and Chopra developed an unsplit-field PML for
time-harmonic elastodynamics and implemented it using finite
elements. Shortly thereafter, they also presented the time-domain
implementation, using a rather complicated time integration
scheme [47]. Recently, in [48], Basu used an explicit scheme to im-
prove on the implicit time integration scheme previously used, but,
despite the computational gain, the complexity remains. In [49],
Cohen and Fauqueux discussed a formulation, based on a novel
decomposition of the elastodynamics equations as a first-order
system, which was implemented using a mixed finite element ap-
proach and spectral elements. To arrive at the first-order decompo-
sition, the authors split the strain tensor, and introduced
independent stress variables to account for the split strain tensor
components. In [50], Festa and Vilotte, also discussed mixed for-
mulations (velocity–displacement, and velocity–stress), the use
of spectral elements, and a time-staggering scheme for marching
in time. Their formulation differs decidedly from Cohen and
Fauqueux: the authors in [50] followed classical lines for reducing
the second-order displacement-only elastodynamic problem to a
first-order in time system, and used split-fields for both the veloc-
ity and stress components (as opposed to the splitting of the strain
tensor).

Recently, in [51] Drossaert and Giannopoulos discussed an
alternative implementation of the unsplit PML that is based on
recursive integration (RIPML), rather than the explicit computation
of convolutions. Later, in [52], they implemented the CPML for
elastodynamics using the complex-frequency-shifted stretching
functions, and reported better performance than the RIPML.

The majority of the developments in elastodynamics refer to the
isotropic case. Notable exceptions include the earlier work by
Collino and Tsogka [42], where they showed that the split-field
standard PML can also handle heterogeneous and anisotropic med-
ia. However, the stability of the PML and the effect of anisotropy
was studied later by Bécache et al. [53], where it was shown that,
while the standard PML is stable for isotropic applications, it is con-
ditionally unstable for anisotropic applications. The authors pro-
posed necessary conditions for stability in the form of inequalities

implicating the material constants. More recently, in [54], Meza-
Fajardo and Papageorgiou discussed a novel PML approach, termed
M-PML, which results from the introduction of coordinate-stretch-
ing and associated decay functions along all coordinate directions,
that is, not only along the direction normal to the PML interface,
as has been the norm to date. Their resulting split-field, non-convo-
lutional M-PML exhibits superior performance when compared to
the standard PML formulations, especially for waves propagating
at grazing angles. They also showed that the M-PML is capable of
handling anisotropy, without the long-time instability reported
earlier for the CPML and standard PML formulations.

The performance of the PML has been investigated also for Ray-
leigh and interface waves [55]. It was shown that both were atten-
uated remarkably well. Komatitsch and Tromp [44] also confirmed
the efficiency of PML in absorbing surface waves, but the perfor-
mance of the discrete PML at grazing incidence was rather poor.
This limitation was also reported in [51], but has been removed,
owing to the CPML formulation reported by Komatitsch and Martin
[56].

Any PML implementation entails user-chosen values for a num-
ber of PML parameters. There are very few comprehensive para-
metric studies reported in the literature that provide guidance on
parameter selection. A notable exception is the work by Harari
and Albocher [57], where the authors studied, using dispersion
analysis, the effect of PML parameters for the time-harmonic elas-
tic case, and presented guidelines for the proper choice of PML
parameter values. Guidelines on the discretization of the PML, for
any choice of the PML parameters, were also given in [58].

Table 1 summarizes the key developments to date for time-do-
main elastodynamics, classified depending on whether the primary
unknowns are split or not, and whether the implementation is
done using finite differences (FD), or finite/spectral elements (FE/
SE). In general, when the PML formulation involves split-fields, al-
most always the resulting scheme is mixed [39–43,49,50,54], i.e.,
both displacements/velocities and stresses become unknowns.
The one exception is the approach by Komatitsch and Tromp
[44], where the displacement field was the only unknown, albeit
split into four components. On the other hand, unsplit-field
schemes require, in general, the evaluation of convolutions
[45,51,52,56], which, despite the use of recursive evaluation
schemes, remain expensive. One exception here is the work by
Basu and Chopra [47], and by Basu [48], where the authors, though
they came close to defining a mixed problem (with unsplit dis-
placement and stresses as unknowns), they ended up departing
considerably from it at the discrete level, in favor of implementing
a complicated time-marching scheme. We note that, in general, the
penalty one pays for a purely displacement-only formulation is an
increase in the temporal complexity, which, as a result, calls for
specialized time integration schemes. The temporal complexity
arises from the structure of the PML, and in particular, from the

Table 1
PML implementations in time-domain elastodynamics.

Split-field Unsplit-field

FD Chew and Liu [39] Wang and Tang [45]
Hastings et al. [40] Drossaert and Giannopoulos

[51,52]
Liu [41] Komatitsch and Martin [56]
Collino and Tsogka [42]

FE/SE Bécache et al. [43] Basu and Chopra [47]
Komatitsch and Tromp [44] Basu [48]
Cohen and Fauqueux [49]
Festa and Vilotte [50]
Meza-Fajardo and Papageorgiou
[54]
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choice of the stretching function. The mixed approach relaxes the
temporal complexity, and as will be shown here, leads to a sec-
ond-order in time semi-discrete forms. In a recent work by Martin
et al. [59], the authors presented a formulation, where the interior
is treated using a standard displacement-only formulation, retain-
ing a mixed velocity–stress form for the PML (CPML in this case),
and an ad hoc coupling at the interface – all resolved using finite
differences. Their approach reduces considerably the overall num-
ber of degrees-of-freedom, due to the non-mixed form of the inte-
rior problem.

Since most PML developments to date, including the one we
will be discussing herein, lead to mixed formulations, we provide
next a brief overview of mixed finite element formulations; a com-
prehensive review is well outside the scope of this communication.
In [60] Arnold presented an outstanding introductory level discus-
sion of mixed methods, their advantages and disadvantages, and
the concepts of convergence, approximability and stability.
Whereas standard single-field finite elements require approxi-
mants for a single distributed variable, mixed schemes require
approximants for two (or more) fields. For stability, the choice of
the approximants in mixed problems cannot be arbitrary, and must
satisfy an inf–sup condition (also referred to as Ladyzhenskaya–Ba-
buška–Brezzi (LBB) condition).

In an interesting review by Brezzi [61], the author pointed out
that there exist two possible variational forms for treating a mixed
problem such as the one arising in elasticity; the two forms result
in decidedly different regularity requirements for the approximants.
In the first form the regularity required for the stress approximants
is higher than that of the displacement approximants; this is the
classic mixed method. The first family of mixed finite elements re-
lated to this variational form was introduced by Raviart and Tho-
mas for second-order elliptic problems (RT elements) [62]. Later
on, several other special mixed finite elements were introduced:
Johnson–Mercier [63], Brezzi–Douglas–Marini (BDM) [64], MINI
element [65], PEERS (plane elasticity element with reduced sym-
metry) [66], etc. Other related developments can be found in
[67–83].

