
ELSEVIER Comput. Methods Appl. Mech. Engrg. 152 (1998) 85-102 

Computer methods 
in applied 

mechanics and 
engineering 

Large-scale simulation of elastic wave propagation in heterogeneous 
media on parallel computers 

Hesheng Bao”, Jacob0 Bielak”‘*, Omar Ghattas”, Loukas F. Kallivokas”, 
David R. O’Hallaronb, Jonathan R. Shewchukb, Jifeng Xu” 

“Computational Mechanics Laboratory, Dept. of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, 
PA 15213, USA 

t’School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA 

Received 17 January 1997 

Abstract 

This paper reports on the development of a parallel numerical methodology for simulating large-scale earthquake-induced ground motion 

in highly heterogeneous basins. We target large sedimentary basins with contrasts in wavelengths of over an order of magnitude. Regular 

grid methods prove intractable for such problems. We overcome the problem of multiple physical scales by using unstructured finite 

elements on locally-resolved Delaunay triangulations derived from octree-based grids. The extremely large mesh sizes require special mesh 

generation techniques. Despite the method’s multiresolution capability, large problem sizes necessitate the use of distributed memory 

parallel supercomputers to solve the elastic wave propagation problem. We have developed a system that helps automate the task of writing 

efficient portable unstrucmred mesh solvers for distributed memory parallel supercomputers. The numerical methodology and software 

system have been used to simulate the seismic response of the San Fernando Valley in Southern California to an aftershock of the 1994 

Northridge Earthquake. We report on parallel performance on the Cray T3D for several models of the basin ranging in size from 35 000 to 

77 million tetrahedra. The results indicate that, despite the highly irregular structure of the problem, excellent performance and scalability 

are achieved. 

1. Introduction 

The reduction of earthquake risk to the general population is a major problem facing countries located in 
highly seismic regions. Assessing the free-field ground motion to which a structure will be exposed during its 
lifetime is a critical first step for the design of new structures and retrofit of existing ones. 

The main objective of this paper is to describe a methodology for modeling ground motion on parallel 
computers in large sediment-filled basins during earthquakes, and to illustrate with an application to a real basin. 
Observations during recent strong earthquakes have shown that three-dimensional local site effects, caused by 

the waves generated inside a basin, can result in strong ground motion amplification and longer duration of the 
surface ground motbon, with respect to that in rock, and a rapid spatial variation of the ground motion that can 
cause large differential base motion of extended structures such as bridges or dams [19,10,3]. See [l] for a 
general overview, and [12,11,24,8,9,18,16], for instance, for representative recent work in this field. 

Simulating the earthquake response of a large basin is accomplished by solving numerically the partial 
differential equations of elastic wave propagation, i.e. the Navier equations of elastodynamics. Several 
numerical methods have been used for approximating the solution to these problems. Boundary element methods 
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have been popular for recovering solutions primarily in the frequency domain and for moderately-sized linear 
problems. Inhomogeneities, nonlinearities, the large scale of such basins as Los Angeles and Kanto, and the 
desire to model directly in the time domain, preclude their use here. On the other hand, uniform grid domain 
methods such as structured finite differences become impractical for the very large problem sizes involved. 

To see why uniform grids are impractical, consider the Los Angeles Basin. For a shear-wave velocity of 
0.4 km/s and a frequency of 2 Hz, a regular discretization of the elasticity operator would place grid points 
0.02 km apart to achieve second order accuracy. The region of interest has dimensions 140 km X 100 km X 

20km; thus, a regular discretization, governed by the softest layer, requires 35 billion grid points with three 
displacement components per grid point. At least a terabyte of primary memory would be needed, and on the 
order of lOI operations would be required at each time step. The stability condition associated with explicit 
time integration of the semidiscrete equations of motion imposes a time increment at least as small as 0.004 s. 
Thus, a computer would have to perform at a sustained teraflop per second for two days to simulate a minute of 
shaking. 

Instead, we use unstructured mesh finite element methods that tailor the mesh size to the local wavelength of 
propagating waves 121. For a basin such as Los Angeles, the shear-wave velocity varies from 220 m/s to 
4500 m/s throughout the basin and its vicinity. Since in three dimensions mesh density varies with the cube of 
shear-wave velocity, and since the softest soils are concentrated in the top layers, this means that an unstructured 
mesh method may yield three orders of magnitude fewer equations than with structured grids. Modeling the Los 
Angeles Basin for values of earthquake period and wave velocity that are desirable for engineering purposes 
thus becomes practical on the largest of today’s parallel supercomputers. 

