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Abstract 

This paper is concerned with the development of an efficient and accurate impedance-infinite element that can be used either in 
the frequency- or directly in the time-domain for the modeling and solution of problems described by the scalar three-dimensional 
wave equation in infinite or semi-infinite domains. The infinite domain is truncated and the effect of the truncated infinite region 
is simulated by the introduction of an absorbing boundary condition prescribed on the truncation boundary. A systematic 
procedure for the construction of a family of such conditions of increasing accuracy and complexity is developed with explicit 
formulas given for approximations up to second order. A central feature of this high-order approximation is that it can be 
expressed, within the context of a finite element formulation, as a set of local infinite elements located at the boundary of the 
computational domain, with each element defined by a pair of symmetric, time-invariant, stiffness and damping matrices. This 
makes it possible to incorporate readily the new local boundary element into finite element software developed for purely interior 
regions, for applications involving steady-state harmonic or transient excitations. Whereas the theory has been developed formally 
for arbitrary smooth boundary surfaces, here details are provided for ellipsoidal and spherical boundaries. Thus far, only the 
latter has been implemented and tested in problems involving cavities and rigid scatterers of spherical and cubic shape. Numerical 
experiments in both the frequency- and time-domain attest to the efficacy and accuracy of the proposed new element. 

1. Introduction 

In many applications in mechanics and engineering there is often interest in studying radiation and 
scattering problems that arise when a structure interacts with a surrounding medium of infinite or 
semi-infinite extent. The exterior structural acoustics problem has been often used as a prototype 
situation; it typically involves a structure submerged in an unbounded, linear, compressible and inviscid 
fluid. Here, one is interested in determining the pressure field within the fluid and the displacement and 
stress field within the structure. One difficulty with radiation and scattering problems which is absent in 
those defined over bounded regions, is that the solution to the equations of motion that govern the 
behavior of the fluid-structure system must also satisfy a radiation condition. This requirement can 
represent a considerable complication. 

One common approach for seeking numerical solutions to the problem is by well-known boundary 
integral representations; the solution within the infinite medium is expressed via integrals which involve 
the Cauchy data and appropriate Green’s functions only along the boundary of the domain. The 
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primary advantages of this methodology are: (a) reduction of the dimensionality of the problem, since, 
in the absence of sources within the infinite medium, only the interface and the structure need be 
discretized, and (b) a priori satisfaction of the radiation condition via the fundamental solutions that are 
embedded in the formulation. The disadvantages are the nonlocality of the resulting discretized 
equations and the difficulty of extending the formulation to nonlinear problems. 

Alternative domain discretization methods such as the traditional finite element method lead, by 
contrast, to local equations in space and time and are able to handle nonlinearities quite readily. The 
finite element method, however, has an inherent difficulty in modeling infinite domains. It requires that 
the infinite medium be truncated through the introduction of an artificial boundary in order to render 
the domain finite. Solutions are then sought within the resulting finite region. Appropriate boundary 
conditions need to be devised on the artificial boundary that will simulate the radiation condition. There 
is a theoretically exact condition on the artificial boundary which is tantamount to a boundary integral 
formulation, but this is nonlocal in both time and space and difficult to determine and use. Hence, the 
effort is in devising approximate conditions that will retain most of the properties of the exact 
condition, while relaxing the spatial and/or temporal nonlocalities. The earliest and simplest condition 
devised for this purpose is the well-known plane-wave approximation (PWA) developed by Mindlin and 
Bleich [29]; it is an early-time (high-frequency) approximation that requires a fairly large computational 
domain for reasonable accuracy, especially at low dominant frequencies of excitation. Absorbing 
boundaries of a higher order of accuracy than the earlier PWA, have been proposed by a number of 
authors. A survey of various absorbing boundary treatments up to 1991 is given by Givoli [16]. Here, 
we mention the well-known sequences of boundary conditions derived by Engquist and Majda [9,10] 
and Bayliss and Turkel [3]. There are similarities, indeed equivalence in some instances, between 
various conditions; Kausel [26], for instance, showed that several absorbing conditions can be seen as 
members of the same family of absorbing boundaries developed by Engquist and Majda [9,10]. Various 
implementations of the Bayliss and Turkel’s conditions in the time- and frequency-domains have been 
presented, e.g. in [1,6,31-331. 

An inherent difficulty with the development of absorbing boundary conditions is the need to ensure 
the stability of the conditions and their validity for the low end of the frequency spectrum; they are 
usually well-behaved at the high-frequency end. In the 197Os, Geers [12], by combining the early- and 
late-time approaches, derived doubly asymptotic approximations (DAAs), an alternative to absorbing 
boundary conditions, which are exact in both the low- and high-frequency limits, local in time, but 
nonlocal in space. Improved versions have been developed more recently by Felippa [ll], Geers and 
Felippa [14], and Nicolas-Vuillerme [30]. Due to their satisfactory accuracy even when placed directly 
on or in the proximity of the scatterer, DAAs have been used to solve fluid-shell systems of various 
degrees of complexity and have been implemented into several structure-fluid codes [8]. The price one 
pays for this benefit, however, is having to deal with a spatially nonlocal boundary, since at each instant 
DAAs couple the response at each point of the artificial boundary with that at every other point. 
Extensions to problems with inelastic interior structures using DAAs failed [13]. A different nonlocal 
treatment, based on the DtN approach [15] for time-harmonic problems, has recently been used with 
Galerkin / least-squares finite elements [ 181. 

We remark that, within the context of the finite element method, devising absorbing boundary 
conditions and later coupling the conditions to the domain discretization scheme is only one of possible 
paths for tackling the appropriate treatment of the radiation condition. An alternative approach is via 
infinite elements, an idea pioneered by Zienkiewicz and Bettess [34]. In this approach, decay functions 
that describe the asymptotic behavior of the exact solutions are used at the truncation boundary and 
special elements, approximately called infinite, are devised, on which the decay functions are mapped. 
Bettess and Bettess [4,5] have recently reported on various infinite elements for both static and dynamic 
problems. The advantage of the infinite elements is their natural coupling to the interior finite elements; 
their drawback is that they are limited to frequency-domain formulations. 

In this paper we adopt the idea of artificial boundaries and present a methodology that addresses two 
main issues, namely, the development of a family of stable absorbing boundary conditions and their 
efficient numerical treatment within the context of finite elements. We attempt to overcome some of the 
drawbacks of past developments by aiming at (a) developing and using a high-order condition that will 
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provide sufficient accuracy for engineering applications, (b) locality in time so that extensive storage of 
time histories is avoided and the resulting equations of motion can be easily integrated in time, (c) 
locality in space such that standard finite element techniques that preserve the symmetry and the 
sparsity of the overall system of equations may be used, (d) providing a finite element formulation that 
can be applied equally well in either the frequency- or directly in the time-domain. 

