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a b s t r a c t

We discuss the inverse medium problem associated with semi-infinite domains. In particular, we attempt
to image the spatial variability of shear moduli or shear wave velocities from scant surficial measure-
ments of an arbitrarily heterogeneous semi-infinite domain’s response to prescribed dynamic excitations.

We use a full waveform approach to drive the inversion process, within a PDE-constrained optimization
framework. Due to the semi-infinite extent of the targeted domains, we introduce perfectly-matched-lay-
ers (PMLs) to arrive at finite computational domains. The numerical implementation is based on a mixed
finite-element method that is used to resolve the ensuing state and adjoint boundary-value problems,
both of which are PML-endowed. To alleviate the inherent solution multiplicity, we use Tikhonov and
total variation (TV) regularization schemes, in conjunction with a regularization factor continuation
scheme. To further improve the optimizer’s chances to converge, we also discuss a source-frequency con-
tinuation scheme.

We report on two-dimensional numerical experiments using synthetic data. Included are layered pro-
files, and profiles involving inclined layers and inclusions. We also report on our methodology’s recon-
struction of the highly-heterogeneous Marmousi benchmark velocity model.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Subsurface imaging aims at reconstructing the material profile
of a domain of interest in terms of, for example, elastic modulus,
or shear wave velocity, when given surficial measurements of the
response of the probed domain to interrogating waves. The prob-
lem arises predominantly in geotechnical site characterization
and geophysical probing applications, but shares a common thread
with many other non-invasive condition assessment processes. In
this article, we focus on a particular class of the subsurface imaging
applications: we discuss a systematic methodology and associated
numerical results for reconstructing the shear wave velocity profile
in a two-dimensional heterogeneous elastic soil medium of semi-
infinite extent. Waves are used to probe the stratigraphy, realized
via applied excitations on the soil’s surface, and the response is re-
corded directly in the time-domain at a few stations also situated
on the surface. The recorded response is then used to drive the
imaging of the probed domain.

Mathematically, the problem entails the identification of the
spatially dependent coefficients of the (two-dimensional) hyper-
bolic partial differential equation (PDE) governing the physics of

the problem (wave equation). The PDE coefficients may be either
continuous, or piecewise continuous. The problem is often referred
to as the inverse medium problem, for it is through knowledge of
the source terms (loads) and the medium’s response that one seeks
to recover the medium’s properties.

We address two primary issues associated with the inverse
medium problem. First, in order to limit the semi-infinite extent
of the physical domain, perfectly-matched-layers (PMLs) are intro-
duced at truncation interfaces to render the domain finite. This is a
critical step, particularly for near-surface investigations, which is
oftentimes ignored or grossly simplified in applications due to
the complexity associated with truncation boundaries. However,
the inaccurate or inadequate modeling of truncation boundaries
stands to introduce reflections in the finite domain that, in turn,
stand to distort the inverted profiles. Secondly, we discuss a sys-
tematic waveform inversion approach for recovering the spatial
variation of the soil’s shear wave velocity.

On the first issue, the fundamental strategy is to truncate the
semi-infinite extent of the physical domain by introducing a wave
absorbing buffer region within which the waves are forced to arti-
ficially decay. Among such absorbing buffers, the PML is the most
widely used scheme, since it has been shown to absorb outgoing
waves without generating reflections for all frequencies and angles
of incidence other than grazing [1,2]. Transparent conditions are
alternative ways of dealing with the truncation surface; they can
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be broadly classified as either local [3–5], or non-local [6,7]. Trans-
parent conditions allow the passage of waves with, ideally, no or
minimal reflections from the interface. However, they are typically
constructed based on the rather constraining assumption of a
homogeneous exterior domain (the part of the domain that will
be excluded from subsequent computations), which is seldom
the case in realistic settings. By contrast, PMLs do not suffer from
this limitation, and are better able to handle heterogeneity. Thus,
in this work, we favor PMLs, and discuss the casting of the inverse
problem over a finite computational domain using PMLs on the
truncation boundaries.

Direct time-domain PML developments, which are of interest
herein, could be roughly classified as approaches based on split-
field (e.g. [1,2,12]), and unsplit-field schemes (e.g. [8–10]). How-
ever, none of the prior developments could be easily integrated
within a PDE-constrained optimization framework, which we favor
herein for dealing with the inverse problem. Specifically, the diffi-
culty with past PML developments arises with adjoint formula-
tions, and prevents a systematic treatment. Motivated by this
need, we have recently developed ([11]) a new mixed unsplit-field
PML approach for one-dimensional elastic, and two-dimensional
SH waves, which we adopt here for modeling the wave motion.

The second key technical issue is the systematic treatment of
the inverse problem. The interest here is to exploit the information
embedded in the complete waveforms, typically recorded directly
in the time-domain and on the probed domain’s surface: use of
the complete record gives rise to a full waveform inversion ap-
proach. In the last thirty years, waveform inversion, in general,
has been intensely pursued in many technical areas (e.g. medical
imaging, non-destructive testing, oil-exploration, etc.), in both
the frequency-domain [13], and the time-domain [14,15], owing
to the significance of the underlying applications. For example,
Pratt and Shipp [16], Operto et al. [15], Gao et al. [17], and Choi
et al. [18,19] explored full waveform inversion using either real
or synthetic data sets to reconstruct complicated earth velocity
structures (e.g. the Marmousi profile). In general, waveform-based
inversion approaches could be divided into either migration veloc-
ity analysis (MVA) approaches [26–28], or full waveform-based
schemes (see [43] for a short overview). In a recent comprehensive
discussion of MVA [42], Symes has highlighted advantages of MVA
over full waveform approaches, whose robustness appears sensi-
tive to the initial profile guess. On the other hand, MVA requires
decomposition of the sought properties into the, so-called, back-
ground and reflectivity components, followed by a rather complex
forward modeling (a two-step process involving prestack migra-
tion and a standard forward solution), and a fairly expensive opti-
mization procedure for recovering the reflectivity. Full waveform
approaches are not without disadvantages either: the presence of
multiple minima and their treatment, of which the initial guess
sensitivity is only one manifestation, remains an open problem.
However, advances in both computer architecture and optimiza-
tion algorithms have already enabled large-scale three-dimen-
sional full waveform inversion in acoustic and elastic media
using synthetic data [20,21]. Strategies to alleviate the inherent
ill-posedness, in order to lend algorithmic robustness to full wave-
form approaches, continue to be refined, and could be roughly clas-
sified into direct regularization approaches (e.g. Tikhonov [30]),
and continuation schemes (e.g. [21,41]). In the absence of a defin-
itive choice to date, here we opted for a full waveform approach,
similar to the recent work by Epanomeritakis et al. [21]. The key
conceptual difference between their work and what we discuss
here is the adoption of a PML as the truncation condition, which,
in turn, adds complexity in both the forward and the inverse mod-
eling. Similar to [21] we use a full waveform approach embedded
within a PDE-constrained optimization framework. However, the
introduction of the PML results in a mixed formulation with dis-

placements and stress memories as unknowns, unlike the formula-
tion in [21] where local transparent conditions led to a
displacement-only formulation (of course, the problem treated in
[21] has other significant complexities of its own, not present in
the problem we are treating, owing to the three spatial dimensions,
and the presence of two wave velocities). The acoustic (or SH)
wave case of interest herein has been treated earlier using a similar
approach, first in fullspace (3D) [22], where, however, sensors and
receivers were used to completely circumscribe the probed domain
as is typically the case in medical imaging, and later in halfplanes
(2D) [23–25], using, however, simple local transparent boundaries
to truncate the semi-infinite extent of the domain. The primary
enhancement this work provides over the preceding developments
is the incorporation of a physically-consistent treatment of the
truncation interface in the presence of heterogeneity: in geophys-
ical probing applications over very large length scales, the intro-
duction of a PML may not be critical, but it is fairly important in
seismic inversion applications and, more so, in geotechnical site
characterization applications, where the high-fidelity reconstruc-
tion of near-surface heterogeneous deposits is of significance.

We also discuss both Tikhonov and total variation regulariza-
tion schemes to help alleviate solution multiplicity. We present a
regularization factor continuation scheme, which renders flexibil-
ity in the choice of the regularization factor, and results in a mod-
est iteration speed-up. To improve on the optimizer’s chances to
converge, we also discuss a source-frequency continuation scheme,
whereby we expose the probed domain to multiple illuminations.