We favor finite element methods for their ability to efficiently resolve multiscale phenomena, the ease with 

which they handle traction boundary conditions, and their firm theoretical foundation. For temporal approxi- 
mation, we have studied both explicit and preconditioned conjugate gradient-based implicit methods. For 
hyperbolic problems, explicit methods become unstable if the time step is greater than the time it takes an elastic 

wave to cross any element-the Courant condition. Unconditional stability, on the other hand, can be achieved if 

one uses implicit methods. This implies that larger time steps can be taken. However, the very characteristic that 
makes them stable-the fact that the solution at a node at time t + At requires information from all nodes at time 
t as opposed to just the neighbors-renders them unattractive on distributed memory computers, since this 
implies global information exchange. One approach to making implicit methods efficient on parallel computers 
is to use iterative methods for their solution, effectively rendering them explicit. However, we have found that 
our mesh generators give us such good control over mesh resolution that the Courant condition for explicit 
methods is not onerous. The result is that the more readily parallelizable explicit methods perform better for 
elastic wave propagation problems. In this paper we consider only a single-step explicit time integration method. 

While unstructured mesh methods for simulating wave propagation through heterogeneous media result in 

many fewer equations, they introduce a number of computational difficulties that must be overcome. First, mesh 
resolution must closely follow wavelength; too coarse a resolution will introduce error, too fine will result in 
unnecessary computation as well as excessively small time steps (when explicit integration methods are used). 
Second, element aspect ratios must remain small; large aspect ratios will eventually result in instability in the 

time integration scheme. Highly heterogeneous basins, in which wavelengths vary rapidly in space, introduce 
special difficulties when trying to follow the wavelength change without severely stretching the mesh. Third, un- 
structured mesh methods are not easy to program on parallel computers; their irregular data structures require non- 
trivial mappings onto parallel machines and irregular communication patterns are generated. Thus, we have devel- 
oped fast, robust computational geometry and mesh generation techniques for highly spatially-variable meshes, 
and compilers and tools that simplify the programming of unstructured mesh methods on parallel systems. 

For an alternative approach to parallel ground motion modeling on distributed memory machines, see e.g. the 
work of Olsen et al. [17], which employs finite differences on regular grids. See also the references to prior 
finite difference modeling work on sequential machines contained therein. In addition to the finite element 
method described in this paper, there have been recent efforts to endow finite difference wave propagation 
methods with multi-resolution capabilities. See the work described in [14], which uses composites of regular 
grids to achieve variable resolution. 

In the remainder of this paper, we present numerical methods and geometric algorithms for modeling 
earthquake-induced ground motion in highly heterogeneous basins. We also describe an automatic code 
generator for solution of unstructured mesh PDE problems on parallel distributed memory computers. As an 
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application, we model the response of the San Fernando Valley in Southern California to an aftershock of the 

1994 Northridge earthquake, and give performance results on the Cray T3D. 

2. Methodology 

In this section we describe spatial and temporal discretization and solution techniques for the governing 
elastodynamics equations, which are performed in parallel. We also describe the sequential phase, which consists 
of a mesh generator capable of resolving local wavelengths, a mesh partitioner that rapidly provides 

asymptotically optim,al partitions, several initialization steps that are carried out prior to parallel solution of the 
discrete wave propagation equations, and the parallel code generator, which shields the user from issues of 

parallelism and communication, while allowing a high-level description of the numerical method. 

2.1. Governing equations and discretization 

This section presents the parallel numerical techniques we use to approximate the solution of the wave 
propagation equations. Navier’s equations of elastodynamics for an isotropic, heterogeneous medium are 

2 

v.,p(vu+v~~)+*(v.u)Il=p~, (1) 

where II is the displacement vector field, p is the density, and h and ,u are elastic material constants, which 
depend on the shear (c,) and dilatational (c,) wave velocities according to 

The domain of the problem is semi-infinite, yet our computational domain must be rendered finite. Here, we 

chose a rectangular parallelepiped whose size is determined by the extent of the valley. We prescribe absorbing 

boundary conditions that are local in both time and space on all sides of the computational domain except for 
the top surface, which is traction free. In this application, we use the simplest possible absorbing boundary-a 
damper. While a viscous damper is a sufficient choice for high frequencies and normal wave incidences, it is, in 
general, a poor approximant of the exact condition at the truncation interface. However, we choose the 
truncation surfaces so that they lie outside the sedimentary valley, that is, mostly in rock. In this way, we ensure 
that the amplitudes of the waves impinging upon the truncation boundaries will have been greatly reduced, thus 

minimizing spurious reflections. 
Since, in many cases, the earthquake source can be outside the computational domain, its effect must be 

introduced into the region. This is carried out as described in [4,6] by means of effective forces. In short, for an 
arbitrary earthquake excitation these forces are determined in terms of the free-field motion by introducing a 

fictitious auxiliary surface that surrounds the basin. Across this auxiliary surface one imposes the conditions of 

continuity of displacement and traction. By selecting the total displacement vector field as the unknown in the 
resulting interior region and the scattered displacement field in the exterior region, the free-field displacement 
and traction now appear explicitly in the continuity conditions, which become jump conditions, with the 
free-field displacement and traction on the right-hand side. These non-homogeneous terms on the right-hand side 
are the ones that give rise to the effective forces upon spatial discretization. If, on the other hand, the seismic 
source is located inside the computational domain, say as a kinematic dislocation across a fault, one can select 
the fault itself as the auxiliary surface. The procedure is similar, but now one uses the total displacement 
everywhere as the unknown field; thus, the displacement field again experiences a jump across the interface, but 
the traction remains continuous. Notice that with this technique, whether the source is originally located inside 
or outside the computational domain, only outgoing waves will impinge upon the absorbing boundary. Both 
types of source are implemented in our code. 