The present development of the conditions for general three-dimensional problems builds on ideas 
developed earlier for one and two dimensions [2]. We remark that our three-dimensional conditions, in 
their initial form an.d despite their different point of departure, bear similarities to other conditions, 
most notably those developed by Bayliss and Turkel [3] for particular geometries (spherical). The 
numerical treatment of the absorbing boundary conditions borrows from similar ideas developed for 
two dimensions [21:22,23] within the context of finite element formulations. In particular, it is shown 
that, by virtue of a simple decomposition scheme suggested by the theory of viscoelasticity, a 
second-order condition is equivalent, upon discretization, to a pair of symmetric, frequency-in- 
dependent, damping and stiffness matrices local to the artificial boundary. The latter pair of matrices, 
for which we provide closed-form expressions, essentially gives rise to an impedance-infinite element on 
the artificial boundary that can be employed for problems in either the time- or the frequency-domains. 

The lack of truly transient accurate absorbing boundary conditions in three dimensions has been 
identified in the review articles already mentioned [4,5,16]; this paper aspires to fill that gap by 
presenting a systematic procedure for developing the conditions and a particular way by which they can 
be easily incorporated into existing finite element codes. A number of numerical examples for radiation 
and scattering problems including transient and harmonic steady-state excitations attest to the efficacy 
of the proposed methodology. 

2. The exterior initiial and boundary value problem for the wave equation 

Let r be a closed surface with exterior 0 C Yi3 (Fig. l(a)). R is occupied by a linear, inviscid, and 
compressible fluid. We consider the radiation problem in which r is subjected to a prescribed velocity. 
Let us state the mathematical problem; physical details are given, e.g. in [28]. 

Find p(r, t) such that 

j&t)= c*Ap(x,t), xEi2 , ta0, (14 

(lb) 

(a) W 

Fig. 1. (a) Model of cavity surrounded by infinite acoustic fluid; (b) reduced model with finite fluid region Q, and absorbing 
boundary. 
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(14 

PC& 0) = 0, p(x,o)=o, XEfi * (14 
In these equations p denotes pressure; x is the position vector, t is time; v is the outward unit normal 
on r; c is the velocity of wave propagation: A is the Laplace operator, and an overdot denotes 
derivative with respect to time. p, denotes the normal derivative of the pressure p, fN is a prescribed 
function. Condition (lc), in which r is radial distance and p, the derivative of the pressure along the 
radial direction, is the Sommerfeld radiation condition. As indicated by (Id) the system is taken to be 
initially at rest. 

The main difficulty associated with the solution of (1) is the need to ensure that the radiation 
condition (lc) is satisfied at infinity. To solve this problem using numerical methods based on the spatial 
discretization of the domain would require that in the limit one consider the complete, unbounded 
region 0, a requirement that renders this approach impractical. One way to make this problem 
manageable is to truncate the exterior region by introducing an artificial boundary r, that contains r in 
its interior; this gives rise to a bounded subdomain 0,, as shown in Fig. l(b). In order for the solution p 
to coincide with that of the original problem within the truncated region aQ, it is necessary to specify a 
boundary condition on & that will ensure that the outgoing waves crossing c are undisturbed by the 
presence of this boundary. This boundary condition, which can be determined in terms of the actual 
solution p on r,, as will be shown in the next section, is of the form 

P&Y t) = qp’(*, *)I(4 3 x E c > (2) 
in which x is position vector, the dots following pf indicate dummy variables and 9 is an integral 
operator that depends on pf, the time history of p, i.e. 

p’(t)=p(t-7)) VT: oc7st. (3) 

3. The absorbing boundary 

3.1. Development 

To determine the exact form of the operator 9 we consider the following problem associated with the 
original problem (1). Our procedure is borrowed from [2], which was developed originally for 
two-dimensional problems. We Laplace-transform (la) with respect to time to obtain 

where s is the Laplace transform variable and a caret over a variable such as p denotes its Laplace 
transform. Suppose now that the surface 4 is smooth and convex, and let 0 + be the exterior of & (c 
need not be a sphere) (Fig. l(b)). We focus on fi in 0 + and formulate the following auxiliary Dirichlet 
problem in D +-for an Buxiliary ‘field P: 

s*l+x, s; t) = cz AP(x, s; t) , xER+) 

with the boundary condition, 

P(x,s;t)=p(x,t), XET, 

- 

Pa) 

(5b) 
In (5) the use of a semicolon before t implies that t acts 
Duhamel’s principle [7], one can show that (Appendix I) 

I 

cc 

6(x, s) = 
0 

e-“‘p(x,s;t)dt, XE&?‘, 

and, hence, also 

merely as a parameter. Then, by virtue of 

(ha) 
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Eq. (6a) together with Eqs. (5) ensure that the solution i in 0’ will coincide with the solution @ in 0 
from (4). From (5b)’ it can also be seen that the normal derivative fiV on c will be a linear functional of 
p(., t) on c. Let us denote this dependency by 

ax, s; t) = 4[ p(*, t)](x, s) ) 
x E r, , (74 

where $ denotes a functional. By substituting (7a) into (6b) there results 

&(x, s) = &q*, s)](x, s) ) x E r, . 

Then, translation of (7b) back to the time-domain yields 

M-3 t) = y”^[P’C, .)I(4 3 x E r, . 

Hence, in (7~) we recovered the form anticipated in (2); the exact 
expressed as 

P]P’(*, ->I(4 ==lI, K(b-~i, t- MY> C)dydl, X,YEr, 9 
a 

G’b) 

(7c) 

operator 9 in (7~) can also be 

t>O, (8) 

where the kernel ZC depends on position and time. Thus, 8 denotes a functional of the values of the 
pressure p(y, c) for y ranging over & and [ from 0 to t. In other words, 9 merely expresses the fact 
that at any given instant t the motion at every point on the artificial boundary r, is coupled with the 
time histories of all other points on r,. The nonlocal character of the exact 9 makes it unsuitable for 
implementation in the context of the finite element method. Even if the spatial nonlocality, implied by 
the surface integral in (S), were relaxed, the temporal nonlocality, implied in (8) by the convolution 
integral, is particularly cumbersome to implement as it requires the extensive storage of time histories. 
It is, thus, only natural to seek approximations to the exact 9 aiming primarily at reducing the temporal 
nonlocality. It will Ibe shown that this procedure also reduces automatically the spatial nonlocality. To 
this end, we turn again to the auxiliary Dirichlet problem defined by (5) and introduce, borrowing from 
geometrical optics 1171, an asymptotic expansion for P of the form 

p(x, s; t) _ e-lswx(x) 2 [(s ;ylu]k A’k’(X, t) , x~fl+ , 
k=O 

where a is a characteristic length of the absorbing boundary (e.g. in the case of a spherical r,, a is the 
radius), x(x) and Ack’(x, t) are as yet unknown functions, and y is an arbitrary nonnegative parameter 
which is introduced for stability (discussed in a subsequent section).’ From a physical point of view, its 
value controls the amount of numerical damping introduced through the boundary r,. We require that 
the functions x(x) and Ack’(x, t) satisfy the following conditions on r,: 

x(x) = 0 > A”‘(x, t) = p(x, t) and Ack’(x, t) = 0 for k 3 1 , x E c . (9b) 