We report several numerical experiments that lead efficiently to
the reconstruction of heterogeneous shear wave velocity profiles
involving both horizontal and curved layers, as well as of profiles
involving inclusions within layered systems. We use both noise-
free and noisy data, and report on the reconstructed profiles. Lastly,
we discuss our experience in reconstructing the Marmousi bench-
mark velocity model.

2. Forward modeling in a 2D PML-truncated domain

Consider a heterogeneous semi-infinite soil medium as shown
in Fig. 1(a) (the medium need not be necessarily layered). We are
interested in scalar waves (SH) traveling in the soil when a stress
load p(t) is applied on the surface. In this setting, the scalar wave
motion is governed by the two-dimensional wave equation:

r � ðlruÞ ¼ q
o2u
ot2 ; ð1Þ

where u is anti-plane displacement, q is density, and l denotes the
shear modulus of the host medium. Similar problems arise if one
were to consider pressure waves in an acoustic domain. To solve
(1) within a domain of semi-infinite extent (Fig. 1(a)), we truncate
the domain, attach PMLs on the truncation boundaries of the now
finite computational domain of interest, and enforce the attenua-
tion of the outgoing waves within the PMLs. Fig. 1(b) depicts the
truncated computational domain (XRegular) surrounded by the PMLs
(XPML). Without loss of generality, let the x1 axis coincide with the
horizontal surface of the original semi-infinite domain, and let the
x2 axis be an axis of symmetry of the X = XRegular [XPML domain.

In [11], we discussed a mixed displacement-stress memory for-
mulation that, starting from the standard wave Eq. (1), leads to a
system of coupled PDEs in the time-domain. The solution of the
system captures accurately the wave motion within the regular do-
main, while simultaneously enforcing rapid motion attenuation
within the PML buffer zone. Here, we repeat for completeness,
the main ingredients of the mixed approach to the forward model-
ing problem. Much of the development hinges on a complex-coor-
dinate stretching concept, by which the wave attenuation is
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enforced within the PML. Accordingly, the physical coordinate
xj(j = 1, 2), is ‘‘stretched” to become [9–11]:

~xj ¼
Z xj

0
1þ f e

j ðsÞ
n o

� i
f p
j ðsÞ
a0

" #
ds; j ¼ 1;2: ð2Þ

In the above, f e
j and f p

j are attenuation functions for evanescent and
propagating waves, respectively, in each j direction (j = 1, 2).
a0(= kb) denotes dimensionless frequency, k is a wave number,
and b is a characteristic length of the system. Referring to the do-
main configuration of Fig. 2, the attenuation functions f e;p

j ðj ¼ 1;2Þ
are defined as

f e;p
j ðxÞ ¼

0; jxjj < jxitf
j j;

3b
2LPML

j
log 1

jRj

� � xj�xitf
j

LPML
j

� �2

; jxjjP jxitf
j j;

8><>: ð3Þ

where xitf
j is the regular domain–PML interface coordinate in the xj

direction, and LPML
j is the length of the PML in the xj direction, as

shown in Fig. 2. R is a complex-valued user-tunable reflection coef-
ficient controlling the amount of reflection from the fixed exterior
PML boundaries (see [11] for details). Eq. (3) implies that f e;p

j ðxÞ
are quadratic functions within the PMLs, but vanish in the regular

domain. Thus, the coordinate ~xj � xj within the regular domain, is
continuous across the interface between the regular and PML do-
mains (at xj ¼ xitf

j ), and is ‘‘stretched” within the PML. Then, the for-
ward problem becomes (see [11] for the derivation):

Find v(x,t) and s(x,t), such that:

fm
o2v
ot2 þ csgc

ov
ot
þ c2

s gkv �r � eFe os
ot
þ eFps

� �
¼ 0;

in X; t 2 ð0; T�; ð4aÞ

Fe o2s
ot2 þ Fp os

ot
� c2

sr
ov
ot

� �
¼ 0; in X; t 2 ð0; T�; ð4bÞ

vðx; tÞ ¼ 0; on Cfixed; t 2 ð0; T�; ð5aÞ

os2

ot
ðx; tÞ ¼ pðx; tÞ; on Cfree; t 2 ð0; T�; ð5bÞ

vðx;0Þ ¼ 0;
ov
ot
ðx;0Þ ¼ 0; sðx;0Þ ¼ 0;

os
ot
ðx;0Þ ¼ 0; in X;

ð5cÞ

where x denotes location, and t denotes time. In the above, v(x, t) is
a normalized (scalar) displacement with respect to the soil’s density
q, i.e., v(x, t) = qu(x, t), in which u(x, t) is the physical displacement.
Throughout we assume that the material density is constant (a rea-
sonable assumption in geotechnical site investigations). s(x, t) de-
notes stress memories or histories defined as

sðx; tÞ ¼
Z t

0
rðx; sÞds; s ¼ s1 s2½ �T; ð6Þ

such that:

os
ot
ðx; tÞ ¼ rðx; tÞ; ð7aÞ

o2s
ot2 ðx; tÞ ¼

or
ot
ðx; tÞ; ð7bÞ

in which r = [r31 r32]T is a vector of shear stress components;

cs ¼
ffiffiffiffiffiffiffiffiffi
l=q

p� �
denotes shear wave velocity; fm, gc, and gk denote

PML attenuation functions defined in terms of f e
j and gp

j ðj ¼ 1;2Þ as

fm ¼ 1þ f e
1

� �
1þ f e

2

� �
; ð8aÞ

gc ¼ gp
2 1þ f e

1

� �
þ gp

1 1þ f e
2

� �
; ð8bÞ

gk ¼ gp
1gp

2; ð8cÞ

x2

x1

Receivers

Sources

PML

Regular PMLPML

Γfixed

Γfixed

Γfixed

Γfree

Fig. 1. (a) A semi-infinite soil domain; (b) conceptual configuration of a PML-truncated semi-infinite soil domain in two-dimensions.

Fig. 2. Schematic of the combined regular-PML-domain in two-dimensions.
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where gp
j ¼ f p

j =b are normalized attenuation functions with respect
to b [11]. eFe; eFp; Fe, and Fp are stretch tensors defined as [9–11]:

eFe ¼
1þ f e

2 0
0 1þ f e

1

	 

; eFp ¼

csg
p
2 0

0 csg
p
1

" #
; ð9Þ

Fe ¼
1þ f e

1 0
0 1þ f e

2

	 

; Fp ¼

csg
p
1 0

0 csg
p
2

" #
: ð10Þ

Eq. (4) are the mixed displacement-stress memory (v � s) equations
of motion governing the propagation of SH waves in the PML-trun-
cated domain. Within the regular domain ðf e

j ¼ 0; gp
j ¼ 0; j ¼ 1;2Þ,

and upon elimination of the stress, the equations reduce to the
two-dimensional wave Eq. (1). Notice that the mixed PML equations
maintain the second-order temporal character of the original wave
equation. Condition (5a) implies that the PML is fixed on the side
and bottom edges (x 2 Cfixed), whereas condition (5b) represents
the source excitation p(t) applied on the free surface (x 2 Cfree).
The system is initially at rest by virtue of conditions (5c).

3. Inverse modeling using PDE-constrained optimization

We discuss next the inverse PML formulation aimed at recon-
structing the material profile within the PML-truncated domain.
The goal is to recover the heterogeneous shear wave velocity pro-
file (cs) of XRegular.

3.1. The least-squares misfit problem

Referring to Fig. 1(b), the inverse problem for reconstructing the
shear wave velocity profile (cs) in the PML-truncated domain can
be cast as follows:

Minimize : J ¼ Fm þRcs ðcsÞ

¼ 1
2

Z T

0

Z
Cm

vðx; tÞ � vmðx; tÞ½ �2dCmdtþRcs ðcsÞ ð11Þ

subject to ð4Þ and ð5Þ:

In (11), Fm is the response misfit defined in the least-squares
sense, Cm denotes the part of the surface occupied by measuring
stations (sensor locations), and vm(x, t) is the measured displace-
ment response on Cm. In addition to the response misfit Fm, the
objective functional J comprises a regularization term Rcs intro-
duced to alleviate solution multiplicity. Candidate regularization
schemes are discussed below.