We also model material damping in the basin via viscous damping. With these modifications, standard 
Gale&in discretization in space by finite elements produces a system of ordinary differential equations of the 
form 
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Mii+Czi+Ku=f, (3) 

where M is the mass matrix, C is the damping matrix associated with the absorbing boundary and material 
damping, K is the stiffness matrix, and f is the effective force vector. Here, M, C and K are block matrices; the 
(i j)th block of M is a 3 X 3 matrix given by 

and the (i, j)th block of K is given by 

K, = (p + h)Vc,biV4; dL! + (5) 

where 4i is the finite element global basis function associated with the ith node. 

Damping is introduced through a Rayleigh damping approximation at the element level, i.e. we take 

Ce=aMe+/3Ke, (6) 

where (Y and p are scalar constants and the superscript e indicates an element matrix. The first term leads to a 
damping factor that is inversely proportional to frequency, and the second to one that is linear in frequency. The 
constants (Y and /3, which may vary within the basin according to the type of material, are chosen to best fit a 
prescribed attenuation law. 

Given appropriate initial conditions, the system of ODES (3) can be integrated in time using central 
differences, yielding the explicit method 

(M++)u,,,, =At2J-(At2K-2M)u,-(M-$C)u,-,,. (7) 

This method exhibits second-order accuracy in time; when coupled with linear finite elements, we obtain 
second-order accuracy in space as well. We use a lumped mass approximation to M, which amounts to 
numerically integrating (4) with integration points at element vertices. This results in a diagonal mass matrix. To 
render the left-hand side operator of (7) diagonal, we further evaluate the off-diagonal components of C at U, 
rather than u,+~,. Inversion of the time stepping operator thus requires only a scaling of the right-hand side of 

(7), which is carried out just once prior to time stepping. Forming the products of K and C with vectors 
comprises the major computational effort associated with iterating on (7). The sparsity structure of K is dictated 

by the underlying finite element mesh, and is thus very irregular. If shear waves are not over-resolved, the time 
step necessitated by stability is of the order of the time step dictated by accuracy, which is what an implicit 

method would take. By choosing an explicit method we avoid solving linear systems at each time step. Thus, 
overall, the explicit method is superior for our application, especially on a parallel computer. 

We have tried several different choices of basis function order, and have concluded that piecewise-linear 
functions are the most efficient for problems requiring engineering accuracy. Our conclusion is based on 
numerical experimentation using plane Ricker wavelets on unstructured homogeneous meshes (in which case we 
know what the exact solution should be), but a simple argument can be given as follows. We recognize first that 
(spatial) approximation errors are bounded from above by interpolation errors. We then ask, for a given order of 
basis function and a given acceptable level of infinity-norm error, how many nodal points are required to 
produce a piecewise-polynomial interpolant of a simple harmonic wave. Next, we convert the required number 
of nodes per wavelength to an estimate of the storage and work required for an iteration of the explicit method 
(7). For example, on a regular grid, if N is the total number of nodes, one can show that trilinear hexahedra 
require 163.5N words of storage and 498N flops/time step, while triquadratic hexahedra necessitate 357N 
words and 1164N flops/ time step. So, for example triquadratic elements should require at least 2.2 times fewer 
nodes in order to be preferred (for storage reasons) over trilinear elements. However, one-dimensional 
interpolation suggests that 5% error requires 10 nodes per wavelength using linear elements or 9.4 nodes using 
quadratics. Thus, in three dimensions, triquadratics only allow ( 10/9.4)3 = 1.2 times fewer nodes than trilinears, 
and are thus not warranted. An opposite conclusion is reached if one demands 99% accuracy. Our confidence in 
the values of material properties and in the fidelity of the source models for this problem does not warrant 
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solution accuracies greater than 95%. Thus, we conclude that for this level of accuracy, the powers of 

higher-order interpolation are offset by their increased cost, both in storage and in increased work. 