Eqs. (9) ensure that P is outgoing and that (5b) is satisfied automatically for any functions x(x) and 
Ack’(x, t). Eq. (9a)., by virtue of (9b), yields for eV on c 

Substitution of (lOa) in (6b) will therefore yield 

1 More generally, one might consider that y varies with k and replace y by yk in (9a). 
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(lob) 

From (Mb) and (6b) it can be seen that, once the unknown functions x(x) and Ack’(x, t) are 
determined, an expression for the normal derivative p, on 4 will be possible by translating (lob) back 
to the time-domain. To determine x(x) and Ack’(x, t), we proceed by introducing (9a) into (5a) and 
matching the coefficients of the nonnegative powers of s and of the negative powers of the monomials 
(s + y ). There results 

s”[IVx(* - l]A(‘)+s 
2 

$ [IV,l’ - l]Acl’ - 5 Vx *VA(‘) -;&A(u)> 

+ +xl’_l] -,;A(1)+$(z) 
{ c* [ 1 -aV~.VA(l)_sA*A(l)+AA(o) 

m 

+C 
1 

k=l (s + Y)k 1 +7x12_l] y2~~(*)-~y~~(k+1)+~~(k+2) 
c* [ 

k+2 

1 
2 -- c Vx. 

[ 
&AW +$A@“) 

ak I 
k 

‘+“I -y$A’*‘+&A 
a 

@+‘i] +$A(*)J=O. (11) 

By setting to zero the coefficients of the various powers of s and of the monomials (s + y ) in (11) there 
result the following differential equations for the functions ,+) and Atk’(x, t), (k 3 0) with x E fin+: 

Ivxl’= 1, Wa) 
2Vx * VA(‘) + AxA = 0 , (12b) 

2V~~VA~k~+~~A~~~=~~A~k~1~+~[2V~~VA~k~’~+A~A~k~1~], ksl. (124 

The differential equations (12g)b) as well as the recursive set (12~) can be used to determine the 
unknown functions X(x) and A (x, t) for any k. To this end, we introduce a new coordinate system in 
b + to aid in subsequent calculations. Let c be described by the parametric representation X(u, W) 
where X denotes the position vector on r, and u, w are the surface parameters. Then, a new coordinate 
system is introduced in d + by the description 

W, w, 0 = X(u, 4 + 5+, w) 9 5 2 0 , (13) 

where R denotes position vector in 0 + , 5 is a scalar and v is the outward normal to c (Fig. l(b)). Since 
r, is convex and smooth, the new system is global in 0 + . Notice that for .$ = 0, (13) provides the 
parametric representation of c. Using the expressions derived in Appendix B (Bl-B6) for the 
gradient, the Laplacian and the normal derivative in terms of the components of the Euclidean metric 
tensor g, of the new coordinate system and their limiting values h, on r, (hij = g, 15=o), the Gaussian 
(K) and mean (H) curvatures of r,, along with Eqs. (9b) and (12), one obtains for the normal 
derivatives of the unknown functions x, Ato) and A(‘-) 

x,(4=x*(x)=L XET,, (1% 

A:‘&, t) = A;‘+, t) = H(x)A’~‘(x, t) , x E r, , (14b) 

Al”&, t) = A:“@, t) = ___ --h,,Q)A~‘(x, t) - h,,(x)A:‘(x, t)) 1 u 
-W,,W%, 4 +4,Wd?@, tN II w 

+ ; (H*(x) - K(x))A’~‘(x, t) , x E r, . (144 

Letter subscripts above denote partial derivatives. Next, by truncating the series in (lob) one can 
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construct successive approximations to 6, and, hence, to the functional 4@] in (7b). It can, therefore, 
be shown that by substituting the Laplace transforms of functions (14) into (lob), while taking into 
account (9b) and (7b), and keeping none, one or two terms from the series in (lob), the first three 
approximations for $, on r, are given as 

0th order: jj, Z&&j] = + ) (154 

1st order: iv=&-@]=-:i+Hi,, (15b) 

2nd order: a, = ,?&$I = -:@ + Hc 

+(H’-K)fi , 
1 

(I5c) 

where &k (k = 0, 1,2) denotes the approximate functional of kth order. Translation of (15) back to the 
time-domain yields 

0th order: p,=+, (164 

1st order: p,=-+Hp, (16b) 

2nd order: lj,+yp,=-iP;+ H-z)@+Hyp 
( 

+3 gy { ’ [ (& (h,,pu - h,,pJ) + ($ (+,,A + h,,~,))~] 
u 

Conditions (16) are the desired approximations of the operator symbol in (2); the first of these is the 
well-known plane wave approximation (PWA) [29]. We remark that the second-order designation of 
condition (15~) is prompted by the fact that (15~) agrees with the exact representation up to order 
(S + -y-l; that is, the error is of order (S + r)-‘. Notice that the lower-order conditions (16a) and (16b) 
are completely 1oca.l in space whereas the second-order condition (16~) is only weakly nonlocal due to 
the presence of second-order tangential derivatives. It is possible to obtain higher-order conditions 
following the systematic process outlined above; however, as evidenced by (16), higher-order 
conditions will be characterized by increasing complexity and increasing loss of the local character 
attained by (16). Indeed, as can be seen from (16c), the temporal locality is affected already; whereas 
(16a) and (16b) involve only the normal derivative of the pressure p,, (16~) introduces the first time 
derivative of p, as well. The latter calls for a special implementation scheme, which is addressed in a 
subsequent section. 

3.2. Special absorbing surfaces 

Conditions (16) can be written for various specialized surfaces; here we are interested particularly in 
ellipsoidal and spherical absorbing boundaries. Our numerical experiments have been performed using 
a spherical absorbing boundary; however, for numerical applications involving long scatterers, 
ellipsoidal absorbing surfaces seem best suited as they result, potentially, in smaller computational 
domains than spherical absorbing surfaces. We use the following surface parameterization for an 
ellipsoidal absorbing boundary (Fig. 2a): 

x=acos8sin4, 

y = b sin 8 sin 4 , 

(17a) 

(17b) 
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‘Z 

(0,O.d) 

(0,b.O) 

(a) 

‘Y -Y 

(b) 

Fig. 2. Geometry of particular absorbing surfaces; (a) ellipsoidal surface; (b) spherical surface. 

z = d cos 4 , with 4 E (0, r) and 8 E [0,27r) , (17c) 

where a, b and d above are the semiaxes of the ellipsoid along the x, y and z axes; 4 denotes the polar 
angle and 8 the meridional angle (Fig. 2a). It can then be shown that 

h,, = a2 cos20 COSTS + 6’ sin2B COSTS + d*sin*+ , (184 

h,, = (a* sin*8 + bZ cos2B) sin*+ , (18b) 

h,, = (b2 - a’) sin 19 cos 8 sin 4 cos 4 , (184 

h = [a2b2 cos24 + d2 sin24(a2 sin*0 + b2 cos*8)] sin24 , (184 

a2b2d2 

K = [a2b2 + [d2(u2 - b*) sin28 - b2(a2 - d2)] sin’+)]” ’ 

abd[a2 + b2 + [(u’ - b*) sin28 - (a’ - d2)] sin*41 

H= -2[a2b2 + [d2(u2 -b*) sin28 - b2(a2 - d2)] sin24)13’* . 