On the other hand, in the second form, which differs from the
first simply by an integration by parts, the regularity requirements
are somewhat reversed: the regularity for the displacement
approximants should be higher than that of the stress approxi-
mants. The latter requirements are less onerous for implementa-
tion purposes and do not require any special element types, such
as the RT and BDM. In this work, we favor this second, and largely
unexplored, variational form. Thus, in short, we use unsplit fields
resulting in a non-convolutional mixed PML, where both displace-
ments and stresses are treated as unknowns, and employ finite ele-
ments to resolve the unknowns.

To date, there are four developments that are closely related to
ours, but they all differ in substantial ways: Bécache et al. [43] used
a classic mixed method, but split-fields; Cohen and Fauqueux [49]
used a unique mixed method, unlike any other in the literature,
and split the strain tensor fields; Festa and Vilotte [50] used the
same non-classic mixed method as ours, but ended up using
split-fields; and finally Basu and Chopra [47] came close to casting
the problem in a mixed form using unsplit fields similar to ours,
but ended up with a discrete implementation that destroyed the
mixed form, in favor of a complicated time-marching scheme.
Their semi-discrete forms are almost second-order in time, but in-
clude an internal force term, whose computation requires both the
storage of strains (thus, effectively, rendering the scheme mixed),
as well as the temporal integration of the strains at every time step,
unless, at the expense of accuracy, some form of linearization is
adopted. We remark that, as is the case with any mixed form, there
always results an increase in the number of unknowns, when com-
pared to non-mixed methods. However, in light of the fact that

most developments to date employ mixed split-fields, where the
unknowns include the split-fields of both velocities and stresses,
the form proposed herein results in computational savings, even
though, when compared to interior displacement-only methods it
is expensive. But, then again, displacement-only methods capable
of handling arbitrary heterogeneity for infinite or semi-infinite do-
mains, directly in the time-domain, have yet to appear.

In Section 2 we review the complex-coordinate-stretching con-
cept; in Section 3 we obtain the two-dimensional unsplit-field PML
strong form. In Section 4, we discuss the mixed finite element for-
mulation and provide implementation details, and in Section 5, we
report on numerical results demonstrating the stability and effi-
cacy of the approach.

2. Complex-coordinate-stretching

The key idea of complex-coordinate-stretching [12,17] is a sim-
ple change of variables, where the spatial coordinates are mapped
onto the complex space via complex stretching functions. The
coordinate change is applied to the equations written for the fre-
quency domain and, if required, the resulting complex-trans-
formed equations are inverted back into the time domain.
Portions of the material discussed in this section is not new (see ci-
ted references), but is provided to allow for context, completeness,
and illumination of differences.

2.1. Key idea

Without reference to any specific coordinate system (the sys-
tem needs to be orthogonal), let s denote the coordinate along a
coordinate axis normal to the interface between the PML and the
regular (interior) domain. Assuming that the interface is located
at so, the computational domain of interest is the region 0 6 s < so,
whereas so < s 6 st is the PML with a layer thickness of LPML, as de-
picted in Fig. 1.

The original coordinate variable s is replaced by the ‘‘stretched”
coordinate ~s in any equation s appears, where ~s is defined as

~s ¼
Z s

0
esðs0;xÞds0: ð1Þ

In the above, x denotes circular frequency, and es is a complex
stretching function in the direction of coordinate s. The standard
PML results when the following form of stretching function is used
(which we too adopt herein):

Fig. 1. A PML truncation boundary in the direction of coordinate s.
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esðs;xÞ ¼ asðsÞ þ
bsðsÞ
ix

; ð2Þ

where as and bs denote scaling and attenuation functions, respec-
tively. As the names imply, the real part as of es ‘‘stretches” or scales
s, whereas the imaginary part bs of es is responsible for the ampli-
tude decay of the propagating wave once it enters the PML. The role
of as is reversed in the case of evanescent waves, where it, instead of
bs, becomes responsible for their amplitude decay post-PML-entry.
Specifically, for waves propagating outwardly along s, their ampli-
tude is proportional to e�iks, which, after the substitution of s by ~s,
becomes:

e�ik~s ¼ e�ik
R s

0
aðs0Þds0e�

k
x

R s

0
bðs0 Þds0

; ð3Þ

and similarly, for evanescent waves:

e�k~s ¼ e�k
R s

0
aðs0 Þds0ei k

x

R s

0
bðs0 Þds0

: ð4Þ

Thus, to enforce both propagating and evanescent waves to be
attenuated within the PML, we require that as and bs are monoton-
ically increasing functions of s; moreover:

asðsÞ > 1 and bsðsÞ > 0; so < s 6 st ;

whereas, in the regular domain we require that

asðsÞ ¼ 1 and bsðsÞ ¼ 0; 0 6 s < so;

so that ~s � s in the regular domain (no scaling or attenuation within
the regular domain). At the interface, continuity between the two
domains is maintained by setting as(so) = 1 and bs(so) = 0. The latter
conditions are responsible for ensuring that the interface becomes
invisible to the waves entering the PML. Since the scaling and atten-
uation functions do not depend on frequency, the rate of decay in
the PML is frequency-independent. Although as is usually taken
equal to one, using a value larger than one within the PML improves
the attenuation of strong evanescent waves [41].

An alternative form of the stretching function was proposed by
Kuzuoglu and Mittra [14], giving rise to the, so-called, frequency-
shifted stretching, where

esðs;xÞ ¼ asðsÞ þ
bsðsÞ

jsðsÞ þ ixc
: ð5Þ

Using (5) results in the CFS–PML formulation where both the real
and imaginary parts of es are now frequency-dependent. In tran-
sient implementations of the unsplit-field PML, the use of (5) results
in convolutional operations. It has been shown that the CFS–PML
outperforms the standard PML in attenuating evanescent waves,
though, with a degrading absorption of low-frequency propagating
waves [32–34]. In an effort to combine the best of both stretching
functions, a second-order PML was introduced in [36] where

esðs;xÞ ¼ asðsÞ þ
bsðsÞ
ixc

� �
a�s ðsÞ þ

b�s ðsÞ
jsðsÞ þ ixc

� �
: ð6Þ

Although the implementation of (6) is not trivial in the time do-
main, the second-order PML is the best choice when both low-fre-
quency propagating waves and strong evanescent waves are
present [37]. In this work, the stretching function defined in (2) is
preferred since it leads to a straightforward implementation and
exhibits better performance with low-frequency propagating
waves.

Lastly, with the aid of the fundamental theorem of calculus,
there also holds that

d~s
ds
¼ d

ds

Z s

0
esðs0;xÞds0 ¼ esðs;xÞ )

d
d~s
¼ 1

esðs;xÞ
d
ds
: ð7Þ

Relation (7) will be used to transform the governing equations. For
notational brevity, the functional dependence of es will be hence-
forth omitted.

It is important to note that, by construction, the particular form
of the stretching function (2) used herein clearly fails for the static
case, i.e. for x = 0. Therefore, using this stretching function, one
cannot obtain a PML suitable for truncating a semi-infinite domain
and recover displacement and stress fields corresponding to static
loading. All subsequent derivations are predicated upon the exclu-
sion of the zero frequency from consideration.