2.2. Mesh generation 

As we have seen, s,eismic wave propagation problems place special demands on mesh generators, including 
the need for tight control over mesh resolution and aspect ratio, and the need to support extremely large problem 
sizes. We have developed a fast, stable and efficient meshing algorithm for generating very large scale meshes, 
suitable for the large basins we target. Since repeated computations will be performed with a single mesh (one or 

two dozen earthquake scenarios, each involving thousands of time steps), we have decided to generate and 
partition each mesh sequentially. However, care must be taken in designing and implementing efficient 

algorithms for these steps, lest they become bottlenecks. 
Mesh generation begins with a database of the material properties of the soil and rock within and around a 

particular basin. The material properties-the shear-wave velocity, the dilatational-wave velocity, and the 

density-are estimated throughout the basin from soil borings, from geological records, and from seismic 

prospecting studies. 
The meshing algorithm comprises two steps. First, we generate an octree that resolves the local wavelength of 

shear waves. The wavelength is known from the shear-wave velocity and the frequency of excitation. We have 
seen in the previous section that 8-10 nodes per wavelength is sufficient for ‘engineering’, or 95%, accuracy 
when using linear finite elements. When constructing the octree, we enforce the rule that adjacent cells may not 
differ in edge length 'by more than a factor of two, producing a balanced octree. This is crucial for producing 

elements with bounded aspect ratios, since aspect ratios far from unity lead to poorly conditioned stiffness 
matrices, which, in turn, can lead to instability in time integration. 

Once a balanced octree is created such that no cell is wider than one-tenth the length of the wave that passes 
through it, a finite element node is placed at each cell vertex. This set of nodes is then tetrahedralized according 

to the Delaunay criterion.’ Delaunay tetrahedralization is performed by a straightforward implementation of the 
Bowyer/Watson incremental algorithm [5,25], which constructs the tetrahedralization by adding one node at a 

time and locally adjusting the mesh to maintain the Delaunay criterion. 
We have found that the Bowyer/Watson algorithm is occasionally sensitive to floating-point roundoff error; 

tetrahedral mesh generation can fail dramatically because of roundoff when processing near-degenerate 
geometric features. Such failures became increasingly common for us as the size of our meshes grew. To 
overcome this problem, we have developed a method for fast exact arithmetic that is particularly well-suited for 

certain tests that arise in computational geometry codes [20]. Our method is used to construct predicates that 
determine whether a point falls to the left or right side of a line, or whether a point falls inside or outside a 

sphere. These predicates are adaptive in the sense that they only use exact arithmetic to the extent it is needed to 
ensure a correct answer. Hence, if a point falls very close to a line, high precision arithmetic may be needed to 
resolve which side of the line it falls on; if a point is far from a line, approximate arithmetic will suffice, so the 

test can be performed quickly. Because the latter case is far more common, our exact arithmetic predicates are 
on average only slightly slower than ordinary, non-robust floating-point predicates, and our Delaunay 
tetrahedralization cod’: runs quickly while ensuring the integrity of its results. 

Our use of the Delaunay tetrahedralization of the vertices of a balanced octree guarantees that element aspect 
ratios are bounded, and that element sizes are chosen appropriately so that wavelengths are sufficiently resolved 
without unnecessary resolution (provided the material properties do not vary too rapidly). 

2.3. Mesh partitioning 

Once a mesh is generated, the set of elements that comprise it must be partitioned into subdomains. Each 
subdomain can then be mapped onto a processor of a parallel machine. The goal of mesh partitioning is to 

I We could have used a hexahedral mesh directly from the octree, but we would have had to introduce constraints at midside nodes to 

make the elements conforming. 
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minimize communication time while maintaining load balance. In an explicit method, communication is 
associated with the nodes that lie on the boundaries between subdomains and are shared by more than one 
processor. Processors sharing a node must communicate six words per shared node for each matrix-vector 
multiply, i.e. twice each time step in our method. Communication time depends on both the message sizes, 
which increase with the number of shared nodes, and the number of messages, which increases with the number 

of adjacent subdomains. The load on a processor for explicit solution of linear wave propagation problems is 
easy to predict: it is proportional to the number of nodes on that processor. Prediction becomes more difficult 

when nonlinearities are present, such as with the soil plasticity models that we are currently introducing into our 
code. In these cases, the work per node is solution-dependent. Nevertheless, for our purposes, we consider a 
mesh partitioner desirable if it produces subdomains of nearly equal size (where size is measured by number of 

elements and not by volume) and with as few nodes shared between processors as is reasonably possible. 
The partitioner we use is based on the algorithm of Miller et al. [15]. This algorithm uses geometric 

information to construct a separator, i.e. a set of nodes whose removal separates the mesh into two pieces of 

roughly equal size. Each of these pieces is then recursively partitioned until the desired number of subdomains is 
reached. The Miller et al. algorithm produces separators that are asymptotically optimal; their length is of order 
0(N2’3) in three dimensions, where N is the number of nodes. Theoretically, the algorithm runs in randomized 

linear time; in practice, the algorithm rapidly produces high quality partitions. 