We) 

(18f) 

With these equations, conditions (16) can be easily written for the ellipsoidal surface after noting that 
u = 4 and w = 8 in (16~). For the particular case of a spherical absorbing boundary (Fig. 2b), with 
a = b = d, (16) reduce to 

1 1 Y 
pr+ypr=-;ij- a+; +p+ ( > 

C 1 
- 2a2 [ (P+ sin +), + sin 4 Pee 1 ’ sin 4 

(19b) 

(19c) 

Notice that for the spherical case the last term in (16~) is identically zero, since H2 - K = 0 for all points 
on a sphere [19]. We recently [25] used condition (19~) in its axisymmetric form (pee = 0) in order to 
solve transient fluid-structure interaction problems using standard finite element techniques. 

It is noteworthy that, for the particular case of spherical boundaries, condition (19b) is the same as 
the first-order condition developed by Bayliss and Turkel [3]. Condition (19~) can also be shown to be 
identical to the second-order Bayliss and Turkel condition provided one chooses 

y=y,=;. (20) 
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Jones [20] developed a three-dimensional second-order condition for general convex geometries by 
extending to three dimensions the two-dimensional condition developed earlier by Kriegsmann et al. 
[27] using an ad-hoc procedure. Jones’s condition coincides with (16~) for y = 0; it will be seen, 
however, that (16~) with y = 0 is not, in general, stable for applications in the time-domain. 

3.3. Stability 

Before one can use absorbing boundary conditions such as (16) it is necessary to ensure the 
well-posedness of tlhe ensuring problem, as the use of asymptotic expansions such as (9a) does not 
automatically guarantee the stability of the solution. The practical consequence of artificial boundary 
conditions that lead to ill-posed problems is that the resulting errors usually grow exponentially in time. 
Here, we study the stability of the absorbing boundary conditions (16) in order to preclude exponential 
error growth. We start with the spherical conditions (19); we shall further assume that the boundary of 
the cavity r (Fig. 1) is also a concentric sphere with radius a,. The procedure used below can be equally 
applied to the two-dimensional case; the proof herein is based on ideas developed for two-dimensional 
problems in [17]. To illustrate, we consider a Neumann problem in the unbounded region fi (r > a,) 
and in the Laplace transformed domain 

21 2 . 
s P&7 s> = c Q(x, s> , XE f2 @>a,) , 

~,(X~ s) = ?,A? 9 xET @=a,). 

(214 

@lb) 

Next, we introduce a spherical artificial boundary r, at r = a; we seek to approximate b with 4, where 4 
satisfies the field equation (21a) in the truncated domain & (a, < r < a) and the prescribed data (21b). 
In addition, 4, satisfies on r, (r = a) either of the absorbing boundary conditions (15). Then, the error 
E = 6 - 4 will satisfy 

s’B(x,s)=c*dE(x,s), xEL$ (a,<r<a), (224 

E”(X, s) = 0 ) xET @=a,), (233) 

&,(x, s) - &k[l?](x, s) = @(cc, s) , n E c (r = a) , k = 0, 1,2, (224 

where 

(224 

For problem (22) a.bove, @ represents data on r,. We recall that @] represents the exact boundary 
condition on r,; its expression for the specific geometry is known in terms of analytic functions. Hence, 

from (22d), @ is known; moreover, it is possible to show that in the non-homogeneous case (G # 0) 
there are no poles for ,!? in the right halfplane of the complex plane. If, furfherAmore, one can show that 
problem (22) admits no non-zero solutions for Re s 2 0 and for zero data ?P (YP = 0), then there will be 
no solutions for thte error E of the form E = e”’ for positive v and, therefore, no exponential error 
growth since there will be no poles for E in the right halfplane. The solution q corresponding to the 
approximate boundary conditions will, in general, be bounded and, in transient cases, expected to 
decay as time incre:ases. 

We show, next, that problem (22) has no non-zero solutions for ‘Se s 20 if any of the three 
functionals @k (k = 0, 1,2) is used in (22~). We illustrate using g2; the proof for the simpler functionals 
So and @: is trivial. We recall that the annular domain & is spherical; it is thus justifiable to express the 
solution E(sr, c$, 0) in series of the tesseral harmonics P~m)(cos C#J) cos me and Pim’(cos 4) sin me, where 
PLm’ denotes the associated Legendre function of first kind, of degree n and order m (applying Fourier 
transforms with respect to the two angular coordinates would yield the same result). Therefore 

&r, 4,,0) = i? U’“‘(sr)P~““(cos +)(a,, cos me + b,, sin me) . (23) 
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Then, by virtue of (23), problem (22) gives rise to (n + 1) problems (rz = 0, 1, . . . , m) for the radial 
components U’“’ of 8 of the form 

s2r2 
(r’Ur’), - n(n + 1)U’“’ = - 

c2 
U’“’ 

i in & (u,<r<a), (244 

Uy’=O, on r (r=a,), Wb) 

UC”‘= _ 
r 

{ 

s+1+ 
c a 2n2(sc+ ?) b(n + a} lJ’“’ 7 on r, (r = a) . 

Suppose now that U @) # 0; then ii’“’ # 0, where a bar over U’“’ 
s = Q + i/3. Next, multiply (24a) by $“I and integrate over &,. 

denotes complex conjugate. Let 
After integrating the resulting 

expressions by parts and using the divergence theorem, as well as (24b) and (24c), there results: 

a2 -p2 [ IU(n)12r2 dr + [ IUjn)12r2 dr + n(n + 1) 1: (U(n)12 dr 
c2 

+ a2 
[ 

;+;+ 
c(a + Y) 

2a2[((1: + y)2 + p’] 
n(n + 1) ]U’“‘(a)l’ = 0, 1 

yl IU’“‘12r2dr+a2[f- 2a2,(a +@)2 +p2] n(n + l)]l~"'(a)l'=O. 

(254 

Wb) 

For p = 0 and (Y 3 0, (25a) leads to a contradiction since the terms on the left-hand side of (25a) are 
strictly positive; hence our original supposition (U’“’ # 0) is false. 

For /3 # 0 and (Y 5 0 (25a) leads to 

(g-p2 a 
OS- 

c2 
Lo ]U(n)(2r2 dr + n(n + 1) 1.: ]U’“‘\2 dr 

> 
(Y”-p2 

C2 

+ n(n + 1) 

a2 
IU(n)12r2 dr , 

and finally to 

p22 
n(n + 1)c2 

a2 ’ 

Then, Eq. (25b), by virtue of (26b), yields 

()2-l_ C 1 1 1 

c 2a2[(cu + 7)’ + p’] 
n(n+l)z=---=->o. 

c 2c 2c 

(268 

(27) 

We have reached again a contradiction; our original supposition is false and, thus, for all s for which Se 
s 2 0, U is identically zero. We have, thus, shown that conditions (16) are unconditionally stable, with 
the proviso of spherical boundaries. 