2.2. Stretching function choice

There is no rigorous methodology suggested in the literature for
choosing the scaling and attenuation functions as and bs, respec-
tively, but the key idea is to have a profile varying smoothly with
distance within the PML. To minimize reflections, generally, either
quadratic or linear profiles have been recommended [39]; qua-
dratic profiles have been broadly used in elastodynamics
[42,44,49,50]. A commonly adopted form of the attenuation profile,
of arbitrary polynomial degree m, is

bsðsÞ ¼
0; 0 6 s 6 so;

bo
ðs�soÞns

LPML

h im
; so < s < st ;

(
ð8Þ

where bo is a user-chosen scalar parameter, m is the degree of the
polynomial attenuation, and ns is the sth component of the outward
normal to the interface between the PML and the regular domain.
For es to remain dimensionless, parameter bo must have units of fre-
quency. Based on one-dimensional wave propagation ideas, bo can
be shown to assume the form

bo ¼
ðmþ 1Þcp

2LPML
log

1
jRj

� �
; ð9Þ

where R is a user-tunable reflection coefficient controlling the
amount of reflections from the outer PML boundary that is typically
set as fixed, and cp is the P-wave velocity. Once a polynomial degree
is specified for the attenuation profile, the strength of decay in the
PML can be tuned by controlling R.

The scaling function (as) controls the decay of evanescent waves
and affects the performance of the PML. It is common practice to
use similar profiles for both scaling and attenuation functions.
Since as is required to be unity in the regular domain, a form sim-
ilar to the attenuation profile bs requires that as be expressed as

asðsÞ ¼
1; 0 6 s 6 so;

1þ ao
ðs�soÞns

LPML

h im
; so < s < st;

(
ð10Þ

where ao is a user-chosen dimensionless scalar parameter. To avoid
having two different tuning parameters, here, we employ a form
similar to bo

ao ¼
ðmþ 1Þb

2LPML
log

1
jRj

� �
; ð11Þ

where b is a characteristic length of the domain (e.g., element size).
In this work, we favor quadratic profiles (m = 2), even though

higher-order profiles enforce more gradual attenuation within
the PML. In summary,

asðsÞ ¼
1; 0 6 s 6 so;

1þ 3b
2LPML

log 1
jRj

� �
ðs�soÞns

LPML

h i2
; so < s < st;

8<: ð12aÞ

bsðsÞ ¼
0; 0 6 s 6 so;

3cp

2LPML
log 1

jRj

� �
ðs�soÞns

LPML

h i2
; so < s < st :

8<: ð12bÞ

We note that, in general, the polynomial order m in (8) controls
the shape of the attenuation profile within the PML: depending
on the order, a sharper transition could be imposed either closer
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to the PML-regular domain interface, or closer to the fixed PML
boundary. This, in turn, drives the meshing within the PML so that
the sharper profile portion of the attenuation profile is adequately
resolved. Moreover, the scalar factor in front of the polynomial term
in the expression (12b) for bs controls the intensity of the imposed
attenuation: thus, the reference velocity cp, the PML length LPML,
and the reflection coefficient R all play an equal role in controlling
the attenuation. Herein, we use R to control the attenuation inten-
sity, primarily due to its physical meaning.

3. Two-dimensional unsplit-field PML

In coordinate-system-independent form, the propagation of lin-
ear elastic waves is governed by the equations of motion, the gen-
eralized Hooke’s law, and the kinematic conditions:

div ST þ f ¼ q€u; ð13aÞ
S ¼ C : E; ð13bÞ

E ¼ 1
2
½ruþ ðruÞT �; ð13cÞ

where S, E, and C are the stress, strain, and elasticity tensors,
respectively; q is the density of the elastic medium, u is the dis-
placement vector, f is the load vector, (:) denotes tensor inner prod-
uct, and a dot (_) denotes differentiation with respect to time of the
subtended function.

The PML formulation results from the application of complex
coordinate-stretching to the governing equations so that the
resulting system governs the motion within both the regular and
PML domains. To this end, Eqs. (13a)–(13c) must first be Fourier-
transformed, then stretched, and finally inverted back into the
time-domain for transient implementations. Within the regular
domain, the stretched equations reduce, by construction of the
stretching function es, to the original, undisturbed, system of gov-
erning equations.

3.1. Frequency-domain equations

First, the equilibrium, constitutive, and kinematic Eqs.
(13a)–(13c) are Fourier-transformed into the frequency-domain,
to obtain

div bST þ f̂ ¼ �x2qû; ð14aÞbS ¼ C : bE ; ð14bÞ

bE ¼ 1
2
½rûþ ðrûÞT �; ð14cÞ

where a caret (^) denotes the Fourier transform of the subtended
function. In deriving (14a), we assumed initially silent conditions
for the displacement field. Moreover, implicit in the above expres-
sions is the spatial and frequency dependence of the displacement
vector, stress, and strain tensors. Next, we introduce the coordi-
nate-stretched form for each coordinate,

~s ¼
Z s

0
esðs0Þds0; esðs;xÞ ¼ asðsÞ þ

bsðsÞ
ix

; s ¼ x; y: ð15Þ

The stretching is applied first to the equations of motion (13a) by
replacing x and y with the stretched coordinates ~x and ~y; to clarify,
we make use of unabridged notation:

@r̂xx

@~x
þ @r̂yx

@~y
þ f̂ x ¼ �x2qûx; ð16aÞ

@r̂xy

@~x
þ @r̂yy

@~y
þ f̂ y ¼ �x2qûy; ð16bÞ

where rij denotes the stress tensor component on the plane normal
to i in the direction of j ðrij ¼ ðSÞijÞ. Making use of (7), (16) can be
written in terms of the non-stretched coordinates as

1
ex

@r̂xx

@x
þ 1

ey

@r̂yx

@y
þ f̂ x ¼ �x2qûx; ð17aÞ

1
ex

@r̂xy

@x
þ 1

ey

@r̂yy

@y
þ f̂ y ¼ �x2qûy: ð17bÞ

Next, we multiply both sides of (17) by exey; there results

div bST eK� �
þ exey f̂ ¼ �x2qexeyû; ð18Þ

in which the tensor eK is defined as (the definition is identical to that
used in [47])

eK ¼ ey 0
0 ex;

� �
¼

ay 0
0 ax

� �
þ 1

ix
by 0
0 bx

� �
¼ eKe þ

1
ix
eKp; ð19Þ

and the subscripts ‘‘e” and ‘‘p” refer to attenuation functions associ-
ated with evanescent and propagating waves, respectively. In the
regular domain, eKe reduces to the identity tensor, whereas eKp van-
ishes identically. After substituting (19) and (15) into (18), rear-
ranging and grouping like-terms, there results

div bST eKe þ
1

ix
bST eKp

� �
þ af̂ þ b

ix
f̂ þ c

ðixÞ2
f̂

" #
¼ q½ðixÞ2aûþ ixbûþ cû�; ð20Þ

where

a ¼ axay; b ¼ axby þ aybx; c ¼ bxby: ð21Þ

We note that, within the regular domain, a � 1, b � 0, c � 0, and
since the body forces f are non-vanishing only within the regular
domain, (20) reduces further to:

div bST eKe þ
1

ix
bST eKp

� �
þ af̂ ¼ q½ðixÞ2aûþ ixbûþ cû�: ð22Þ

Similarly, we apply complex-coordinate-stretching to the kine-
matic Eq. (14c); there results

bE ¼ 1
2
ðrûÞ

1
ex

0

0 1
ey

" #
þ

1
ex

0

0 1
ey

" #
ðrûÞT

( )
¼ 1

2
½ðrûÞKþKTðrûÞT �;