2.4. Parceling 

After a mesh is partitioned into subdomains, there remain several operations that have to be performed on the 

partitions to prepare the input for the parallel program. We refer to these steps collectively as parceling. The 
steps include generating (i) the communication schedule for each processor; (ii) the global-to-local mapping 
information, which allows identification of a node or element number on a processor by its global number; and 
(iii) the nonzero structure of the stiffness matrix on each processor. The last item could be performed in parallel, 
but it takes little time and provides us with useful statistics on the mesh, so we perform it sequentially. 

2.5. Code generation 

The mesh generator, the mesh partitioner, and the parceler are all components of a general-purpose toolset for 
the efficient mapping of unstructured mesh computations arising from numerical solution of PDEs onto parallel 

systems. We refer to the toolset as the Archimedes system [7,22]; it is depicted in Fig. 1. Input to Archimedes 
includes (i) the problem geometry and material properties and (ii) a sequential program containing an 
element-level description of the finite element approximation, as well as a high-level description of the solution 

method. 
The input program is written in a special-purpose C-like language augmented with finite element-specific and 

linear algebraic primitive operations that include element-level vector and matrix assembly, imposition of 
boundary conditions, sparse matrix-vector products, dot products, and pre-conditioning. Additional functions 
are specific to elastic wave propagation, and include absorbing boundaries, damping and seismic input 
incorporation. Archimedes programs contain no explicit communication statements, and thus can be written 
without any knowledge of the parallel machine’s underlying communication system. The set of primitives that 
Archimedes understands is rich enough to express algorithms for solution of linear and nonlinear scalar and 
vector PDEs, using arbitrary-order finite elements in space and both explicit and implicit methods in time. For 
implicit methods, the Archimedes language provides for expression of various stationary iterative solvers as well 

as Krylov subspace methods. Furthermore, users can add new primitives as the need arises. 
Once the input program is complete, Author, the code-generator component of Archimedes, creates parallel 

code. Archimedes’ parallelizing compiler will generate code for any parallel system with C and MPI 
implementations, including networks of workstations (using the Argonne/Mississippi State MPICH im- 
plementation), Intel’s Paragon (also using MPICH) and the Cray T3D (using the CRI/EPCC MPI implementa- 
tion). 



H. Bao et al. I Comput. Methods Appl. Mech. Engrg. 152 (1998) 85-102 

Archimedes 

91 

Fig. 1. The Archimedes system. 

3. Application to the San Fernando Valley 

We have applied lthe methodology outlined in the previous section to the modeling of earthquake-induced 
ground motion in the: San Fernando Basin in Southern California. Specifically, the geographic region extending 
from - 118.7500 to .- 118.1628 degrees longitude and -34.0828 to -34.3833 degrees latitude is modeled as a 
rectangular parallelepiped 54 km long by 33 km wide by 15 km deep. The properties of the basin are described 
by tie triplet of shear-wave velocity, dilatational-wave velocity and density; for this application the material 
database has been obtained from the geology-based velocity model of Magi&ale et al. [13]. For the above 
geographic region, Eig. 2 shows the shear-wave velocity distribution at a depth of one meter from the surface of 
the valley. The figure shows a variation in shear-wave velocity of at least a factor of seven. This factor exceeds 
20 when properties at depth are considered. 

3.1. Sequential phase 

We use our mesh generator to create a mesh of the San Fernando Basin with a 220 m/s shear-wave velocity 
in the softest soil, assuming a seismic scenario with frequencies up to 1.6 Hz. Fig. 3 depicts the nodes generated 
by the balanced octree. The octree produces 13 million nodes, but many fewer are shown for clarity. As can be 
seen from the figure, the density of nodes is highest in the softest soil, where the shortest wavelengths occur. A 
regular grid for this material model would have resulted in 200 times the number of grid points. A Delaunay 
tetrahedralization of the set of 13 million nodes produces a mesh of 77 million tetrahedra. The mesh is generated 
in 13 h on one processor of a DEC 8400 and requires 7.7 Gb of memory. It has a maximum aspect ratio of 5.5 
and exhibits a spatia.1 resolution variability of over an order of magnitude. Fig. 4 shows the resulting mesh of 
tetrahedra, again coarsened for visualization purposes. Next, the 77 million element mesh is partitioned into 256 
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Fig. 2. Near-surface distribution of shear-wave velocity in the San Fernando Valley; actual depth is 1 m. 