The study of the stability of higher-order functionals and/or of lower-order functionals (e.g. 
second-order) defined over arbitrary (convex) boundaries is considerably more involved than the 
preceding simple proof; a complete discussion is beyond the scope of the present paper. We remark, 
however, that in [2], Barry et al. introduced the concept of dissipativity as a criterion for ensuring that 
the errors remain bounded and gave two sufficient (but not necessary) conditions for the dissipativity of 
the operators in the two-dimensional case for general convex geometries. By extending their arguments 
to three dimensions, one can show that the following inequality must be satisfied for the stability 
parameter y [24]: 
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In this equation the subscript max denotes an upper bound for the positive quantity -(Hz - K) /H. The 
role of y in (16) should now be clear; y is a positive constant introduced in order to ensure the stability 
of the absorbing boundary conditions and should be greater than or equal to a critical value xr. For the 
particular case of a spherical absorbing boundary x1 = 0 since Hz - K = 0 for all points on a sphere 

P91. 
For most of the applications considered herein, we used spherical absorbing boundaries with y = -y,, 

(see (20)), which satisfies the stability inequality (28); we justify the use of the particular value for y in 
the numerical results section. However, as we argue in the same section, it is possible to identify an 
optimal value for y that can be shown to yield minimal errors; since such a value is frequency 
dependent, it can be used to advantage only when one is interested in frequency-domain, and not in 
time-domain, computations. 

4. Finite element d:iscretization 

In order to discretize the problem within Q using finite elements, we return to the strong statement 
(l), in order to recast it into a weak form. Notice, that the infinite domain 0 in (1) will now be 
replaced by the finite annular region Q. To construct the corresponding weak form we first multiply 
(la) by a test function Sp not subject to any boundary condition on r or c, integrate the result over tiO, 
and apply the divergence theorem to the test that contains the Laplacian operator. We then subtract the 
integral over r of (lb) multiplied by the restriction of Sp to r. This process results in 

Replacing p, in the third integral in (29) by conditions (16a) or (16b) is trivial; on the other hand, the 
higher-order condition (16c), while expected to yield improved accuracy and computational economy 
due to the need for a smaller buffer region (Q), cannot be readily implemented since it involves both 
the normal derivative of the pressure p, and its first time derivative 6,. Our aim is to make the 
condition amenable to standard integration techniques typically used for interior problems. We show 
that this can be achieved through the introduction of additional degrees of freedom on the artificial 
boundary, similarly to our earlier work in two dimensions [21-251. 

4.1. Decomposition 

Let q(l) and q (*) denote auxiliary variables on r,. Then, one can show via Laplace transforms in time 
that the following set of three equations is equivalent to (16~) 

1 
-p, =;p - Hp -5 c yqw -L(fp-Jqq'*' ) 

2Y 

yp-34 y 
(1) _ 1 yg(l) = 0 ) 

(304 

Here, Y is the differential operator defined by 

(31) 

Now multiply (30aQ by 6p, (30b) by &q(l) and (30~) by Sq(*), where 6q(‘) and Qq(*) are appropriate test 
functions and integrate by parts the terms associated with the operator Y. There results 



246 L.F. Kallivokas et al. I Comput. Methods Appl. Mech. Engrg. 147 (1997) 235-262 

- I r0 
Spp,dT,=$ H8pp dT, + L 2Y V” Sp V”q”‘dT, 

- $ I, (H2 - K) Spq’*’ dT, , 
L? 

(324 

“‘.o’pdT,-5 I 
r V”&+“.Vsq”‘dr, 2;2 

I 
(‘I dT, = 0, 

a r, 
V” sq (1) .V”d 

-$ I, (H2 - K) 6q’2’p dT, + $ i, (H2 - K) @2)9(2) dT, + $6_ (H2 - K) &+2)Q(2) dT, = 0 , 
a ‘7 0 

(324 

in which V” is the surface gradient (see B7). In addition, q(l), qc2), (i(l) and dC2) are required to vanish 
at t=O. 

Eqs. (32) can then be used to complete the weak-form formulation. The right side of (32a) replaces 
the third term in (29), and (32b) and (32~) are added to the resultant functional. 

It is important to observe that with the replacement for (16~) of (32), (29) will lead, upon spatial 
discretization, to a symmetric system of ordinary differential equations. In other words, the contribu- 
tions from the absorbing boundary maintain both the symmetric structure of the interior problem and 
the sparsity of the associated system matrices. 

4.2. System matrices 

Standard finite element piecewise polynomial approximations are used for approximating the 
geometry and for the spatial discretization of the pressure p in J& and on c and of the auxiliary 
pressures q(l) and q(‘) on r,. The same approximations are used for the functions p, q(l) and qf2), as 
well as their respective weighting functions. Notice that the presence of first-order derivatives in (32) 
increases the usual smoothness requirements on the artificial boundary; in short, we seek p and Sp that 
belong to H’(QJ x H’(c) where H’ denotes the Sobolev space of degree 1. Similarly, q(l) and 8q(‘) 
need also belong to H’(r,). Artificial boundary conditions of order higher than the second (not treated 
herein) might impose even higher smoothness requirements than H’(c) on c; notice, however, that 
these requirements are local to r,. We introduce 

P(G t) = +T(Mt) 7 6P(4 = SP’W) 7 (334 

4% t) = Jl;(w’(t) 3 &p’(x) = 6q”‘=&(X) ) W) 

d2’k t) = ICI&9d2’(t) 7 8q’2’(x) = ziq’2’T&(r) ) (33c) 

in which, +i, fi and I,& are vectors of shape functions and p, q(l) and qC2) are vector fields of the 
unknown nodal functions in time. Substitution of (33) into (29) and (32) results in a system of ordinary 
differential equations with the following structure: 

Mp+CI'+KP=F, (34) 

where PT = [P;, pia, P& dl)T, q (2)T] and p,-, pn , pr denote partitions of p over r, Q,, and c, 
respectively; M, C and K are the mass, damping an% s&fness matrices of the system, and F denotes the 
excitation. 

The matrices M, C and K have the following form: 
I- 

M= 
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c= 

K= 

-00 0 

00 0 0 0 
ooc;:,p, 0 0 

00 0” n 
0 0 I ’ c;u)&) 0 

00 0 0 c;wqw 

K/p,P, Kfp,Po 0 0 0 

“fp, Pr Kfpo P, Kfpo Pi- 0 0 
Y 

0' K;,,' Kfprp, +ilrPr K&l) fQ2) 

d 
0 0 (1 0 L1 

0 K;(uPr K;wqm 0 
L1 

0 0 K;wp,. 0 
L1 

K&p) 

W) 

(35c) 

M and K consist of two sets of block-diagonal matrices; the individual matrices within each block are 
designated by the superscripts f, or a, to indicate explicitly that they correspond to the fluid (f), or the 
absorbing boundary (a). Thus, the top left blocks are the standard mass and stiffness matrices associated 
with the fluid, and the bottom right blocks in (35b) and (35~) represent, respectively, the effective 
damping and stiffness introduced by the absorbing boundary. Notice that there is no inertia associated 
with our approximate absorbing boundary. Also, the only damping in the system comes from the 
absorbing boundary which is associated with the radiated energy in the actual unbounded system. 