3.2. Tikhonov (TN) regularization

Tikhonov-type regularization is defined as the L2-norm of the
gradient of material parameters [30]. Let RTN

cs
denote the Tikhonov

regularization term associated with the material parameter (inver-
sion variable) cs, then:

RTN
cs

csð Þ ¼
Rcs

2

Z
X
rcs � rcsdX; ð12Þ

where Rcs is a scalar, user-defined, regularization factor. The TN
scheme typically enforces smooth spatial variation of the material
parameter, penalizing its gradient. Therefore, the TN scheme recon-
structs well smooth target profiles, but tends to smoothen disconti-
nuities of sharply-varying target profiles.

3.3. Total variation (TV) regularization

The total variation regularization RTV
cs

is defined as [31]:

RTV
cs

csð Þ ¼ Rcs

Z
X
rcs � rcs þ �ð Þ

1
2dX; ð13Þ

where Rcs is, again, a regularization factor. RTV
cs

is a bounded varia-
tion semi-norm, modified by the small parameter �. The addition
of �makesRTV

cs
differentiable whenrcs = 0. The TV scheme typically

permits discontinuities of the material parameter. At the same time,
it penalizes spurious material oscillations in otherwise smooth re-
gions. Therefore, the TV scheme performs better when reconstruct-
ing sharply-varying profiles than the TN scheme.

3.4. Lagrangian functional

We recast the inverse problem as an unconstrained optimiza-
tion problem by defining a Lagrangian functional L as

L v ; s1; s2; kv ; ks1 ; ks2 ; kB; cs
� �
¼ 1

2

Z T

0

Z
Cm

v x; tð Þ � vm x; tð Þ½ �2dCmdt þRcs csð Þ

þ
Z

X

Z T

0
kv fm

o2v
ot2 þ csgc

ov
ot
þ c2

s gkv �r � eFe os
ot
þ eFps

� �" #
dtdX

þ
Z

X

Z T

0
ks1 1þ f e

1

� � o2s1

ot2 þ csg
p
1
os1

ot
� c2

s
o2v

ox1ot

" #
dtdX

þ
Z

X

Z T

0
ks2 1þ f e

2

� � o2s2

ot2 þ csg
p
2
os2

ot
� c2

s
o2v

ox2ot

" #
dtdX

þ
Z

Cfree

Z T

0
kB

os2

ot
� p

� �
dtdCfree: ð14Þ

In (14), the objective functional J is augmented via the weak impo-
sition of the governing PDEs and the boundary condition (5b) using
Lagrange multipliers kv ; ks1 ; ks2 , and kB. In short, (14) can be writ-
ten as

L ¼ Fm þRcs þ F s; ð15Þ

where F s is the side-imposed functional with the Lagrange multi-
pliers. The boundary condition (5a), and the initial conditions (5c)
will be explicitly imposed in the semi-discrete forms. We then seek
to satisfy the stationarity of L, by requiring that the first variations
of L vanish. There result the following first-order optimality
conditions:

3.4.1. The first optimality condition
We enforce the vanishing of the variation of L with respect to

the Lagrange multipliers ðkv ; ks1 ; ks2 kBÞ, i.e.,

dkvL ¼ 0; ð16aÞ
dks1
L ¼ 0; ð16bÞ

dks2
L ¼ 0; ð16cÞ

dkBL ¼ 0: ð16dÞ

Eq. (16) result in the state (or forward) problem, which is identical to
the problem described by (4) and (5).

3.4.2. The second optimality condition
Similarly, we require the vanishing of the variation of L with

respect to the state variables v, s1, and s2, i.e.,

dvL ¼ 0; ð17aÞ
ds1L ¼ 0; ð17bÞ
ds2L ¼ 0: ð17cÞ
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Eq. (17a) results in:Z T

0

Z
Cm

vðx; tÞ � vmðx; tÞ½ �dvðx; tÞdCmdt

þ
Z

X

Z T

0
kv fm

o2dv
ot2 þ csgc

odv
ot
þ c2

s gkdv
" #

dtdX

þ
Z

X

Z T

0
�ks1 c2

s
o2dv
ox1ot

dtdXþ
Z

X

Z T

0
�ks2 c2

s
o2dv
ox2ot

dtdX ¼ 0: ð18Þ

Eq. (17b) results in:Z
X

Z T

0
� kv 1þ f e

2

� � o2ds1

ox1ot
þ kvgp

2
o

ox1
csds1ð Þ

" #
dtdX

þ
Z

X

Z T

0
ks1 1þ f e

1

� � o2ds1

ot2 þ csg
p
1
ods1

ot

" #
dtdX ¼ 0: ð19Þ

Eq. (17c) results in:Z
X

Z T

0
� kv 1þ f e

1

� � o2ds2

ox2ot
þ kvgp

1
o

ox2
csds2ð Þ

" #
dtdX

þ
Z

X

Z T

0
ks2 1þ f e

2

� � o2ds2

ot2 þ csg
p
2
ods2

ot

" #
dtdX

þ
Z

CR
free

Z T

0
kB

ods2

ot
dtdC ¼ 0: ð20Þ

Using integration by parts in both space and time for Eqs. (18)–(20),
and taking into account that dv, ds1, and ds2 are arbitrary, we obtain
the following adjoint problem:

Find kvðx; tÞ; ks1 ðx; tÞ, and ks2 ðx; tÞ, such that:

fm
o2kv

ot2 � csgc
okv

ot
þ c2

s gkkv �r � c2
s
oks

ot

� �
¼ 0; in X; t 2 ½0; TÞ;

ð21aÞ

Fe o2ks

ot2 � Fp oks

ot
þ eFprkv � eFer okv

ot

� �
¼ 0; in X; t 2 ½0; TÞ;

ð21bÞ

and subject to

kvðx; tÞ ¼ 0; on Cfixed; t 2 ½0; TÞ; ð22aÞ

c2
s
oks2

ot
ðx; tÞ ¼ � vðx; tÞ � vmðx; tÞ½ �; on Cm; t 2 ½0; TÞ; ð22bÞ

c2
s
oks2

ot
ðx; tÞ ¼ 0; on Cfree n Cm; t 2 ½0; TÞ; ð22cÞ

kvðx; tÞ ¼ 0;
okv

ot
ðx; TÞ ¼ 0; ksðx; TÞ ¼ 0;

oks

ot
ðx; TÞ ¼ 0; in X;

ð22dÞ

where ks ¼ ½ks1 ks2 �
T. Notice that the adjoint problem is driven by the

misfit between the computed and observed responses, as per (22b).
Thus, once the state solution v(x,t) is obtained, the solution of the
adjoint problem yields kv and ks. Notice also that the adjoint prob-
lem is a final-value problem as opposed to the initial-value state
problem. The adjoint equations are also PML-endowed and mixed,
with kv and ks playing roles analogous to v and s of the state
problem.

3.4.3. The third optimality condition
Lastly, we impose the vanishing of the variation of L with re-

spect to the material parameter cs, i.e.,

dcsL ¼ 0; ð23Þ

which results in the following equation:

Rcs

Z
X
rdcs �rcsdX

þ
Z

X

Z T

0
kv dcsgc

ov
ot
þ2csdcsgkv�gp

2
o

ox1
dcss1ð Þ�gp

1
o

ox2
dcss2ð Þ

	 

dtdX

þ
Z

X

Z T

0
ks1 dcsg

p
1
os1

ot
�2csdcs

o2v
ox1ot

" #
dtdX

þ
Z

X

Z T

0
ks2 dcsg

p
2
os2

ot
�2csdcs

o2v
ox2ot

" #
dtdX¼0: ð24Þ

In (24), TN regularization has been assumed. By using integration by
parts in (24), and taking into account the boundary conditions of
the state and adjoint problems, as well as the fact that dcs is arbi-
trary, we obtain the following boundary-value control problem:

Find cs(x) such that:

� RcsDcs

þ
Z T

0
kvgc

ov
ot
þ 2kvcsgkv þrkv �

1
cs

eFps
� �	 
�

þks �
1
cs

Fp os
ot

� �	 

� 2csks � r

ov
ot

� ��
dt ¼ 0; in X; ð25Þ

subject to

ocs

on
¼ 0; on Cfree [ Cfixed; ð26Þ

where (26) is a Neumann-type boundary condition for cs. In (25),
the PML attenuation functions gc, gk, and the stretch tensors eFp; Fp

vanish within the regular domain, since f e;p
j become zero in the reg-

ular domain, per (3). Therefore, the control Eq. (25) is simplified
within the regular domain as