Fig. 3. Nodal distribution for the San Fernando Valley. Node generation is based on an octme method that locally resolves the elastic 

wavelength. The node distribution shown here is a factor of 12 coarser in each direction than the real one used for simulation, which is too 

fine to be shown, and appears solid black when displayed. However, the relative resolution between soft soil regions and rock illustrated 

here is similar to that of the 13 million node model we use for simulations. 
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Fig. 4. Tetrahedral element mesh of the San Fernando Valley. Maximum tetrahedral aspect ratio is 5.5. Again, for illustration purposes, the 

mesh shown is much coarser than those used for simulation. 

subdomains in about 3.8 h on one processor of the DEC 8400, and requires 7.9 Gb of memory. The resulting 
partition (for the coarser mesh and for 64 subdomains) is shown in Fig. 5. The figure shows the circular cuts 
characteristic of the partitioner. Despite the high spatial variability of the mesh, the partitions appear to be 

well-shaped. 
The last step of the pre-simulation sequential phase is parceling, i.e. generating the communication schedule, 

the global-to-local mapping, and the global matrix nonzero structure. On the DEC 8400, parceling requires about 
2.3 h and 7.7 Gb memory for the 77 million element San Fernando Basin mesh. The communication graph 
generated by the parceler is shown in Fig. 6. Each vertex represents a subdomain and corresponding processor; 
each edge represents communication between two processors. 

3.2. Parallel phase 

In this section we describe numerical results corresponding to the response of the San Fernando valley and 

provide timings that characterize the performance of the parallel explicit wave propagation code on the Cray 
T3D. 

The San Fernando simulations involve meshes of up to 77 million t@rahedra and 40 million equations. As 

mentioned before, the largest mesh corresponds to a shear-wave velocity range of 220 m/s (softest layer) to 
4500 m/s (rock) and a maximum frequency of 1.6 Hz; the code requires nearly 16 Gb of memory and takes 
7.2 h (5.0 h excluding I/O) to execute for 16 667 times steps on 256 processors of the, Cray T3D at the 

Fig. 5. Mesh partitioned for 64 subdomains. 

Fig. 6. Communication graph for the partitioned element mesh depicted in Fig. 5. 
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Table 1 

Source characteristics 

Date 

Time 

Epicenter 

Depth 

Strike 

Dip 

Rake 

01/21/1994 

l&53:44.0 

Latitude 34O.32, Longitude - 118”.48 

13km 

-69” 

44” 

70” 

Seismic moment 

Rise time 

MO = 2.4 X 10” dyne-cm 

T, = 0.6 s 

Source function 

Pittsburgh Supercomputing Center (PSC). The simulated time is 40 s, with a time step of 0.002 s. The simulated 
seismic event is a 1994 Northridge Earthquake aftershock, with its epicenter denoted by a white X in Fig. 2. The 
characteristics of the source were obtained from [23] and are listed in Table 1. 

Figs. 7 and 8 show the E-W and N-S surface velocity components, respectively, along the d-d’ axis shown 
in Fig. 2; the color column on the left of the seismograms depicts the shear-wave velocity profile of the basin 
along the same axis. While it is clear that longer durations are associated with the deeper parts of the valley, it 
also seems that the constructive interference of surface and trapped body waves in the shallower regions of the 

d 

34.1 

d c 
IO 15 20 25 -30 35 40 

Time (s) 

Fig. 7. Horizontal surface velocity seismogram of the E-W component along the d-d’ axis shown in Fig. 2. 
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Fig. 8. Hon~zontal surface velocity seismogram of the N-S component along the d-d’ axis shown in Fig. 2. 
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valley is responsible for the stronger motion amplification observed on the surface overlying those regions. It is 
also noteworthy that no spurious wave reflections seem to be generated at the artificial boundaries. Fig. 9 shows 

the distribution of maximum surface horizontal displacements throughout the valley; it can be seen that the 
motion in the softer parts of the basin is amplified five to six times when compared with the motion on rock. 
Naturally, this is suggestive of greater damage in these regions. The solid dark line in the same figure is the 
outline of key topological features of the valley. By comparing the distribution of the shear-wave velocity 
depicted in Fig. 2 wi.th the response shown in Fig. 9, the correlation between stronger amplification and softer 
layers becomes even clearer. Notice also how well the response distribution follows even the finest of the 
topological features; as expected, stronger response is also concentrated along different material interfaces 
within the valley itself. 

Once the response in the time domain is obtained from the simulation, the record at every point in the valley 
in the frequency domain can be obtained through Fast Fourier Transforms. In Fig. 10 we plot the distribution of 
the amplitude of one such Fourier transform for the E-W component of the surface displacement and for a fixed 
frequency of 1.45 Hz. This is helpful for assessing the response of the valley at that frequency and identifying 
resonant regions. Indeed, the narrow stripes depicted in Fig. 10 are indicative of strong modal response; this is a 
property of the geo.logical structure, which is expected to be nearly independent of the particular seismic 

scenario. 
It is important for the design process to be able to assess the response of a hypothetical structure to a given 

seismic event. To this end we construct response spectra for two distinct single-degree-of-freedom oscillators. 
As an example, we place a simple oscillator oriented along the E-W direction at every point on the surface of 
the valley. We assume a natural frequency f, for each oscillator and 5% critical damping. The valley’s response 
along the same E-W direction is used as the excitation for the oscillator; we obtain its response in the time 
domain and plot the maximum relative displacement at every point in the valley. Figs. 11 and 12 depict the 
response spectra for two distinct oscillators with natural frequencies of 0.3 Hz and 1.45 Hz. The figures clearly 
assist in identifying regions where the oscillators will experience large responses; we note that the chosen values 
of natural frequencies are typical of tall (30-story) to moderately short (6-story) building structures. 
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Fig. 9. Distribution of maximum horizontal surface displacement. 