Finally, the forcing vector F in (34) is given as 
r 

FT=[Fi,OT,OT,OT,OT], with FN=-jrfN&dT. (36) 

4.3. Impedance-infi.niie element-local matrices 

Since C” and K” in (35b,c) are local and symmetric, they can be constructed element by element and 
incorporated into the equations of motion by standard assembly techniques using existing finite element 
software. All that is necessary is to incorporate the corresponding element matrices ca and k” into the 
finite element library of an existing software package for interior problems. Then, the same finite 
element software package can be used to solve the complete system of Eq. (34), in either assembled 
form, node-by-node, or element-by-element, by means of its own step-by-step time integrator. The 
element stiffness matrix k” and the element damping matrix c’ are given as: 

(3% 

with the following definitions for the individual matrices: 

Cl1 = I rp *1*:‘ dr: Y c22 = k 22 7 c33 = k 33 T Wb) 
(1 

where drz and the operator V” denote the area differential and the approximation of the surface 
gradient V” on an element rz of c, respectively. We remark that the kernels of the integrals in (32a) 
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and (32b) that involve the surface gradient V” may, in the continuous case, become singular depending 
on the choice of surface parameterization. For example, if a spherical coordinate system is used (Fig. 
2b), then the kernels will be singular at the poles, i.e. #J = 0 or ?T. However, for the discrete 
approximation, the resulting kernels will be non-singular and readily integrable if one uses local 
Cartesian coordinate systems. 

The element matrices (37a) essentially give rise to a new finite element which is capable of absorbing 
the waves that reach the artificial boundary while simulating the effect of the truncated infinite domain; 
thence the impedance-infinite element designation. 

We further remark that the element defined by (37) is a surface-only element (Fig. 3); one need only 
mesh the finite region Q and simply attach the impedance-infinite element on the boundary r, without 
any further discretization within the infinite exterior region. To illustrate, let us assume that linear 
isoparametric approximations N are used and that I,+ = & = I,$ = N. Then all that is needed in order to 
describe the impedance-infinite element are four nodes on the boundary c with three degrees of 
freedom per node (Fig. 3), as it can be readily inferred from (37); the impedance-infinite element will 
be completely defined by the pair of symmetric (12 X 12) damping and stiffness matrices. Notice further 
that, in the case of a spherical absorbing boundary, the quantity H* - K vanishes identically and hence 
the submatrices k,, and k,, in (37) are identically zero; in that case, only two degrees of freedom per 
node are needed to describe the impedance-infinite element, effectively reducing the dimensions of the 
resulting matrices to (8 x 8). 

In order to complete our description, we remark that in (33) we approximated q(l) directly. Notice, 
however, that q (I) does not exp licitly appear in (32); instead only its derivatives V”q”’ are present. 
Therefore, any approximate solution for q”) that differs by a constant from the exact solution to q(l) 

will still satisfy (32). It is evident that the resulting global stiffness and damping matrices, if left 
untreated, will be rank deficient by one and will therefore lead to unstable solutions. One remedy to the 
problem, which was successfully used in two-dimensional cases [21-231, is to approximate directly the 
derivatives of q(l) in place of q(l) itself; this would eliminate the rank deficiency of the global system 
matrices. In the three-dimensional case, however, this approach lead to poor results at nodes near the 
singularity points of the parametric representation of the boundary, e.g. close to the poles of a spherical 
absorbing boundary. An alternative approach to render the system non-singular is to set to zero at one 
node of a single element on the absorbing boundary the degree of freedom corresponding to q(l). This 
is the approach we follow here. 

The resulting system of Eq. (34) can be solved by standard step-by-step integration schemes. We 
stress that the present impedance-infinite element, unlike other infinite elements [4,5], can be used 
equally well in the time- or frequency-domains, since the associated element stiffness and damping 
matrices are frequency independent. Indeed, in the case of a time-harmonic steady-state excitation 
F = F eiw’ , (34) yields the usual system of algebraic equations: 

(-W’M+iWC+K)U=F, 

which results from seeking a solution of the form U = 0 e’“‘. 

(38) 

Regular Fluid 
Element Impedance-Infinite 

Fig. 3. Typical geometry of impedance-infinite element. 
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5. Numerical examples 

This section describes numerical experiments conducted in order to assess the performance of the 
approximate absorbing boundary conditions and of the proposed impedance-infinite element. In our 
numerical work, we have, thus far, implemented only the spherical conditions (19) and hence, perforce, 
the discussion will be limited to these. The section is divided into two parts: first, under the heading of 
exact analysis, we describe the relative performance of the various conditions (19a)-(19c) based on an 
exact harmonic analysis of a simple Neumann problem in the frequency-domain. These studies allow for 
the comparison of conditions (19a)-(19c) without the contamination of discretization errors; they also 
assist in developing rules for the closest required position of the impedance-infinite element in order to 
ensure satisfactory Iperformance. We also study the role of the stability parameter y in the performance 
of the second-order condition (19~). Subsequently, under the heading of finite element analysis, we 
present results in both the frequency- and time-domain obtained by the proposed impedance-infinite 
element in conjunction with standard finite element techniques. 

5.1. Exact analysis 

Consider a radiation problem from a spherical cavity, as depicted in Fig. 4. Ri denotes the (inner) 
radius of the cavity r, and R, the (outer) radius of the concentric spherical absorbing boundary r,; let 
the exterior infinite region &?0 U 0 + (I 2 Ri) be occupied by a linear, inviscid and compressible fluid 
characterized by de:nsity p and speed of sound c. Using the spherical coordinate system (I, +,0) shown 
in Fig. 4, we seek to solve 

ap=;p, -in J&Ufi+, W-9 

subject to the Sommerfeld radiation condition (Id) at infinity and a prescribed radial acceleration field 
on the inner boundary of the cavity of the form 

p, = pA,P~m)~(cos 4) cos me eio’ , at r = Ri , (39b) 

where A, is the amplitude of the prescribed field and Pi? is the associated Legendre function of the 
first kind, degree IZ and order m. It can be shown that the exact solution of (39) is given by 

p = pA,RiQ,,(r/Ri, kR,, r~)P;~)(cos 4) cosme , (40) 

in which Q,, represents the radial component of p with frequency measured through the wave number 
k = w/c. The explicit formula for Q,, is given in Appendix C. One can also get exact formulas for the 
radial component of the pressure for the sequence of the approximate problems defined over the 

Fig. 4. Model for studying radiation from a spherical cavity. 
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annular region 9, corresponding to the various approximations (19) of the exact boundary condition 
on r,. Analogously to (40) we write 

P app = pA,,RiQ;;(r/Ri, RJR,, kR,, r~)P~~)(cos 4) cos mt? , (41) 

in which Q!$ denotes the radial component of the exact solution to the corresponding approximate 
problem. The superscript j refers to the order of the approximation in accordance with (16) (j = 
0, 1,2). The explicit formulas for Q!$, are given in Appendix C. 