�Rcs Dcs þ
Z T

0
�2csks � r

ov
ot

� �	 

dt ¼ 0; in XRegular: ð27Þ

We use integration by parts in time for the second term of the left-
hand-side of (27), to obtain:Z T

0
�2csks � r

ov
ot

� �	 

dt ¼ �2cs ks � rv jT0 �

Z T

0

oks

ot
� rvdt

� �
¼ 2cs

Z T

0

oks

ot
� 1

c2
s

os
ot

� �
dt

¼ 2
cs

Z T

0

oks

ot
� os
ot

dt; ð28Þ

where (4b) was used to provide rv ¼ 1
c2

s

os
ot (note that Fe = I and

Fp = 0 in the regular domain), while the initial conditions (5c) and
the final condition ks(x,T) = 0 (22d) were utilized as well. Then,
(27) can be rewritten in the regular domain as

�Rcs Dcs þ
2
cs

Z T

0

oks

ot
� os
ot

dt ¼ 0; in XRegular: ð29Þ

If the TV regularization scheme were used instead, the first term of
(29) would be modified, and the resulting control equation would
read:

� Rcs rcs � rcs þ �ð Þ�
3
2 rcs � rcs þ �ð ÞDcs �rcs � Hrcsð Þ½ �

þ 2
cs

Z T

0

oks

ot
� os
ot

dt ¼ 0; in XRegular; ð30Þ

in which H is the Hessian of cs. We remark that the TV scheme leads
to a nonlinear operator in the control equation, as opposed to the
Laplacian operator that results when the TN regularization is used.
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4. The inversion process

Upon discretization, the derived state, adjoint, and control
problems lead to a classic KKT system. We have two possible
ways for solving the KKT system. One approach is to solve the
system for all of the state (v,s1,s2), adjoint ðkv ; ks1 ; ks2 ; kBÞ, and
control (cs) variables using a full-space method, i.e., solving for
all variables simultaneously. However, the associated computa-
tional cost is substantial. Alternatively, we could use a reduced-
space method, where we seek solutions in the space of the mate-
rial property cs. First, we solve the state problem (4) and (5) for
the state variables v, s1, and s2 assuming a distribution of the
material property cs. By doing so, the first optimality condition
is satisfied. Then, we solve the adjoint problem (21) and (22)
to obtain the adjoint variables kv ; ks1 , and ks2 based on the state
solutions computed in the first step. By doing so, we satisfy the
second optimality condition. As a last step, the material property
cs is updated in order for the control equation to be satisfied. No-
tice that the left-hand-side of (29) (or (30)) now implies the con-
tinuous form of the reduced gradient ðrcsLÞ. We use a conjugate
gradient method with inexact line search to iteratively update
the material property using the most recent state and adjoint
solutions.

4.1. Semi-discrete form of the state problem

In order to solve the state problem, we employ a mixed finite-
element procedure, where the displacement v and the two stress
memories s1 and s2 are treated as independent variables that need
to be approximated separately [32–34]. We seek v ’ vh 2 Hh

� H1
0ðXÞ and s1 (or s2) ’ (s1)h (or (s2)h) 2 Qh � L2(X) such that (4)

be satisfied [11]. Thus the trial functions v(x, t), s1(x, t), and s2(x, t)
are discretized as (the test functions are similarly discretized using
the same interpolants):

vðx; tÞ ’ /ðxÞTvðtÞ; ð31aÞ

s1ðx; tÞ ’ wðxÞTs1ðtÞ; ð31bÞ

s2ðx; tÞ ’ wðxÞTs2ðtÞ: ð31cÞ

In (31), / and w are vectors of approximants associated with nodal
displacements (v(= qu)) and stress memories (s1 and s2), respec-
tively. We opted for a quadratic approximant pair for both / and
w, which numerically has been seen to yield stable solutions (a lin-
ear approximant pair is also possible).1 Introducing the approxi-
mants to the weak forms results in the following semi-discrete
form [11]:

Mst
11 0 0

0 Mst
22 0

0 0 Mst
33

26664
37775

€v

€s1

€s2

2664
3775þ

Cst
11 Cst

12 Cst
13

Cst
21 Cst

22 0

Cst
31 0 Cst

33

26664
37775

_v

_s1

_s2

2664
3775

þ

Kst
11 Kst

12 Kst
13

0 0 0

0 0 0

2664
3775

v

s1

s2

2664
3775 ¼

R
C / eFe os

ot þ eFps
� �

� ndC

0

0

26664
37775; ð32Þ

where

Mst
11 ¼

Z
X

fm//TdX; ð33aÞ

Mst
22 ¼

Z
X

1þ f e
1

� �
wwTdX; ð33bÞ

Mst
33 ¼

Z
X

1þ f e
2

� �
wwTdX; ð33cÞ

Cst
11 ¼

Z
X

csgc//TdX; ð34aÞ

Cst
12 ¼

Z
X

1þ f e
2

� � o/

ox1
wTdX; ð34bÞ

Cst
13 ¼

Z
X

1þ f e
1

� � o/

ox2
wTdX; ð34cÞ

Cst
21 ¼

Z
X
�c2

s w
o/T

ox1
dX; ð34dÞ

Cst
22 ¼

Z
X

csg
p
1wwTdX; ð34eÞ

Cst
31 ¼

Z
X
�c2

s w
o/T

ox2
dX; ð34fÞ

Cst
33 ¼

Z
X

csg
p
2wwTdX; ð34gÞ

Kst
11 ¼

Z
X

c2
s gk//TdX; ð35aÞ

Kst
12 ¼

Z
X

csg
p
2

o/

ox1
wTdX; ð35bÞ

Kst
13 ¼

Z
X

csg
p
1

o/

ox2
wTdX: ð35cÞ

In (32), Mst, Cst, and Kst denote the mass-like, damping-like, and
stiffness-like matrices of the semi-discrete form of the state prob-
lem, where subscripts denote the sub-matrix index, and the super-
script ‘st’ implies the state problem. [v s1 s2]T is a vector of nodal
unknowns comprising the nodal displacement v and the two nodal
stress memories s1 and s2, and a dot over a vector of nodal quanti-
ties denotes differentiation with respect to time of the subtended
vector.

4.2. Semi-discrete form of the adjoint problem

To solve the adjoint problem, we use again the mixed finite-ele-
ment procedure, where kv, ks1 , and ks2 are treated as independent
variables and approximated separately. We seek kv ’ ðkv Þh 2
Hh � H1

0ðXÞ and ks1 (or ks2 ) ’ ðks1 Þh (or ðks2 Þh) 2Qh � L2(X) such that
(21) be satisfied. Equations (21) are multiplied by test functions
w(x), p(x), and q(x), respectively, and then integrated over the entire
domain XRegular [XPML to arrive at the corresponding weak forms:Z

X
w fm

o2kv

ot2 � csgc
okv

ot
þ c2

s gkkv

 !
dXþ

Z
X
rw � cs

oks

ot

� �
dX

¼
Z

C
wc2

s
oks

ot
� ndC; ð36aÞ

Z
X

p 1þ f e
1

� � o2ks1

ot2 � csg
p
1
oks1

ot
þ csg

p
2
okv

ox1
� 1þ f e

2

� � o2kv

ox1ot

" #
dX ¼ 0;

ð36bÞ

Z
X

q 1þ f e
2

� � o2ks2

ot2 � csg
p
2
oks2

ot
þ csg

p
1
okv

ox2
� 1þ f e

1

� � o2kv

ox2ot

" #
dX ¼ 0:

ð36cÞ

1 Both the state and adjoint problems are mixed, and as such the pair of
approximants should be chosen such that the Ladyshenskaja–Babuška–Brezzi (LBB)
condition be satisfied; we have not performed a formal analysis of the LBB
condition, but numerically, both linear and quadratic pairs have yielded stable
results.
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To arrive at (36a), the last term of (21a) was integrated by parts. The
trial functions kv(x,t), ks1 ðx; tÞ, and ks2 ðx; tÞ are spatially discretized
as

kvðx; tÞ ’ /ðxÞTkvðtÞ; ð37aÞ
ks1 ðx; tÞ ’ wðxÞTks1 ðtÞ; ð37bÞ
ks2 ðx; tÞ ’ wðxÞTks2 ðtÞ: ð37cÞ

The three test functions w(x), p(x), and q(x) are similarly discretized
as

wðx; tÞ ’ wT/ðxÞ; ð38aÞ
pðx; tÞ ’ pTwðxÞ; ð38bÞ
qðx; tÞ ’ qTwðxÞ: ð38cÞ

Introducing the approximants to the weak forms results in the fol-
lowing semi-discrete form:

Madj
11 0 0

0 Madj
22 0

0 0 Madj
33

2664
3775

€kv
€ks1

€ks2

264
375þ Cadj

11 Cadj
12 Cadj

13

Cadj
21 Cadj

22 0

Cadj
31 0 Cadj

33

2664
3775

_kv
_ks1

_ks2

264
375

þ
Kadj

11 0 0

Kadj
21 0 0

Kadj
31 0 0

2664
3775

kv

ks1

ks2

264
375 ¼

R
C /c2

s
oks
ot � ndC

0
0

264
375; ð39Þ

where

Madj
11 ¼

Z
X

fm//TdX; ð40aÞ

Madj
22 ¼

Z
X

1þ f e
1

� �
wwTdX; ð40bÞ

Madj
33 ¼

Z
X

1þ f e
2

� �
wwTdX; ð40cÞ

Cadj
11 ¼

Z
X
�csgc//TdX; ð41aÞ

Cadj
12 ¼

Z
X

c2
s

o/

ox1
wTdX; ð41bÞ

Cadj
13 ¼

Z
X

c2
s

o/

ox2
wTdX; ð41cÞ

Cadj
21 ¼

Z
X
� 1þ f e

2

� �
w

o/T

ox1
dX; ð41dÞ

Cadj
22 ¼

Z
X
�csg

p
1wwTdX; ð41eÞ

Cadj
31 ¼

Z
X
� 1þ f e

1

� �
w

o/T

ox2
dX; ð41fÞ

Cadj
33 ¼

Z
X
�csg

p
2wwTdX; ð41gÞ

Kadj
11 ¼

Z
X

c2
s gk//TdX; ð42aÞ

Kadj
21 ¼

Z
X

csg
p
2w

o/T

ox1
dX; ð42bÞ

Kadj
31 ¼

Z
X

csg
p
1w

o/T

ox2
dX: ð42cÞ

In (39), Madj, Cadj, and Kadj represent the mass-like, damping-like,
and stiffness-like matrices of the semi-discrete form of the adjoint
problem. The superscript ‘adj’ implies the adjoint problem.
½kv ks1 ks2 �

T is a vector of nodal unknowns comprising nodal values
of the Lagrange multipliers kv, ks1 , and ks2 . We remark that the
sub-matrices of the state and adjoint semi-discrete forms are re-
lated to each other via:

Madj
ij ¼ Mst

ij ; i ¼ 1;2;3; j ¼ 1;2;3; ð43aÞ

Cadj
ij ¼ � Cst

ji

� �T
; i ¼ 1;2;3; j ¼ 1;2;3; ð43bÞ

Kadj
ij ¼ � Kst

ji

� �T
; i ¼ 1;2;3; j ¼ 1;2;3: ð43cÞ

Eq. (43) suggest that the adjoint problem matrices can be obtained
directly from the state problem matrices. The state and adjoint
semi-discrete forms can be easily integrated in time using standard
integration schemes, even though the damping and stiffness matri-
ces of the state and adjoint semi-discrete forms are non-symmetric.

4.3. State and adjoint time integration

Use of Newmark’s scheme yields the following linear system of
equations for the state unknowns ust at the (n + 1)th time step:

Kst
eff u

st
nþ1 ¼ Rst

eff

 �
nþ1; ð44Þ

where the effective stiffness matrix Keff
st, and the effective load

vector Rst
eff

 �
nþ1 are given as

Kst
eff ¼

1
bDt2 Mst þ c

bDt
Cst þ Kst; ð45Þ

Rst
eff

 �
nþ1 ¼ Rst

nþ1 þMst 1
bDt2 ust

n þ
1

bDt
_ust

n þ
1

2b
� 1

� �
€ust

n

	 

þ Cst c

bDt
unþst c

b
� 1

� �
_ust

n þ Dt
c

2b
� 1

� �
€ust

n

	 

; ð46Þ

where Dt is a time step, and the subscripts n and n + 1 denote the
nth and (n + 1)th time step, respectively. b and c are the usual New-
mark parameters,2 and Rst

nþ1 is the state nodal load vector at
(n + 1)th time step. Once ust

n+1 is obtained by (44), the state veloc-
ities _ust

nþ1 and accelerations €ust
nþ1 can be computed by the following

equations:

_ust
nþ1 ¼ �

c
bDt

ust
n �

c
b
� 1

� �
_ust

n �
Dt
2

c
b
� 2

� �
€ust

n þ
c

bDt
ust

nþ1; ð47Þ

€ust
nþ1 ¼

1
bDt2 ust

nþ1 � ust
n

� �
� 1

bDt
_ust

n �
1

2b
� 1

� �
€ust

n : ð48Þ

The Newmark method is used to solve the adjoint semi-discrete
forms as well. For the final-value adjoint problem, we start from
the final conditions (22d) and calculate the adjoint nodal un-
knowns uadj ¼ ½kvks1 ks2 �

T at successively decreasing times by the
following linear system of equations:

Kadj
eff uadj

n�1 ¼ Radj
eff

h i
n�1

: ð49Þ

In (49), the effective stiffness matrix Keff
adj and the effective load

vector Radj
eff

h i
n�1

are

Kadj
eff ¼

1
bDt2 Madj � c

bDt
Cadj þ Kadj; ð50Þ

Radj
eff

h i
n�1
¼ Radj

n�1 þMadj 1
bDt2 uadj

n �
1

bDt
_uadj

n þ
1

2b
� 1

� �
€uadj

n

	 

þ Cadj � c

bDt
uadj

n þ
c
b
� 1

� �
_uadj

n � Dt
c

2b
� 1

� �
€uadj

n

	 

:

ð51Þ

Notice that the effective stiffness matrix and the load vector of the

adjoint problem Kadj
eff ; Radj

eff

h i
n�1

� �
can be obtained by simply replac-

2 In all applications we used b = 0.25(c + 0.5)2, and c ¼ 5
6.
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ing Dt by �Dt in Eqs. (45), (46) of the state problem. Once uadj
n�1 is

obtained by (49), the adjoint velocities _uadj
n�1 and accelerations €uadj

n�1

can be computed by the following equations:

_uadj
n�1 ¼

c
bDt

uadj
n �

c
b
� 1

� �
_uadj

n þ
Dt
2

c
b
� 2

� �
€uadj

n �
c

bDt
uadj

n�1; ð52Þ

€uadj
n�1 ¼

1
bDt2 uadj

n�1 � uadj
n

� �
þ 1

bDt
_uadj

n �
1

2b
� 1

� �
€uadj

n : ð53Þ

4.4. Material parameter updates

By solving the state and adjoint problems as described in Sec-
tion 4.3, the first and second optimality conditions are automati-
cally satisfied. There remains to update the material property cs

in order to satisfy the third optimality condition. Since we mini-
mize the Lagrangian functional L in the space of cs, the left-
hand-side of (29)(or (30)) represents the reduced gradient ðrcsLÞ
of the Lagrangian functional. That is, in the case of TN
regularization:

rcsL ¼ �RcsDcs þ
2
cs

Z T

0

oks

ot
� os
ot

dt; in XRegular: ð54Þ

If TV regularization is used, the right-hand-side of (54) is replaced
by the left-hand-side of (30). The continuous form (54) is evaluated
at each nodal point. Since we use quadratic basis functions to inter-
polate the state and adjoint variables, nodal values of os

ot and oks
ot are

directly available from the state and adjoint discrete solutions. At
each nodal point the Laplacian (D cs) is evaluated using a finite dif-
ference scheme. Once the discrete reduced gradient is obtained, we
update the nodal values of the material property cs using a conju-
gate gradient method with inexact line search. The details follow:

Let us denote by gk the discrete reduced gradient at the k-th
inversion iteration:

gk ¼ rcsLð Þk: ð55Þ

We also denote by (cs)k the material property vector comprising no-
dal values of cs(x) at the k-th iteration (the number of components
in gk and (cs)k is the same as the number of nodes, that is, the mate-
rial parameters are also approximately quadratically); then, (cs)k is
updated by

csð Þkþ1 ¼ csð Þk þ adk; ð56Þ

where dk is the search direction at (cs)k, and a is the step length in
the direction of dk. The search direction dk is determined as

dk ¼
�gk ðk ¼ 0Þ;
�gk þ gk �gk

gk�1 �gk�1
dk�1 ðk P 1Þ:

(
ð57Þ

We evaluate the misfit functional (11) using the updated material
properties (cs)k+1, and compare it against a preset tolerance. If the
tolerance threshold is not met, we set k k + 1, and proceed to
the next iteration. As is known, the search direction dk will be pro-
gressively contaminated by errors resulting from the inaccuracies
involved in the determination of a, and by the round-off error in-
volved in the accumulation of the gk � gk/gk�1 � gk�1 terms in (57).
Hence, it is necessary that dm+1 be set equal to �gm+1 after every
m steps, instead of the usual form (we used m = 10) [35].