3.3. Performance on Cray T3D 

We next discuss the performance of our parallel explicit wave propagation code on the Cray T3D. The 

relevant scenario for assessing the performance of our earthquake simulations as the number of processors 
increases is one in which the problem size increases proportionally, because unstructured PDE problems are 

typically memory-bound rather than compute-bound. Given a certain number of processors, we typically aim at 
full use of their memory; as the number of processors increases, we take advantage of their additional memory 
by increasing the problem size. In order to study the performance of the code with increasing problem size, we 
have generated a sequence of increasingly-finer meshes for the San Fernando Basin. These meshes are labeled 
sf I 0, s f 5, sf 2 and sf 1, and correspond to earthquake excitation periods of 10, 5, 2 and 1 s, respectively, and 
a minimum shear wave velocity of 500 m/s. Additionally, the mesh sf lb corresponds to the geological model 

used for the simulations described in the preceding section, which includes much softer soil in the top 30 m, and 
thus necessitates an even finer mesh. Note that mesh resolution varies with the inverse cube of the excitation 
period, so that halving the period results in a factor of eight increase in the number of nodes. Characteristics of 
the five meshes are given in Table 2. 

Our timings include computation and communication but exclude I / 0. We exclude I / 0 time because in our 
current implementation it is serial and unoptimized, and because the T3D has a slow I/O system. I/O time 
involves the time at the beginning of the program to load and read the input file produced by the parceling 
operation, as well as the time to output results every 30th time step to disk. With the availability of the Cray T3E 
at PSC, we plan to address parallel I/O in the future. 

We begin with a traditional speedup histogram, for which the problem size is fixed and the number of 
processors is increased. Fig. 13 shows the total time, as well as the relative time spent for communication and 
computation, for an earthquake ground motion simulation, as a function of the number of processors. The mesh 
used for these timings is s f 2. On 16 processors, the time spent for communication is 5% of the time spent for 
computation, which is quite good for such a highly irregular problem. There are about 24 000 nodes per 
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Fig. 10. Surface distribution of the amplitude of the Fourier Transform of the E-W displacement component for a frequency of 1.45 Hz. 

processor, which results in about half the memory on each processor being used. As the number of processors 

doubles, the percentage of time spent communicating relative to computing increases, as expected. For 128 
processors, the communication time has increased to one-fifth of the total time. However, we are only utilizing 
1 / 16 of the local memory on a processor; practical simulations will generally exhibit performance more like the 

left bar of Fig. 13. 
We can quantify the decrease in computation to communication ratio for a regular N”3 X N1’3 X N1’3 mesh. 

Suppose there are N/P nodes on a processor, where P is the number of processors. Suppose further that the 
regular grid is partitioned into cubic subdomains of equal size, one to a processor. Since computation for an 

explicit method such as Eq. (7) is proportional to the volume of nodes in a cube (subdomain), and 

communication is proportional to the number of nodes on the surface of the cube, the computation to 

communication ratio is proportional to (N/P)1'3, i.e. the ratio of total nodes to surface nodes of the cube. Thus, 
for fixed N, the ratio is inversely proportional to P1'3, at least for cubically-partitioned regular grids with large 
enough numbers of nodes per processor. Clearly, it is in our interest to keep N/P as large as possible, if we 
want to minimize communication time. 

Consider now the case of unstructured, rather than regular, meshes. Suppose that N/P remains constant for 
increasing N and P, i.e. the number of nodes per processor remains constant. Now suppose that we have a 
partitioner that guarantees that the number of interface nodes remains roughly constant as N and P increase 
proportionally. Then we can expect that the computation to communication ratio will remain constant as the 
problem size increases.’ In this case, we have a method that scales linearly: the amount of time required to solve 
a problem that is doubled in size is unchanged if we double the number of processors. Let us attempt to hold the 
number of nodes per processor roughly constant, and examine the aggregate performance of the machine as the 
problem size increases. It is difficult to maintain a constant value of N/P, since processors are available in 

* To the extent that communication time is governed by the number of words communicated (as opposed to the number of messages, or to 

the route between communicating processors). 
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Fig. 11. Displacement response spectrum for a simple oscillator with f, = 0.3 Hz and 5% critical damping. 
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Fig. 12. Displacement response spectrum for a simple oscillator with f. = 1.45 Hz and 5% critical damping. 
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Table 2 