From Q,, and Qki,‘, one can examine the behavior of the radial component of the exact pressure in 
the fluid and assess the accuracy of the various approximate absorbing boundary conditions by 
comparing directly Q,, with the sequence of approximate radial components Qibb. 

From the expressions for Q,, in Appendix C it can be readily verified that its amplitude decreases 
with increasing frequency k, and even more rapidly with increasing distance r. Furthermore, for a fixed 
frequency, the amplitude of Q,, at a given point in the infinite domain decreases with increasing mode 
n beyond a certain value of n. These observations, which are central to the subsequent interpretation of 
the performance of the various absorbing boundaries, can be deduced from Fig. 5, which depicts the 
normalized amplitude of Q,, as a function of the normalized distance (r - Ri) /A (h denotes the acoustic 
wavelength, i.e. A = 2n/k). Now, let E be the relative error defined by 

E = IQ,, - Qib’,l 
tQexl ’ 

for j=O,1,2. (42) 

Notice that for j = 0 and j = 1 the error E depends on r, k and on the radial harmonic n; for j = 2, E 
depends, in addition, on the value of the stability parameter y. It is of interest to seek the optimum 
value yoPt of y that minimizes the error E for a fixed n and for all r. One can show that [24] 

n+l c 
lim -y,,,=2~, VnZO. 

(R,-R~)/A--*o 0 
(43) 

Fig. 6 shows the variation of the optimal values yopt (normalized by ‘y. = c/R,) as a function of the 
normalized position of the absorbing boundary, (R, - R,)/A. For large values of the abscissa, Y,,,~ tends 
to a constant equal to ‘yo; this is the Bayliss and Turkel [3] value (see Eq. (20)). Notice, that the rapid 
convergence to this limit, observed for small values of n, decreases as n increases. It can also be seen 
that for the range of harmonics considered (n up to 7), a constant value of y = -yO will be near-optimal, 

LO 

(a) LR, = 0.1 (b) kR, = 1.0 

0.8 - II=0 

i 0.8 

(c) kR, = 2.0 (d)w=4.0 

's 

Normalized Distance (I - RJ I A 

Fig. 5. Exact steady-state response due to harmonic excitation; various frequencies. 

Fig. 6. Optimum values for stability parameter -y. 
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provided the absorbing boundary (or the impedance-infinite element) is placed at approximately 1.5 to 
2 acoustic wavelengths from the radiator. One can also expect that if the constant value of y = Y0 is used 
at small frequencies and/or distances, the errors will increase the increasing n; however, if the 
dominant modes of an arbitrary excitation signal are within the first few (n s 4) then placing the 
absorbing boundary at a distance which is only a fraction of the dominant acoustic wavelength should 
be expected to yield satisfactory results. 

It can also be seen from Fig. 6 that for 12 = 0 and n = 1, yOrt is identical to y,,; it can be further shown 
that for these values of n the associated error is identically zero. Hence, the second-order condition 
(19~) with y = y0 is exact for the first two harmonics n = 0 and n = 1. 

It is of interest to examine the behavior of the error function E for different frequencies of excitation, 
modes IZ, and locations of the various absorbing boundaries. We do so by means of a numerical 
parametric study. For the limiting zero frequency (long time) condition, however, it is possible to 
obtain explicit formulas for the corresponding limiting value E,, of E. These formulas are given in Table 
1 in Appendix D. (Since for the particular value y = yopt, (19~) yields the exact limiting solution, i.e., 
E, = 0, this case is not listed in the table.) The table also shows the limit of E, on the absorbing 
boundary (r = R,) as the outer radius R, tends to infinity. For n > 1 this error is significant for all the 
approximate bound.ary conditions (19). This suggests that none of them may be suitable for static or 
nearly static problems if the effect of the higher harmonics is significant. 

To illustrate how the relative error E varies with the location of the absorbing boundary for various 
modes II, Figs. 7 and 8 depict E versus R, /Ri for the first six modes (n = 1. - .6), and for frequencies of 
excitation kR,, a lclw value of 0.05 (Fig. 7) and a higher one of 0.5 (Fig. 8), corresponding to the 
various boundary conditions (19). Results for II = 0 are not included since all conditions, except for the 
zeroth-order (19a), are exact. In general, the errors decrease with the order of the approximation; that 
is, for a fixed frequency and position of the absorbing boundary, the second-order condition (19~) with 

Y = Yopt behaves best (solid line), followed by (19~) with y = yO, the first-order (19b) and the 
zeroth-order (19a). Conversely, for a given tolerance, the use of the second-order (19~) requires a 
smaller buffer zone. As an example consider the case kR, = 0.5, n = 2, and a desirable error of less than 
5 percent. According to Fig. 8, the second-order absorbing boundary with y = y0 need be placed at 
0.4Ri from the radiator, whereas the corresponding distances for the first- and zeroth-order ones are 

Table 1 
Limiting behavior of rel.ative error E as k + 0; limit as R, --f 00 

Condition type E,, = Em,,, E (n > 0) lim RO+= E&, 

(194 
“(2)” +(n + l)(g-y(k)‘” 

n(~)“+‘-n(EJ 

(194 (Y = 0) 

“(~)‘+(“+l)(~)‘(~)n+l 

(n +l)(~)“+l+n($)” 

Pb) 

n+l 

n 

1 

II 

n+l 

(194 (Y = 70) 
n(n’ - 1) 

(n + l)‘(n + 2) 
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Fig. 7. Relative error on the cavity boundary as a function of the location of the absorbing boundary R,lR,; kR, = 0.05; various 
harmonics; various absorbing conditions. 

Fig. 8. Relative error on the cavity boundary as a function of the location of the absorbing boundary R,IR,; kRi = 0.5; various 
harmonics; various absorbing conditions. 

0.9Ri and 1.3Ri, respectively. These differences are more dramatic for the case it = 1; for the same 
tolerance, the zeroth-order requires R, > 3.9Ri, the first-order R, > 2.5Ri, whereas the second-order 
condition is exact. The differences decrease at higher frequencies but become more pronounced at 
lower ones. From Figs. 7 and 8 it can also be seen that for a given boundary condition, E, decreases 
with increasing frequency; the accuracy increases with the distance R, /Ri and the rate of decay depends 
strongly on the mode n; using y = y,,rt instead of ‘y. improves significantly the performance of the 
second-order condition when it is placed near the cavity (the improvement is greatest for the lower 
frequency of excitation); however, whereas yopt can be used to advantage in frequency-domain analyses 
and in time-domain calculations based on the FFT, it would, unfortunately, not be as practical for direct 
calculations in the time-domain, since its frequency dependence would introduce convolutions into 
(19c). 