One can also find an optimal step length a as the local mini-
mizer in the direction of dk, but it is, generally, expensive to com-
pute. More practical strategies perform an inexact line search to
determine a step length that achieves adequate reduction in the
objective functional J . A popular inexact line search condition re-
quires that a result in sufficient decrease in the objective func-
tional J , as measured by the following inequality:

Armijo condition or sufficient decrease condition:

J ðcsÞk þ adk

 �
6 J ðcsÞk

 �
þ lagk � dk: ð58Þ

In practice, l is chosen to be quite small. ([36]; herein, we used
l = 10�8). In order to choose a step length a satisfying (58),
we use the, so-called, backtracking approach as summarized in
Table 1. In this procedure, the initial step length �a is usually fixed.
If (58) is violated, an acceptable step length a will be found after
a finite number of trials by setting a qa, such that a becomes
small enough to satisfy the Armijo condition (q = 0.5 is a typical
value). We summarize the entire inversion process discussed so
far in Table 2.

4.5. Regularization factor continuation

Referring to (15) and (24), the reduced gradient (54) can be re-
cast as

rcsL ¼ Rcs rcsF rð Þ þ rcsF sð Þ; ð59Þ

where

rcsF r ¼ �Dcs; ð60Þ

rcsF s ¼
2
cs

Z T

0

oks

ot
� os
ot

dt: ð61Þ

In (59), rcsF r and rcsF s denote the gradients of the regularization
and side-imposed functionals, respectively. Eq. (60) results from the
TN regularization. If, instead, TV regularization is used, (60) is re-
placed by

rcsF r ¼ � rcs � rcs þ �ð Þ�
3
2 rcs � rcs þ �ð ÞDcs �rcs � Hrcsð Þ½ �:

ð62Þ

rcsF r penalizes high-frequency fluctuations in the recovered profile ,
such that, the higher Rcs is, the smoother the reconstructed profile
becomes. Rcs can have a fixed value throughout the inversion process.
However, sharp profiles may not be recoverable if Rcs is too large, and
conversely, the inversion process may be more prone to failure due to
solution multiplicity if Rcs is too small. Therefore, there is a need to

Table 1
Algorithm 1. Backtracking line search procedure.

Choose �a > 0, q, l 2 (0,1); set a �a;
repeat

a qa;
until J ½ðcsÞk þ adk� 6 J ½ðcsÞk� þ lagk � dk

Terminate with ak = a

Table 2
Algorithm 2. Inversion algorithm using a mixed unsplit-field PML scheme; reduced-
space approach.

1: Choose �a, q, l, and Rcs ; Set a ¼ �a
2: Set k = 0 and convergence tolerance tol
3: Set initial guess of the material property vector (cs)k

4: Set Fm=tol + 1
5: while ðFm > tolÞ do
6: Solve the state problem (4) and (5) to obtain v and os

ot

7: Solve the adjoint problem (21) and (22) to obtain oks
ot

8: Compute the discrete form of the reduced gradient gk ¼ ðrcsLÞk by (54)
9: Compute the search direction dk (57)

10: while ½J ½ðcsÞk þ adk� > J ½ðcsÞk� þ lagk � dk� do
11: a qa
12: end while
13: Update material property vector by (cs)k+1 = (cs)k + adk

14: k = k + 1
15: end while
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continuously modify the regularization factor to avoid such difficul-
ties. Though mindful of various developments for intelligently choos-
ing the regularization factor (e.g. L-curve [37,38]), here we suggest a
simple and practical approach to determine the regularization factor
at each inversion iteration:

Impose Rcs jrcsF rj < jrcsF sj ) Rcs <
jrcsF sj
jrcsF rj

ð63Þ

Thus, Rcs is chosen, at each iteration, to be:

Rcs ¼ E
jrcsF sj
jrcsF rj

; ð64Þ

in which Eð0 6 E 6 1Þ is a tuning factor controlling the amount of
Rcs .

5. Numerical examples

5.1. A model 3-layer problem

We consider first a 60 � 30 m truncated heterogeneous half-
plane, where PMLs (6 m wide) are introduced on the sides and bot-
tom of the truncated domain, as shown in Fig. 3(a). The domain has
3 horizontal layers of shear wave velocities 100, 115, and 130 m/s
from surface to bottom. The density is 2000 kg/m3 for all three lay-
ers. Fig. 3(b) depicts the target velocity profile. Notice that the hor-
izontal layers are extended into the PML region, such that the shear
wave velocity is constant along lines perpendicular to the regular
domain-PML interface, and equal in value to the velocity at the
interface.

The domain is discretized using biquadratic elements with ele-
ment size of 1 m for the regular domain, and 0.5 m for the PML re-
gion, respectively. There result 12 elements within each PML

region. A reflection coefficient jRj = 10�8 is used for the PML. To
illuminate the domain, we apply a Gaussian pulse-type stress load
r32 = p(t) on the entire surface of the regular domain (x2 = 0), with
a maximum frequency of 15 Hz (Fig. 4(a)).3 The time step is
0.0025 s. Sensors that measure the displacement response v(x, t)
are placed at every grid point on the surface of the regular domain
(there are 121 surface sensors). We synthesize the sensor readings
by solving the forward problem under the target velocity profile,
but using a different mesh than that used during the inversion to
avoid committing an inverse ‘‘crime”. Fig. 5 shows the measured
displacement responses at, for example, three sensor locations
(x1 = 0, 15, and 30 m) on the surface; they are used to drive the
inversion.

Fig. 6 depicts the reconstructed shear wave velocity profile
using both TN and TV regularizations. We started from an initial
profile that has a linear variation from 105 to 127 m/s in the verti-
cal direction. Throughout the inversion process, we imposed a
fixed regularization factor of Rcs ¼ 10�4 for both regularization
cases. The fixed (in this case) value of Rcs was computed using
(64) as follows: during the first iteration, and due to a homoge-
neous initial guess, which forces the regularization term to vanish,
the value of the regularization factor has no effect ðrcsF r ¼ 0Þ. At
the end of the first iteration, and after the material properties have
been updated, we computed the regularization factor using (64)
and E ¼ 0:05. As shown in the figure, the TV regularization scheme
captures the sharp interfaces better than TN scheme. In Fig. 7, the
target, initial guess, and inverted velocity profiles are plotted for
the three vertical cross-section lines (lines AA, BB, and CC) of the
domain. The TV scheme reconstructs nicely the sharply-varying
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Fig. 3. (a) Configuration of a PML-truncated heterogeneous half-plane with 3 layers; (b) target shear wave velocity profile with 3 layers (cs = 100, 115, and 130 m/s from top
to bottom).
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3 The expressions for all Gaussian pulses used for the numerical results are given in
the Appendix.
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target lines, whereas the TN scheme shows a smooth variation, as
expected. In Fig. 8, the variation of the misfit ðFmÞ is plotted versus
the number of inversion iterations for both the TN and TV cases. As
seen in the figure, the misfit decreases monotonically as the itera-
tion progresses, with TV showing faster convergence than the TN
scheme. Notice that under the TN scheme, the inversion process
could not lead to any further reductions of the misfit after approx-
imately 400 iterations. We discuss below how to improve conver-
gence in this case. In Fig. 9, we plot the displacement responses
obtained using the converged wave velocity profiles, and compare
them against the measured responses at 3 locations on the surface
(x1 = 0, 15, and 30 m). The displayed agreement (in the visual
norm) is representative of all surface points, that is, there is very
small difference between the computed and measured responses.

In general, the regularization factor Rcs needs to be large at the
beginning of the inversion process to assist in narrowing down the
feasibility space of the solution. However, as it can be seen in
Fig. 6(a), the reconstruction of the layered profile will be somewhat
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Fig. 5. Measured displacement responses u(x, t) at 3 surface locations (x1 = 0, 15,
and 30 m). Data are obtained by applying a uniformly-distributed Gaussian pulse
with fmax = 15 Hz over the entire surface of the 3-layer domain.