ð23Þ

where the stretching tensor K is defined as

K ¼
1
ex

0

0 1
ey

" #
: ð24Þ

Next, we pre- and post-multiply (23) by ix K�T and K�1 similarly to
[47], respectively, to obtain

ixK�T bEK�1 ¼ 1
2

ix½K�TðrûÞ þ ðrûÞTK�1�; ð25Þ

where

K�1 ¼
ex 0
0 ey

� �
¼

ax 0
0 ay

� �
þ 1

ix
bx 0
0 by

" #
¼ Ke þ

1
ix

Kp: ð26Þ

Substituting (26) into (25), rearranging and grouping like-terms, re-
sults in

ixKT
e
bEKe þKT

e
bEKp þKT

p
bEKe þ

1
ix

KT
p
bEKp

¼ 1
2

KT
pðrûÞ þ ðrûÞTKp

h i
þ 1

2
ix KT

e ðrûÞ þ ðrûÞTKe

h i
: ð27Þ

Eqs. (22), (14b) and (27), constitute the stretched form of the gov-
erning frequency-domain equations. We note that the operation
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in (25) is not unique; for example, one could pre-multiply (23) by
ixexey to obtain

ixexey
bE ¼ 1

2
ix½ðrûÞeK þ eKðrûÞT �; ð28Þ

where the stretching tensor eK is defined in (19). Using the latter
definition results in

ixabE þ bbE þ c
ix
bE ¼ 1

2
ix ðrûÞeKe þ eKeðrûÞT
h i

þ 1
2
ðrûÞeKp þ eKpðrûÞT
h i

; ð29Þ

which differs considerably from (27). Use of (29) instead of (27) as
the stretched kinematic condition entails advantages, and results in
a considerably different formulation, which will be communicated
in the future.

3.2. Time-domain equations

Next, we are interested in inverting the stretched frequency-do-
main equations back into the time-domain. To aid in the develop-
ment, we make use of the following Fourier transform valid for any
function g(t) satisfying the usual requirements:

F�1 ĝðxÞ
ix

� �
¼
Z t

0
gðsÞds; ð30Þ

where F�1 denotes the inverse Fourier operator.3 With the aid of
(30), the inverse Fourier transforms of (22), (14b) and (27), written
for both the regular and PML domains, become:

div ST eKe þ
Z t

0
ST ds

� �eKp

� �
þ af ¼ q a€uþ b _uþ cuð Þ; ð31aÞ

S ¼ C : E; ð31bÞ

KT
e

_EKe þKT
eEKp þKT

pEKe þKT
p

Z t

0
E ds

� �
Kp

¼ 1
2

KT
pðruÞ þ ðruÞTKp

h i
þ 1

2
KT

e ðr _uÞ þ ðr _uÞTKe

h i
: ð31cÞ

Next, we introduce auxiliary variables S(x, t) and E(x, t), similar to
what we had done in earlier work, e.g. [84], which physically repre-
sent stress and strain memories or histories, defined as

Sðx; tÞ ¼
Z t

0
Sðx; sÞds; Eðx; tÞ ¼

Z t

0
Eðx; sÞds: ð32Þ

Clearly,

_Sðx; tÞ ¼ Sðx; tÞ; ð33aÞ
€Sðx; tÞ ¼ _Sðx; tÞ; ð33bÞ
_Eðx; tÞ ¼ Eðx; tÞ; ð33cÞ
€Eðx; tÞ ¼ _Eðx; tÞ: ð33dÞ

Thus, substituting (32) and (33) into (31) yields the time-domain
equations of our unsplit-field PML formulation

div _ST eKe þ ST eKp

� �
þ af ¼ qða€uþ b _uþ cuÞ; ð34aÞ

_S ¼ C : _E; ð34bÞ

KT
e
€EKe þKT

e
_EKp þKT

p
_EKe þKT

pEKp

¼ 1
2

KT
pðruÞ þ ðruÞTKp

h i
þ 1

2
KT

e ðr _uÞ þ ðr _uÞTKe

h i
: ð34cÞ

4. Mixed finite element implementation

Owing to the complexity of (34), one could not conceivably re-
duce the set (34) to a single unknown field, as it is routinely done
in displacement-based interior elastodynamics problems where
there is no PML involved. Here, we propose a mixed method ap-
proach, whereby we retain both displacements and stresses (or,
more appropriately, stress histories) as unknowns. To this end,
we introduce the constitutive law (34b) into the kinematic condi-
tion (34c), to arrive at

div _ST eKe þ ST eKp

� �
þ af ¼ qða€uþ b _uþ cuÞ; ð35aÞ

KT
e ðD : €SÞKe þKT

e ðD : _SÞKp þKT
pðD : _SÞKe þKT

pðD : SÞKp

¼ 1
2

KT
pðruÞ þ ðruÞTKp

h i
þ 1

2
KT

e ðr _uÞ þ ðr _uÞTKe

h i
; ð35bÞ

where D denotes the compliance tensor ðE ¼ D : SÞ. Consider next
the half-plane problem depicted in Fig. 2. Let XRD [X PML ¼ X
� R2 denote the region occupied by the elastic body (XRD),4 sur-
rounded on three of its sides by the PML buffer zone (XPML). X is
bounded by C = CD [ CN, where CD \ CN = ;, and CD � CPML

D ,
CN ¼ CRD

N [ CPML
N . Moreover, let J = (0,T] denote the time interval

of interest.
Then, we require that (35) hold in X � J, subject to the follow-

ing boundary and initial conditions:

u ¼ 0 on CPML
D � J; ð36aÞ

_ST eKe þ ST eKp

� �
n ¼ 0 on CPML

N � J; ð36bÞ

_ST n ¼ gn on CRD
N � J; ð36cÞ

uðx;0Þ ¼ 0; _uðx;0Þ ¼ 0 in X; ð36dÞ

Sðx;0Þ ¼ 0; _Sðx;0Þ ¼ 0 in X; ð36eÞ

where gn denotes prescribed tractions on CRD
N . We seek next the

weak form, in the Galerkin sense, corresponding to the strong form
(35–36). To this end, and for notational clarity, we introduce the
symbols representing functional spaces we intend to use for scalar-
(v), vector- (v), and tensor-valued (A) functions:

Fig. 2. A PML-truncated semi-infinite domain in two dimension.