Characteristics of San Fernando Basin meshes 

Mesh Nodes Equations Elements 

SflO 7 924 21882 35 047 
sf5 30169 90 507 151 173 
sf2 378 747 1 136 241 2 067 739 
sfl 2 461 694 I 385 082 13 980 162 
sflb 13 422 563 40 267 689 76 778 630 
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Fig. 13. Timings in seconds on a Cray T3D as a function of number of processors (PEs), excluding I/O. The breakdown of computation and 

communication is shown. The mesh is sf2, and 6000 time steps are carried out. 

powers of two on the T3D. However, we can still draw conclusions about scalability. Fig. 14 shows the 
aggregate performance of our code on the T3D in megaflops per second, as a function of number of processors 
(and, implicitly, problem size). Megaflops are those that are sustained by matrix-vector product operations 

0 50 loo 150 200 250 300 
PEs 

rflb: 256 PEs 
62,716 nodes/PE 
31 MFLOPW’E 

sfl: 126 PEs 
21,632 node.siPE 
29 MFLOPS/PE 

$12: 32 PEs 
13,120 nodes/PE 
26 MFLOPWPE 

SK: 2 PEs 
15,506 noda@E 
31 MFLOP.S/PE 

&lo: 1 PE 
7,294 nod&PE 
32 MFLOPS/PE 

Fig. 14. Aggregate performance on Cray T3D as a function of number of processors (PEs). Rate measured for matrix-vector (MV) product 

operations (which account for 80% of the total running time and all of the communication) during 6000 times steps. 
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Fig. 15. T3D wall-clock time in microseconds per time step per average number of nodes per processor (PE), as a function of number of 

processors. This figure is based on an entire 6000 time step simulation, exclusive of I/O. The sf lb result is based on a damping scheme in 

which /3 = 0 in Eq. (6) so that only one matrix-vector product is performed at each time step. 

(which account for 80% of the total running time and all of the communication) during a San Fernando 

simulation, exclusive of I/O. This figure shows nearly ideal scalability, which is defined as the single processor 
performance multiplied by the number of processors. These results show that excellent performance is 

achievable, despite the highly multiscale mesh. This behavior requires a partitioner that keeps the number of 
interface nodes relatively constant for problem size that increases concomitantly with number of processors. 

An even better measure of scalability is to chart the time taken per time step per node. If the algorithm/ 
implementation/ hardware combination is scalable, we expect that the time taken will not change with 
increasing problem size. Not only must the partitioner produce ‘scalable’ partitions for this to happen, but in 
addition the PDE solver must scale linearly with N. This happens when the work per time step is O(N). This is 
obvious from the iteration of Eq. (7)-vector sums, diagonal matrix inversions, and sparse matrix-vector 
multiplies require O(N) operations. 

Fig. 15 depicts the trend in unit wall clock time as the number of processors is increased. Unit wall clock time 
is measured as microseconds per time step per average number of node per processor, which includes all 
computations and communications for all time steps, but excludes disk I/O. As we have said above, for a truly 
scalable algorithm/implementation/hardware system, this number should remain constant as problem size 
increases with increasing processors. The figure demonstrates that we are close to this ideal. Ultimately, wall 

clock time per node per time step is the most meaningful measure of scalable performance for our application, 
since it is a direct indicator of the ability to solve our ultimate target problems, which are an order of magnitude 
larger than the San Fernando Basin problem we have described in this paper. 

4. Concluding remarks 

We have described our approach to modeling the earthquake-induced ground motion in large, heterogeneous 
basins on parallel computers. By paying careful attention to the impact on parallel execution of all components 
of the code, we are able to obtain excellent performance on highly unstructured mesh problems. In particular, 
through the use of (i) space- and time-localized absorbing boundaries; (ii) seismic input in the form of effective 
boundary or interior forces applied at the element level; (iii) explicit numerical techniques for the wave 
propagation problem; (iv) strict control of mesh resolution and aspect ratio; and (v) an asymptotically optimal 
mesh partitioner, we obtain excellent scalability of the parallel code. The Archimedes toolset integrates the basic 
components necessary for solving general PDE problems involving static unstructured meshes on parallel 
distributed memory systems. These components include meshing, partitioning, and parallel code generation. 

We currently solve the meshing, partitioning, and parceling problems sequentially on a large shared-memory 
machine. Our ultimate target problem-the Greater Los Angeles Basin with an excitation of 2 Hz and with soil 
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deposits having shear wave velocities as low as 200 m/s-will require meshes on the order of hundreds of 

millions of elements. Despite the fact that our sequential meshing and partitioning codes are fast, we may have 

to parallelize these steps in order to solve the target problem, primarily for memory reasons. The scalability of 
the parallel portion of our code suggests that our target problem is within reach. 
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