Fig. 6. Inverted shear wave velocity profiles with 3 layers ðRcs ¼ 10�4Þ; (a) and (b) were obtained using 440 and 1160 iterations, respectively.
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Fig. 7. Inverted 3-layer velocity profiles along the three vertical cross-section lines AA, BB, and CC; TN and TV regularization schemes are used with fixed Rcs ¼ 10�4.
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hindered if the regularization factor is large and does not change
through the iterations. We use the regularization factor continua-
tion scheme discussed in Section 4.5 to overcome this difficulty.
We attempt to recover again the target 3-layer velocity profile
using TN regularization, but now assisted by the regularization fac-
tor continuation algorithm. Fig. 10 depicts the reconstructed image
and the cross-sectional profile (line CC in Fig. 7(a)) using the con-
tinuation scheme. We used the same initial guess profile as before
(linear profile). The sharp material interfaces are now recon-
structed better than when a fixed Rcs is used (Fig. 10(b)).
Fig. 11(a) shows that the misfit reduces to less than 1.5% of the ini-
tial misfit. By contrast, the misfit reduction for the fixed factor TN
regularization is more than 3%, as shown in Fig. 8. Fig. 11(b) shows
the variation of the regularization factor as the iterations progress
(we used E ¼ 0:9 as the tuning factor in (64)).
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Fig. 9. Comparison of the measured and computed responses; the latter responses are obtained by solving the forward problem using the most recently updated shear wave
velocity profile.
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Next, we reduce the number of sources and/or receivers on the
surface. In this case, however, the target profile is harder to recon-
struct, since there is less information than in the case of using dis-
tributed sources and receivers. As a result, the solution multiplicity
problem becomes more pronounced. To alleviate the difficulty, we
use a source-frequency continuation scheme to generate a se-
quence of solutions that remain, hopefully, in the basin of attrac-
tion of the global minimum. We consider Gaussian pulse-type

loads with maximum frequencies of fmax = 3, 6, 9, 12, and 15 Hz,
respectively, which we use in sequence to probe the domain. Spe-
cifically, starting from the lowest frequency, we let the algorithm
converge to a profile. We then feed the converged profile as initial
guess when the domain is probed by the next higher frequency,
and we repeat the process until all probing frequencies are ex-
hausted. Fig. 13 shows the frequency spectrum of the Gaussian
pulse loads, exhibiting a peak amplitude of 10,000 Pa. Total load
duration is 3 s when fmax = 3 Hz, and 2 s for all other cases.

First, we consider distributed sources and 7 receivers spaced at
9 m intervals, as shown in Fig. 12. The target is again the 3-layer
profile of Fig. 3. We start the inversion with a homogeneous initial
guess of cs = 110 m/s. Fig. 14 shows a series of inverted 3-layer
velocity profiles, each corresponding to a different frequency. We
note that the lower frequencies result in a rough delineation of
the layers, having, in fact, missed the middle layer, which is, never-
theless, recovered when higher frequencies are used for probing.
Fig. 15 shows the variation of the misfit and the regularization fac-
tor for each source frequency. For all frequency cases, we used TV
regularization endowed with the regularization factor continua-
tion scheme.

Next, we consider distributed sources and 3 receivers at 18 m
intervals, as shown in Fig. 16(a). Fig. 16(b) shows the reconstructed
3-layer profile, where again we started from a homogeneous initial
guess of cs = 110 m/s. The target profile of Fig. 3(b) is delineated
fairly well, but the quality is worse when compared to the image
obtained using 7 receivers (Fig. 14(f)), as expected.

Next, we reduce the number of sources as well. We apply
Gaussian pulse loads on 7 and 1 locations on the surface, respec-
tively, and collect responses at 7 receiver locations (all equi-
spaced). Fig. 17 shows the reconstructed velocity profiles for
each case. Again, the initial guess is a homogeneous 110 m/s, and
both the source frequency and the regularization factor continua-
tion schemes have been applied. As can be seen in the figure, the
recovered profiles get progressively worse as fewer sources are
used, which, in turn, result in partial domain illumination.

5.2. 5-layer problems

Next, we look into the inversion of more complicated shear
wave velocity profiles including layers with an inclusion, curved
layers, and a layered profile involving a soft intermediate layer.
First, we consider a profile with 5 horizontal layers, as depicted
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Fig. 12. Configuration of distributed sources and 7 receivers to probe the 3-layer
profile.
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Fig. 14. Initial guess and inverted 3-layer velocity profiles corresponding to successively increasing source frequencies; distributed sources and 7 receivers are used.
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Fig. 16. Inversion for the 3-layer shear wave velocity profile using distributed sources and 3 receivers.

6m

12m

10m

8m

6m 6m60m

cs=100m/s

cs=115m/s

cs=130m/s

ΩPML

x1

x2 :source
:receiver

6m

12m

10m

8m

6m 6m60m

cs=100m/s

cs=115m/s

cs=130m/s

ΩPML

x1

x2 :source
:receiver

Fig. 17. Inversion for the 3-layer shear wave velocity profile using fewer sources and receivers; source frequency and regularization factor continuation schemes have been
used.
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in Fig. 18. The size of the regular domain is now 60 � 60 m, where
12 m-wide PMLs are introduced on its sides and bottom. The layer
velocities are 100, 115, 125, 135, and 150 m/s from top to bottom,
while the density is 2000 kg/m3 for all 5 layers. Both regular and
PML domains are discretized by using biquadratic square elements
(1 � 1 m). Again, the reflection coefficient is set to jRj = 10�8. The
total load duration is 4s for fmax = 3 Hz, 3 s for fmax = 6, 9 Hz, and

2.5 s for fmax = 12, 15 Hz. We use distributed sources and receivers
on the entire surface of the domain. Fig. 19 depicts the 5-layer
velocity profile as it was successfully reconstructed using TV regu-
larization. The target and inverted velocity profiles are plotted to-
gether over the vertical cross-section at x1 = 10 m, where a fairly
good match can be seen. In Fig. 20, the target 5-layer profile has
an elliptical inclusion with cs = 150 m/s. The inclusion is detected
quite well, exposing the value of cs as well as its location and shape.
In Fig. 21, the target layers are curved with the same cs distribution
as in Fig. 18. The inverted profile reveals the curved layers and the
value of cs excellently. In Fig. 22, the third layer of the target is rel-
atively softer than the surrounding layers. The value of cs and the
location and depth of each layer is disclosed satisfactorily in this
case as well. For all the examples, the initial guess is homogeneous
with cs = 110 m/s, and both the source frequency and the regulari-
zation factor continuation schemes have been utilized.

5.3. Noise effect

Next, we investigate the effect of noise on the quality of the in-
verted profiles. To this end, we inject 20% Gaussian noise to the
noise-free data obtained for the 5-layer velocity profile shown in
Fig. 18. We apply the same Gaussian pulse-type loads, with the fre-
quency spectra depicted in Fig. 13. Fig. 23 shows the noise-polluted
displacement responses at three locations on the surface (x1 = 0,
15, and 30 m) for the load with fmax = 15 Hz. Fig. 24(b) shows the
reconstructed image using TV regularization. In Fig. 24(c), the
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Fig. 18. A PML-truncated heterogeneous half-plane with 5 layers.
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Fig. 20. Target and inverted shear wave velocity profiles; 5 layers and inclusion.
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inverted profiles for both noisy and noise-free data are plotted to-
gether along the vertical cross-section at x1 = 10 m. As seen in the
figure, the inverted profile derived from the noisy data has de-
graded somewhat when compared to the noise-free result
(Fig. 24(c)). Nevertheless, the recovered profile is still quite
acceptable.