3 In general, F�1 ĝðxÞ
ix

h i
¼
R t

0 gðsÞds� pĝð0ÞdðxÞ, but, it can be shown that since, by

construction, the overall development excludes x = 0, the inverse transform reduces

to (30). 4 RD stands for Regular Domain.
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L2ðXÞ ¼ v :

Z
X
jvj2dx <1

� 	
; ð37aÞ

L2ðXÞ ¼ fA : A 2 ðL2ðXÞÞ2�2g; ð37bÞ

H1ðXÞ ¼ v :

Z
X
ðjv j2 þ jrv j2Þdx <1

� 	
; ð37cÞ

H1ðXÞ ¼ fv : v 2 ðH1ðXÞÞ2g: ð37dÞ

As discussed in the introduction, there are two possible varia-
tional forms one could derive for the mixed problem at hand.
The only difference between the two possible formulations arises
from the judicious application of integration by parts, which re-
sults in distinctly different regularity requirements for the test
and trial functions between the two formulations [61]. We take in-
ner products of the Eq. (35) with test functions w(x) and T(x),
respectively, residing in appropriate spaces, and then integrate
over the entire computational domain X. In a first variational form,
the equilibrium equation (35a) is not operated on by integration by
parts, whereas (35b) is. By contrast, in a second variational form,
integration by parts is applied to the equilibrium Eq. (35a). Here,
we prefer the latter approach, since it requires less regularity on
the stresses. Thus, the weak form of (35) can be stated as: find
u 2 H1(X) � J satisfying ujCPML

D
¼ 0, and S 2 L2ðXÞ � J, such that

the following equations are satisfied for all w 2 H1(X) satisfying
wjCD

¼ 0 and T 2 L2ðXÞ:Z
X
rw : _ST eKe þ ST eKp

� �
dXþ

Z
X

w � q a€uþ b _uþ cuð ÞdX

¼
Z

CN

w � _ST eKe þ ST eKp

� �
ndCþ

Z
X

w � af dX; ð38aÞ

Z
X
ðD : €SÞ : KeTKT

e dXþ
Z

X
ðD : _SÞ : KeTKT

p þKpTKT
e

� �
dX

þ
Z

X
ðD : SÞ : KpTKT

p dX

¼
Z

X
ru : KpTsym dXþ

Z
X
r _u : KeTsym dX; ð38bÞ

where Tsym is the symmetric part of T. It is important to notice that
the regularity required for the stresses is lower than that of the dis-
placements. For the mixed finite element implementation of the
variational form (38), both u(x, t) and S(x, t) are treated as indepen-
dent variables that need to be approximated separately. We
introduce

Nh
r ¼ fq 2 H1ðXÞ; qjK 2 ðQ rðKÞÞ2; 8K 2 Khg; ð39aÞ

!h
r ¼ fA 2 L

2ðXÞ; AjK 2 ðQ rðKÞÞ2�2; 8K 2 Khg; ð39bÞ

where Qr(K) is a polynomial of degree at most r on K. Kh is
a partition of X into non-overlapping triangles or quadrilater-
als. Note that Nh

r � H1ðXÞ and !h
r � L

2ðXÞ. Let the basis func-
tions in Nh

r and !h
r be denoted by U and W, respectively. The

trial functions uh 2 Nh
r � J and Sh 2 !h

r � J are spatially discret-
ized as

uðx; tÞ ffi uhðx; tÞ ¼
UTðxÞuxðtÞ
UTðxÞuyðtÞ

" #
; ð40aÞ

Sðx; tÞ ffi Shðx; tÞ ¼
WTðxÞSxxðtÞ WTðxÞSxyðtÞ
WTðxÞSyxðtÞ WTðxÞSyyðtÞ

" #
: ð40bÞ

Similarly, the test functions w 2 Nh
r and T 2 !h

r are expressed as

wðxÞ ffi whðxÞ ¼
wT

xUðxÞ
wT

yUðxÞ

" #
; ð41aÞ

TðxÞ ffi ThðxÞ ¼
TT

xxWðxÞ TT
xyWðxÞ

TT
yxWðxÞ TT

yyWðxÞ

" #
: ð41bÞ

To reduce notational congestion, we henceforth drop the time
and space dependencies. By introducing the symmetry of stress
tensor ðS ¼ STÞ, we obtain the following semi-discrete form

M€Uþ C _Uþ KU ¼ F; ð42Þ

where the system matrices M, C, K, and the system vectors U and F
are defined as

M ¼

Ma 0 0 0 0
0 Ma 0 0 0
0 0 Ne1e1 �Ze1e1 0
0 0 �Ze2e2 Ne2e2 0
0 0 0 0 Ge1e2

26666664

37777775; ð43aÞ

C ¼

Mb 0 Ae1x 0 Ae2y

0 Mb 0 Ae2y Ae1x

�Be1x 0 2Ne1p1 �2Ze1p1 0
0 �Be2y �2Ze2p2 2Ne2p2 0
�Be1y �Be2x 0 0 ðGe1p2 þ Gp1e2Þ

26666664

37777775; ð43bÞ

K ¼

Mc 0 Ap1x 0 Ap2y

0 Mc 0 Ap2y Ap1x

�Bp1x 0 Np1p1 �Zp1p1 0
0 �Bp2y �Zp2p2 Np2p2 0
�Bp1y �Bp2x 0 0 Gp1p2

26666664

37777775; ð43cÞ

U ¼ ½ux uy Sxx Syy Sxy�T ; ð43dÞ

F ¼ fe
x fe

y 0 0 0
h iT

; ð43eÞ

where

fe
x ¼

Z
CRD

N

Ugxðx; tÞdCþ
Z

X
Uafx dX; ð44aÞ

fe
y ¼

Z
CRD

N

U gyðx; tÞdCþ
Z

X
Uafy dX; ð44bÞ

and

Aijk ¼
Z

X

eKj
i

@U
@k

WT dX; Nijkl ¼
Z

X
ð1� m2ÞK

j
iK

l
k

E
WWT dX; ð45aÞ

Bijk ¼
Z

X
Kj

iW
@UT

@k
dX; Zijkl ¼

Z
X
mð1þ mÞK

j
iK

l
k

E
WWT dX; ð45bÞ

Mk ¼
Z

X
kqUUT dX; Gijkl ¼

Z
X

2ð1þ mÞK
j
iK

l
k

E
WWT dX; ð45cÞ

where E and m above denote Young’s modulus and Poisson’s ratio,
respectively. Note that Kn and eKn denote the nth component of
the diagonal matrices K and eK, respectively.

We remark that the obtained semi-discrete form (42) or (43) is
second-order in time. To resolve the time integration we employ a
standard Newmark-b scheme. The symmetry of the mass-like,
stiffness-like, and damping-like matrices in (43) has been sacri-
ficed owing to the mixed formulation. Though the additional un-
knowns seem to increase the computational cost, our mixed
unsplit-field formulation requires less unknowns when compared
to most mixed split-field formulations.
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5. Numerical results

To test the accuracy and efficiency of our mixed unsplit-field
PML formulation, we discuss next five numerical experiments,
involving both homogeneous and arbitrarily heterogeneous hosts.
The first example is the simplest: it involves an explosive wave
source within a homogeneous semi-infinite domain. Examples 2
and 3 involve elongated domains with near-bottom-PML and
near-surface wave sources, respectively, that give rise to waves
incident at grazing angles, and often result in degrading PML per-
formance [56,51,52]. The final two examples, Examples 4 and 5, fo-
cus on the implications of heterogeneity, one involving a
horizontally-layered medium, and the last one involving an arbi-
trarily heterogeneous profile.

Beyond comparisons of time histories at select target locations,
as a measure of PML performance we also provide plots of relative
time-dependent errors. To obtain these relative errors, we create
reference solutions by embedding the computational domain of
interest XRD within an enlarged domain XED with fixed exterior
boundaries. The numerical solution within XED is obtained using
a displacement-based formulation, in order to create a solution
that is completely independent from the mixed approach dis-
cussed herein. We retain the enlarged domain’s solution up to
times that are prior to the arrival of any waves to XRD from the part
of the domain that is exterior to XRD. We compare the reference
and the mixed method solutions only within the regular domain
XRD (�XED). To define the error metrics, we introduce first the
time-dependent L2 norm of the displacement field over an arbi-
trary domain X as

Dðt; XÞ ¼
Z

X
uTðx; tÞuðx; tÞdX

� �1
2

: ð46Þ

We define the time-dependent relative error metric e(t) in terms of
an L2 norm, normalized with respect to the peak value of the afore-
mentioned displacement field norm D, as

eðtÞ ¼

R
XRD ½uðx; tÞ � uEDðx; tÞ�T ½uðx; tÞ � uEDðx; tÞ�dXRD

n o1
2

maxtDðt; XRDÞ
� 100:

ð47Þ
As an additional performance metric, we also study the decay of

the total energy within the regular domain, along lines similar to
the ones discussed by Komatitsch and Martin [56]. In short, the en-
ergy, injected to the domain via the loading, is carried by waves
that are absorbed and attenuated within the PML, and, thus, a rapid
decay should be expected if the PML is working correctly. The total
energy of the system as a function of time is expressed as

EtðtÞ ¼
1
2

Z
X
qðx; tÞ _uTðx; tÞ _uðx; tÞ


 �
dXþ 1

2

�
Z

X
½rTðx; tÞ�ðx; tÞ�dX; ð48Þ

where _u, r, and � are velocity, stress, and strain vectors, respec-
tively. Similarly to e(t), the total energy too is computed only within
the regular domain XRD.

5.1. Homogeneous media

We consider first a homogeneous half-plane with density
q = 2200 kg/m3, shear-wave velocity cs ’ 5.81 m/s, and Poisson ra-
tio m = 0.2.5 We use an explosive P-wave source defined as

fðx; tÞ ¼ TpðtÞSpðrÞ; ð49Þ

where Tp and Sp denote the temporal and spatial parts of the load-
ing, respectively. The spatial part is a radial function defined as

SpðrÞ ¼
1� r2

r2
d

� �3
x�xc

r ; y�yc
r

� 
; ðx; yÞ 2 D0;

0; ðx; yÞ R D0;

8><>: ð50Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
q

, and D0 denotes the source disk of
center (xc,yc) and radius rd. For the temporal variation of the load
we use a modified Ricker pulse defined as

TpðtÞ ¼
ð0:25u2 � 0:5Þe�0:25u2 � 13e�13:5

0:5þ 13e�13:5 with 0 6 t 6
6
ffiffiffi
6
p

xr
;

ð51Þ

where

u ¼ xrt � 3
ffiffiffi
6
p

; ð52Þ

and xr denotes the characteristic central circular frequency (=2pfr)
of the pulse.

In the simulations, we used a Ricker wavelet with a central fre-
quency fr = 4 Hz, and a peak amplitude of 10 Pa, as depicted in
Fig. 3. The explosive source radius rd was set to 0.4 m.

Example 1. We reduced, through truncation, a semi-infinite
domain to a 10 m � 10 m computational domain, surrounded on
its sides and bottom by a 1 m-thick PML, as shown in Fig. 4. The
explosive source disk’s center was placed at 5 m below the surface,
at the center of the domain. The PML and regular domains were
discretized by quadratic elements with an element size of 0.1 m,
whereas the disk was meshed with 0.05 m quadratic elements. The
discretization resulted in a 10-cell-thick PML. The reflection
coefficient R was set to 10�8. Using a time step of 0.0002 s, we
let the simulation run for 10 s. The time histories of the displace-
ments and stress components are sampled at five locations spi,
i = 1, . . .,5.

In order to assess the validity of our mixed PML formulation, the
displacement time histories at the sampling points were compared
against the response obtained using an enlarged domain with fixed

Fig. 3. Excitation time signal and its Fourier spectrum.

5 We have used, by design and without loss of generality, low velocities to allow for
clearer separation of the propagating waves and their reflections.
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boundaries and a classical displacement-based plane-strain formu-
lation. The enlarged domain’s size (110 m � 60 m) was defined
such that, during the specified time interval of interest, reflections
from its fixed exterior boundaries do not travel back and interfere
with the wave motion in the computational domain of interest.
Fig. 5 depicts the comparison of the response time histories for
ux and uy at the various spi points. As it can be seen, the agreement
is excellent: the PML has effectively absorbed the waves without
any reflections. It is apparent from the figures that causality holds
(sometimes an issue with PML implementations), and that the

response is free of spurious reflections. No numerical instabilities
were observed during the total simulation time of 10 s (only half
the record is shown here), i.e., for 50,000 time steps.

Fig. 6 shows snapshots of the displacements and stresses taken
at two different times: the left column corresponds to, approxi-
mately, 0.2 s after the wave has impinged upon the free surface,
and has also entered the side and bottom-PML zones, shown in
the figure with solid black lines that are indented with respect to
the outer boundary. Notice that there are reflections from the free
surface as expected (e.g. local doubling of the displacement ampli-
tudes), and contrast them against the reflection-less side and bot-
tom-PML interfaces. The right column corresponds to a later time
and clearly shows two wave trains traveling towards the bottom:
each wave train features three zones, with each zone correspond-
ing to the amplitude peaks of the Ricker wavelet. Both wave trains
(one P and one S) are reflections from the free surface. Again, notice
that there are no discernible reflections from the PML interfaces,
nor any residual reflections from the fixed external boundaries that
could have polluted the interior wave solution.

Fig. 7 depicts three different error metrics: Fig. 7(a) shows a vi-
sual comparison, displaying excellent agreement, between the ref-
erence solution and the PML-based solution for the displacement
norm defined in (46); Fig. 7(b) shows the error norm defined in
(47), which, at all times, is below 0.22%. Fig. 7(c) and (d) show
the absolute value of the error at two distinct locations, normalized
with respect to the absolute value of the peak record value; the er-
ror remains below 0.43% at all times.

Next, we study the effect the reflection coefficient R has on the
quality of the obtained solutions. To this end, R was varied from
10�1 to 10�8, in multiples of 10, and the total energy decay (48)
was computed for each one of the R values, as a function of time.

Fig. 4. A PML-truncated semi-infinite domain in two dimensions subjected to an
explosive load at the domain center.

Fig. 5. Comparison of ux and uy time histories between the enlarged and PML-truncated domain solutions at various sampling points (Example 1).
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Fig. 8 shows the energy decay plotted in standard (left), and semi-
log scale (right), the former terminated at 5 s, the latter terminated
at 10 s. Shown on the same figure is the energy decay for all tested
R values, as well as the reference decay corresponding to the en-
larged domain (recall that this has been obtained using an inde-
pendent displacement-based formulation). The figure is quite
revealing in several ways. First, almost all R values (except for
R = 10�1) result in similarly sharp decay: after about 2.8 s, there
is hardly any discernible residual energy left in the domain, since
all the waves have traveled out of the domain and have been ab-

sorbed by the PML. A closer look, using the semi-log scale, reveals
though that R plays a key role in determining the rate the energy
decays, with lower R values enforcing more rapid decay. As R in-
creases, the fixed exterior PML boundaries reflect back waves of
higher amplitude than those that would have resulted from lower
R reflection coefficients, first within the PML and later within the
regular domain. Though still of small amplitude, when compared
to the peak amplitudes observed in the regular domain, the reflec-
tions become amplified as they travel back into the regular domain
(this is so by construction), and stand to pollute the solution and

Fig. 6. Snapshots of u, rxx, ryy, and rxy using an explosive Ricker pulse source at the center of the domain.
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slow the energy decay. Thus, lower R values effectively decrease
the absorptive capacity of the PML layer.