5.4. Inversion by the weak form of the reduced gradient

Thus far, we have described the inversion process based on a
gradient scheme for updating the material properties, where the

reduced gradient (54) was used to drive the gradient scheme. Con-
dition (26) was imposed explicitly. In lieu, though, of the strong
form of the reduced gradient (54), a weak form could also be used.
The advantage is that condition (26) will be automatically taken
into account. We illustrate using (27) as the starting point. We
multiply (27) by a test function w(x) and integrate over the entire
domain X to get:

Rcs

Z
X
rw � rcsdX� 2

Z
X

wcs

Z T

0
ks � r

ov
ot

� �
dt

	 

dX ¼ 0; in X;

ð65Þ

where the first term results from integration by parts while also
taking into account the boundary condition ocs/on = 0 (Eq. (26).
Introducing quadratic approximant /i for both w(x) and cs(x) results
in a discrete reduced gradient of the following form:

g ¼ Kcs ¼ Rcs Kr þ Ksð Þcs; ð66Þ

where

ðKrÞij ¼
Z

X

o/i

ox1

o/j

ox1
þ o/i

ox2

o/j

ox2

� �
dX; ð67aÞ

ðKsÞij ¼ �2
Z

X
/i/j

Z T

0
ks � r

ov
ot

� �
dt

	 

dX: ð67bÞ

In (66), Krcs and Kscs correspond to the gradient of the regulariza-
tion functional ðrcsF rÞ and the gradient of the side-imposed func-
tional ðrcsF sÞ, respectively. In Fig. 25, we show the reconstructed
5-layer profile obtained by exploiting the weak form of the reduced
gradient. The image recovers well the 5-layer velocity profile, but is
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Fig. 21. Target and inverted shear wave velocity profiles; 5 curved layers.
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Fig. 22. Target and inverted shear wave velocity profiles; 5 horizontal layers with a soft material in the third layer.
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Fig. 23. Measured displacement responses at three surface locations (x1 = 0, 15, and
30 m) with 20% Gaussian noise.
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of lesser quality when compared to Fig. 19(b): we attribute this pri-
marily to our use of the TN regularization in this case. In general,
there are two advantages for choosing the weak form over the
strong form: firstly, there is no need to calculate the Laplacian
(Dcs), whose numerical evaluation causes difficulties.4 Secondly,
the Neumann-type boundary condition (26) is automatically satis-

fied in the weak form, so that there is no need to explicitly impose
the condition. On the other hand, the weak form of the reduced gra-
dient requires the assembly of Ks at every inversion iteration, caus-
ing additional computational cost.

5.5. The Marmousi benchmark model

Lastly, we use the PML-endowed full waveform inversion pro-
cess to reconstruct the Marmousi profile, a highly-heterogeneous
benchmark problem proposed in the oil-exploration community
[40]. The Marmousi model was created by the Institut Français
du Pétrole (IFP) in 1988, and has become an industry standard after
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Fig. 24. Inverted 5-layer velocity profiles using measured data with 20% Gaussian noise.
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Fig. 25. Inverted 5-layer shear wave velocity profile using the weak form of the reduced gradient; TN regularization is used.

Fig. 26. The Marmousi velocity model.

4 The material properties cs are interpolated using C0 elements, and, therefore, their
second spatial derivatives behave as Dirac functions. Thus, the finite difference stencil
we use for approximating the Laplacian at nodal locations could lead to errors,
particularly for elements whose sides form larger angles with the coordinate axes. In
the numerical examples reported herein, highly distorted meshes were avoided.
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the 1990 EAEG workshop on practical aspects of seismic data
inversion. Fig. 26 shows the target Marmousi velocity profile. It
contains 158 layers and is 9.2 km in length and 3 km in depth,
respectively. The density is 2200 kg/m3. We place PMLs (288 m
wide) along the sides and bottom of the domain and discretize
the combined regular and PML domains using biquadratic ele-
ments. The element size is 80 � 24 m in the regular domain and
24 � 24 m in the PML regions. We use a stress shot r32 = p(t) at
every grid point on the entire surface of the regular domain, as is
typically done [29,18,19]. We use Gaussian pulse-type loads with
two different maximum frequencies; fmax = 10 and 40 Hz. The time
steps used are 0.006 and 0.0018 s for each frequency signal. Sensor
readings of the anti-plane displacement are synthesized at all grid
points on the surface. Fig. 27 shows the synthetic seismograms

generated for the Marmousi profile using the two Gaussian
pulse-type loads.

We started the inversion process with a linear profile varying
from 1500 to 4500 m/s in depth. We used both TN and TV regular-
ization schemes. By using, first, the signal with fmax = 10 Hz, the
Marmousi velocity model is reconstructed as shown in Fig. 28.
The converged profiles recovered the velocity structure of the shal-
low subsurface fairly well, exposing the location and dip of the stra-
ta. Then, we provide the inverted profiles of Fig. 28 as a new initial
guess to a subsequent inversion using the higher-frequency signal
of fmax = 40 Hz. There result the updated velocity profiles depicted
in Fig. 29. Reflectors, steep dips, and strong velocity gradients in
both vertical and lateral directions are captured satisfactorily,
although it is difficult to obtain a precise image of the deeper parts

Fig. 27. Synthetic seismograms generated for the Marmousi model using Gaussian pulse-type loads with maximum frequencies fmax = 10 and 40 Hz.

Fig. 28. Reconstructed Marmousi velocity profile using a Gaussian pulse with fmax = 10 Hz.
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of the domain below the salt dome. Fig. 30 depicts the histories of
the misfit functional Fm for both source-frequency cases.

We remark that most published attempts to invert for the Mar-
mousi profile are carried out in the frequency-domain (e.g.
[18,19,44,45]) using, at least, tens of probing frequencies. The
recovery of the deeper part of the profile, remains a challenge, even
when several frequencies are used. To the best of our knowledge,
direct time-domain inversion, which here was executed using only
two pulses, while simultaneously the domain is truncated using
absorbing boundaries (PMLs) appropriate for heterogeneous med-
ia, is attempted here for the first time.

6. Conclusions

We discussed a full waveform inversion approach for recon-
structing the shear wave velocity profile of a two-dimensional het-
erogeneous semi-infinite medium, truncated by a perfectly-

matched-layer (PML), based on surface measurements of its re-
sponse to surface excitation. The PML was introduced to accommo-
date the truncation of the semi-infinite extent and absorb the
outgoing waves traveling beyond the truncation interface. The
underlying numerical scheme was based on a new displacement-
stress mixed finite-element formulation in the time-domain devel-
oped recently [11].

The PML-endowed PDEs are used within a PDE-constrained opti-
mization framework to resolve the inverse medium problem. In or-
der to alleviate the inherent ill-posedness of the inverse problem,
we explored both Tikhonov (TN) and total variation (TV) regulariza-
tion. Both schemes captured target profiles efficiently. For sharply-
varying profiles, the TN scheme exhibited limitations when the reg-
ularization factor was large and not allowed to vary, whereas the TV
scheme showed good performance. To improve on the ability to re-
cover sharp profiles, we suggested a regularization factor continua-
tion scheme, which tunes the regularization factor at each inversion

Fig. 29. Reconstructed Marmousi velocity profile using a Gaussian pulse with fmax = 40 Hz.
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Fig. 30. Response misfit versus number of iterations for the Marmousi model.
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iteration. The continuation scheme works quite effectively in recov-
ering sharp profiles even when the regularization factor is initially
large. We also employed a source-frequency continuation scheme
to generate a sequence of solutions that remain in the basin of
attraction of the global minimum. The two continuation schemes
greatly aid in recovering target profiles when there are fewer
sources and receivers. We used both noise-free and noisy data to
demonstrate the algorithmic performance, and showed robustness
of the full waveform inversion in the presence of noise in the mea-
sured data. We also discussed two different ways of implementing
the reduced gradient that drives material updates. We discussed
several numerical results, including the Marmousi benchmark
problem. The highly heterogeneous velocity structure of the Mar-
mousi model has been recovered reasonably well, demonstrating
the applicability of the PML-endowed full waveform inversion to
problems ranging from geotechnical site characterization to geo-
physical probing applications of industrial interest.
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Appendix A. Gaussian pulse expressions

The various Gaussian pulses used in the numerical experiments
for domain probing have the following expressions:

fmax ¼ 3 Hz : pðtÞ ¼ �10 exp �ðt � 0:8Þ2

0:07

" #
;

fmax ¼ 6 Hz : pðtÞ ¼ �10 exp �ðt � 0:45Þ2

0:017

" #
;

fmax ¼ 9 Hz : pðtÞ ¼ �10 exp �ðt � 0:35Þ2

0:0071

" #
;

fmax ¼ 12 Hz : pðtÞ ¼ �10 exp �ðt � 0:26Þ2

0:004

" #
;

fmax ¼ 15 Hz : pðtÞ ¼ �10 exp �ðt � 0:22Þ2

0:0027

" #
: ð68Þ

where fmax denotes the maximum frequency present in the Fourier
Transform of the corresponding pulse.
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