Secondly, it is worth noting a few characteristic points on the
energy plots: first, notice on the left plot that the energy, initially,
follows closely the maxima and minima of the Ricker wavelet. At
about t = 0.5 s the P-wave fronts have reached the free surface
and the side and bottom PMLs; the first peak of the Ricker wavelet
enters the PMLs at about t = 0.7 s, and the second and largest peak

at about t = 0.8 s, where there is a clear change in the slope of the
energy decay curve (left plot). At about t = 1 s the last Ricker wave-
let peak has been absorbed within the 3 PML zones, and the only
remaining energy within the domain is associated with the surface
reflections of the original waves (both P and S). Between t = 1.7 s
and t = 1.9 s the reflections’ P-train peaks arrive at the bottom
PML and get absorbed, whereas between, approximately, t = 2.3 s
and t = 2.5 s the reflections’ S-train peaks arrive at the bottom

Fig. 7. Error metrics for the homogeneous domain excited by an explosive Ricker pulse (fr = 4 Hz) at the center of the domain (Example 1).

Fig. 8. Total energy decay inside the regular domain (Example 1).
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PML. The above result in slope changes in the energy decay curve,
which can be seen in Fig. 8; by about t = 2.8 s all waves have left
the domain.

The energy plot seems to suggest that it is always beneficial to
reduce the R coefficient to as small a value as the machine accuracy
may permit. However, lower R values introduce sharper PML decay
profiles, as it can also be deduced from (12). That is, in sharper pro-
files, most of the wave absorption takes place within a small frac-
tion of the PML length, right next to the PML-regular domain
interface. For the absorption to be effective, it is critical that the
mesh density within the PML adequately captures the sharp pro-
file, to avoid the accumulation of numerical errors (the situation
is similar to the difficulties arising when one attempts to approxi-
mate stress singularities with regular and inadequately sized

isoparametric elements). In fact, sharper profiles are not only intro-
duced by lower R coefficients, but arise also when lower polyno-
mial degrees (m in (8)) are chosen, or when higher reference
velocities are prescribed within the PML (cp in (12)). Though a de-
tailed discussion and the necessary parametric study escapes the
scope of this article, we remark that we have found linear profiles
to be very sharp and should, in general, be avoided, in favor of, at
least, quadratic, or preferably, quartic profiles.

Notice, lastly, that for R values lower than about 10�6 the
remaining domain energy is lower than 10�12, or roughly more
than five orders of magnitude less than the peak domain energy,
betraying effective wave absorption.

Example 2. Since, by construction, the PML enforces attenuation
only in the direction normal to the PML-regular domain interface,
difficulties may arise in simulations of wave motion within
elongated domains, where waves may impinge at grazing angles
upon the PML interface. The PML will not attenuate waves
traveling parallel to the interface, and depending on the ability of
the PML mesh to adequately resolve the non-attenuated propa-
gating waves within the PML, the solution in the regular domain
stands to be polluted. Such difficulties were reported for the
regularly stretched split-field PML in [51,52], and resulted in the
authors’ favoring of an unsplit convolutional CFS–PML. Concur-
rently, in [56] the authors verified the same findings when they
utilized the regularly stretched split-field PML formulation of
Collino and Tsogka [42]. However, in our own simulations with the
unsplit-field mixed PML we have not observed such difficulties;
while the mixed formulation does have an advantage, we do not
believe that the mixed formulation alone is responsible for the lack
of spurious reflections. Rather, we iterate that, in our experience,
the PML’s mesh density is critical in the generation of spurious
wave motion, especially in the presence of sharp decay profiles.
Again, a careful examination of the relations between attenuation
function parameters (degree of polynomial m, parameter bo)
resolves the contradiction. Since bo is generally defined to be a
function of a reference P-wave velocity cp, the reflection coefficient
R, and the degree of polynomial m, these parameters cannot be
arbitrarily chosen, if a gradual imposition of attenuation is to be
attained. Increasing the P-wave velocity cp, lowering the polyno-
mial order m, or decreasing the reflection coefficient R results in
sharper attenuation profiles. The faster decay necessitates more
elements within the PML to properly sample the sharply-imposed

Fig. 9. Elongated PML-truncated semi-infinite domains in two dimension subjected to an explosive load.

Fig. 10. Snapshots of u taken at t = 0.5, 1.0, 1.5, 2.0, 2.5 s in Example 2, driven by an
explosive Ricker wavelet source positioned close to the bottom PML.
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attenuation profile. By contrast, lower velocities, higher polyno-
mial orders, or larger R values, tend to broaden the support of the
attenuation profile within the PML, thereby reducing the absorp-
tion, and, by and large, the accuracy.

To introduce near grazing-angle waves, we modeled a
30 m � 5 m computational domain, surrounded on three of its
sides by a 2 m-thick PML, as shown in Fig. 9(a). The explosive
source disk was positioned at 4 m below the surface and 5 m to
the right of the left PML interface. The PML and regular domain
were discretized similarly to Example 1, and resulted in a 20-
cell-thick PML. We used R = 10�8, a time step of 0.0002 s, and,
again, let the simulation run for 10 s.

Snapshots of the displacements (u) are shown in Fig. 10. As dis-
cussed above, and contrary to findings reported by others, there is
no evidence of spurious energy leaking back into the regular do-
main: the PMLs have quite efficiently absorbed the waves.6

Fig. 11(a) displays the comparison of displacement field L2 norms,
while, Fig. 11(b) shows the normalized relative error e(t) in per-
cent. The peak relative error value is about 0.4% and occurs when
the P-front reaches the right-side PML interface, causing small
reflections (the continuous PML form is reflection-less, but the dis-
crete PML is not). Fig. 11(c) and (d) show that the energy decay is

Fig. 11. Error metrics for the homogeneous elongated domain excited by an explosive Ricker pulse (fr = 4 Hz) located at (�10 m, �4 m) (Example 2).

Fig. 12. Snapshots of u taken at t = 0.5, 1.0, 1.5, 2.0, 2.5 s in Example 3 with an
explosive near-surface Ricker wavelet source.

6 It has been reported often that spurious energy appears at the tail of the transient
phase, and is only observable when the response is capped at a very small fraction
(
0.001) of the peak response amplitude. Modifying the PML parameters has been
reported to have an effect on the spurious energy, but parameterization guidelines
remain elusive. The CPML and the more recent M-PML both improve the behavior, but
the issue is still open.
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more gradual in this case than in Example 1, though the overall
behavior is qualitatively similar to the one reported in Example
1. As a consequence of the direction of the propagation, which is
mostly parallel to the bottom interface, initially it is only the bot-
tom PML that imposes attenuation. Once the waves reach the
right-side PML, the absorption is complete.

Example 3. Prior studies [44,55] have noted the efficacy of the
PML in absorbing surface waves. Using the geometry and discret-
ization of Example 2, we relocated the source excitation 1 m below

the surface, as shown in Fig. 9(b) in order to corroborate the
findings of previous works, and test our own formulation with
surface waves. Fig. 12 shows snapshots of the displacement (u).
These results are consistent with those of other studies and
suggest that our mixed, unsplit-field PML can effectively absorb
and attenuate surface waves too. Similar to Example 2, the
displacement field L2 norm and the time-dependent relative error
are shown in Fig. 13. Although not presented here, the energy
decay is gradual for the same reasons as those previously
described.

Fig. 13. Error metrics for the homogeneous elongated domain excited by an explosive Ricker pulse (fr = 4 Hz) located at (10 m, �1 m) (Example 3).

Fig. 14. PML-truncated semi-infinite media in two dimensions subjected to surface loads.

Fig. 15. Snapshots of u for the layered domain (Example 4).
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5.2. Heterogeneous media

To illustrate the performance of the PML in heterogeneous med-
ia, we consider next two simulations: first a layered profile, and
then an arbitrarily heterogeneous profile with an inclusion. We ap-
ply a surface stress load over a region (�1 m 6 x 6 1 m) in both
cases. The time signal is a Ricker pulse with a central frequency
of fr = 4 Hz and amplitude of 10 Pa (Fig. 3). Using a time step of
0.0002 s, we let the simulations run for 7 s and 10 s for the last
two examples, respectively.

Example 4. As shown in Fig. 14(a), we consider a 20 m � 20 m
layered medium surrounded by 2 m-thick PML on its sides and
bottom. We define

csðyÞ ¼

 5:81 m=s; for � 6 m 6 y 6 0 m;


 11:62 m=s; for � 14 m 6 y < �6 m;


 17:43 m=s; for � 22 m 6 y < �14 m:

8><>: ð53Þ

The material interfaces were extended horizontally into the PML,
thereby, avoiding sudden material changes at the interface between
the PML and the regular domain. The PML and regular domains
were discretized by quadratic elements with an element size of
0.1 m, whereas in the vicinity of the surface load, the regular do-
main was meshed with 0.025 m-elements. The reflection coefficient
R was set to 10�8.

Fig. 15 shows the snapshots of displacement taken at two differ-
ent times. The layer boundaries are clearly visible due to reflec-
tions at the material interface. However, the critical interface
between the regular domain and PML is free of reflections. Extend-
ing the layer boundaries into the PML preserved the transparency
of the PML-regular domain interface to the outgoing waves.

To further assess the performance of the mixed PML formula-
tion, we compare the displacement time histories at the sampling
points against a reference solution obtained using an enlarged do-
main (200 m � 100 m). Fig. 16 depicts a visual comparison of the
response time histories for ux and uy at various spi points. As it
can be seen, the agreement is quite satisfactory. Fig. 17 is the coun-
terpart of Fig. 7 for the heterogeneous case: the highest relative er-
ror in the L2 norm is about 2.7%; though higher than the one we
reported for the homogeneous case, we consider it satisfactory.
The pointwise errors depicted in Fig. 17(c) and (d) are even better:
under the load, the error does not exceed 0.63%, and at the PML-
regular domain interface it is less than about 1.75% at all times.
Fig. 18 shows that the energy decay is more gradual in this case
due to the layered profile (multiple reflections/transmissions) than
in the homogeneous domain cases.

Example 5. As in the previous example, we consider a
20 m � 20 m computational domain surrounded by a 2 m-thick
PML on its sides and bottom. The profile functions f1, f2, f3, and f4

were used to define the various interfaces (Fig. 14(b)); they were
defined as

f1ðx; yÞ ¼ 4:7 arctanð0:7x� 1:7Þ � 5; ð54aÞ
f2ðx; yÞ ¼ �0:05ðxþ 10Þ2 þ 0:005ðxþ 8Þ3 � 4:5; ð54bÞ

f3ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� 4

4

� �2
s

� 12; ð54cÞ

f4ðx; yÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� 4

4

� �2
s

� 12: ð54dÞ

As in Example 4, the material interfaces were extended horizon-
tally into the PML. The reflection coefficient R was again set to
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Fig. 16. Comparison of ux and uy time histories between the enlarged and PML-truncated domain solutions at various sampling points (Example 4).
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10�8. Fig. 19 shows the snapshots of the displacement taken at
two different times. Although there are reflections introduced by
the material interfaces, no spurious reflections are observed at
the PML interface. Fig. 20 depicts the displacement field L2 norm
and the normalized relative error by comparing the response of
the PML-truncated domain against the response obtained using
an enlarged domain (150 m � 80 m). The agreement between dis-
placement field norms is again fairly satisfactory. However, the
normalized relative error is a few percentage points: until, approx-
imately, t = 4 s, the relative error is roughly around 2.6%, which is

quite reasonable to expect considering the error metrics obtained
for layered media (Example 4). Between about t = 4 s and t = 4.7 s,
the displacement response amplitudes become so small that they
interfere with small amplitude reflections from the fixed exterior
boundary of the PML. Even the slightest disturbance in the propa-
gation pattern triggers change; after about t = 4.7 s, the normalized
relative error decreases monotonically as the waves are steadily
leaving the computational domain. The energy decay shown in
Fig. 20(c) and (d) show good agreement between the reference
and PML solutions.
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Fig. 17. Error metrics for the layered medium excited by a surface Ricker pulse (fr = 4 Hz) (Example 4).
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6. Conclusions

We discussed a new mixed displacement–stress formulation for
the simulation of elastic waves in PML-truncated, arbitrarily heter-
ogeneous media based on a regularly-stretched and unsplit-field
PML. Through the introduction of auxiliary variables (stress mem-
ories), the resulting semi-discrete forms are second-order in time,
thus greatly facilitating time integration.

Despite the increase in the number of unknowns due to the
adoption of a mixed method, but owing to the non-splitting of

the fields, the associated computational cost is less than that
arising in split-field formulations. However, the method re-
mains computationally expensive, due to its mixed nature,
when compared to displacement-only formulations, if the latter
were at all possible in the presence of a PML. Accommodation
of the method in existing displacement-only interior codes
requires modifications to account for the mixed form of the
interior problem, and, though not difficult, the additional ex-
pense makes the method more suitable for new
implementations.

Fig. 19. Snapshots of u for the heterogeneous domain with an inclusion (Example 5).
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Fig. 20. Error metrics for the arbitrarily heterogeneous medium excited by a surface Ricker pulse (fr = 4 Hz) (Example 5).
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We reported numerical simulations demonstrating the stability
and efficacy of the approach. The high-quality absorption inside
the PML is remarkable and there were no instabilities or other
non-causal behavior observed. Both standard isoparametric lin-
ear–linear and quadratic-quadratic pairs of approximants proved
to be numerically stable, without having to resort to specialized
elements (e.g. RT) in order to retain stability.

All simulations were conducted by adhering to the usual rules
of thumb for wave simulations, whereby a minimum of 12 points
per wavelength are necessary to adequately resolve the wave mo-
tion. The minimum expected wavelength was used to drive the
mesh density, while simultaneously satisfying the Courant condi-
tion. However, we have found and reported that the sharpness of
the decay profile within the PML may impose more onerous
requirements on the PML’s mesh density than those imposed from
a wave propagation perspective. Detailed parametric studies are
necessary for providing proper guidance on the choice of the
PML parameters.
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