To further examine the sensitivity of the second-order condition (19~) to the frequency of excitation, 
Fig. 9 depicts the relative error E for the second-order condition (19~) with y = ‘yo, at both the cavity 
and absorbing boundaries versus kR, for several modes II and positions of the absorbing boundary r,. 
One key observation is that the errors become very small at high frequencies, even if c coincides with 
the cavity boundary r (Fig. 9a). This is to be expected since the present approach is based on the 
high-frequency expansion (9a) borrowed from geometrical optics. At lower frequencies the error on the 
cavity boundary r increases significantly, requiring that r, be moved some distance away from r. While 
the errors on r, decrease as the distance between these two boundaries increases, they remain 
significant even at R, / Ri = 2. Fortunately, the effect of these errors on the inner boundary is negligible 
since the amplitude of the actual response for the higher modes decreases rapidly with distance, as 
discussed earlier in connection with Fig. 5. It is noteworthy that the errors on the cavity boundary peak 
around the frequency kR, that is numerically equal to the mode (Fig. 9b,d,f). Fig. 10 shows the 
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Fig. 9. Relative errors on the cavity and the absorbing boundary as functions of the normalized frequency kR, due to (19~) with 
y = yo; various locations R,IR,. 

Fig. 10. Relative errors on the cavity and the absorbing boundary as functions of the normalized frequency kR, due to (19~) with 

Y = Y,,ti various locations R,IR,. 

corresponding error curves for the second-order condition (19~) with y = yopt. While the observations 
made for Fig. 9 are also valid here, because of the vanishing errors at the zero-frequency limit, the 
errors are effectively decreased over the entire frequency range. In Fig. 11, the error E on the cavity 
boundary is plotted against the normalized annulus size (R, - &)/A for different values of 12 and kR,. 
All the calculations are for the second-order condition (19~) with y = yO. It can be seen that, in order to 
limit the error to 5 Ipercent, it is sufficient to place the absorbing boundary at a distance of 0.24 of the 
wavelength A from the cavity boundary. Notice also that as II increases, errors at the higher frequencies 
become greater than for the low frequencies for a fixed value of the abscissa. The explanation to this 
paradox is that for a fixed (R, - Ri)/h the actual distance R, - Ri is inversely proportional to the 
normalized frequency kR,. Thus, for example, a point on the kR, = 0.1 curve corresponds to an actual 
physical distance of the ktificial boundary which is five times greater than the point with the same 
abscissa on the kR, = 0.5 curve. Hence, in practice, selecting the position of r, based on the lower 
dominant frequencies and lower modes can be expected to give satisfactory results for all frequencies 
and angular modes. 

5.2. Finite element analysis 

Two sets of problems are considered for assessing the accuracy of the second-order impedance- 
infinite element corresponding to y = ‘yO. The cavity problem is subjected again to steady-state harmonic 
excitation and alternatively to transient excitations. In Fig. 12, we compare the exact solution (40) for 
kR, = 1 to the corres#ponding finite element solution obtained in conjunction with the impedance-infinite 
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1.6 
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1.2 .- Exact 

LO .. FEM wth Infinite Element 

Polar Angle $ (in degrees) 

Fig. 11. Relative errors on the cavity boundary as functions of the annulus size (R, - R,)lh due to (19~) with y = y,,; various 
harmonics; various frequencies kR,. 

Fig. 12. Comparison between exact and FEM solutions along the 8 = 0” meridian; impedance-infinite element at R,IR, = 1.2; 
normalized frequency kR, = 1; various harmonics. 

element. The finite element results shown are those along the meridian 8 = O”, and for several values of 
the pair m, 12 which characterizes the tesseral harmonics. The impedance-infinite element was placed at 
R, = 1.2Ri ; eight-noded (hexahedra) isoparametric elements were used for representing the interior of 
the acoustic fluid, and four-noded isoparametric quadrilateral elements were used for the impedance- 
infinite element on the absorbing surface; five radial elements were used to span the annular domain, 
while the traces of 384 elements covered the spherical surfaces. The mesh, typical of our applications, is 
shown in Fig. 13 for only half of the annular spherical domain; the exterior surface of the mesh is 
covered with impedance-infinite elements. As can be seen in Fig. 12 the agreement between the 
depicted exact and finite element solutions is excellent. We remark that the finite element solutions 
were obtained with a commercial code (ANSYS) modified especially in order to accommodate the 
impedance-infinite element. 

Fig. 14 presents a comparison between the real and imaginary parts of the finite element and exact 
solutions for a frequency sweep in the range between kR, = 1 to kR, = 20 and for the same spherical 
geometry as before (Fig. 4), using the same mesh as before. The results shown are for the pair of the 
tesseral harmonics m = 2, n = 2. The agreement between the two solutions is excellent. The location of 
the absorbing boundary was kept constant during the sweep which implies the wide applicability of the 
impedance-infinite element since it was placed at distances that varied between 0.03 of the wavelength 
for the lowest frequency to 0.64 for the highest frequency. 

As an example of the applicability of the impedance-infinite element in the time-domain, we consider 
next the transient response of the cavity problem when a rectangular pulse excitation is applied on its 
boundary, i.e. when 
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Fig. 13. Typical mesh used in radiation problems. 

Fig. 14. Comparison between exact and FEM solutions; impedance-infinite element at R,IR, = 1.2; m = 2, n = 2. 

p, = pA,[H(t)-H(t-Ri/c)]P~m'(cos~)cosm~ , at r= Ri , (44) 

in which H(t) is the Heaviside step pulse. This excitation represents a severe test for the impedance- 
infinite element since it contains large low-frequency contributions, including a strong zero-frequency 
component. In Fig. 15 we compare the radiated pressure obtained directly in the time-domain using the 
impedance-infinite element (dashed line) with the transient solution obtained by transforming the exact 
analytical response (41a) in the frequency-domain in the time-domain via the FFT. Also shown are 
finite element solutions obtained directly in the time-domain by using the first-order condition and the 
zeroth-order condition (19a). In all cases the approximate results were obtained by placing the 
absorbing surface at R, = lSR,; 15 radial and 384 circumferential elements were used. The numerical 
solutions were carried out using the standard trapezoidal rule for integrating the equations of motion in 
time with a time step of At c/R, = 0.05. In all cases, the agreement between the solutions obtained with 
the impedance-infinite element and the exact ones is very good; there are significant discrepancies 
resulting from the use of either of the other two conditions, especially the plane wave approximation 
(19a). 

Thus far, we have considered problems characterized by spherical geometries in an effort to provide 
comparisons with existing exact solutions. In order to illustrate the applicability of the finite element/ 
impedance-infinite element methodology to more general geometries, we consider now the scattering of 
a steady-state harmonic plane wave by a cubic rigid scatterer and compare the scattering patterns to 
those generated by a spherical rigid scatterer. Let the incoming plane wave be denoted by p”. Then 

po = PO ei(kx+Wr) ) 
(45) 

represents a plane wave traveling towards the negative x axis with an amplitude of PO. The existence of 
a rigid boundary implies zero fluid velocity along the direction normal to the scatterer’s surface at the 
interface between the scatterer and the fluid, and hence, by virtue of the continuity relation, the normal 
derivative of the total pressure on the interface is zero. If the scattered pressure is denoted by p”’ and 
the total pressure by p’“‘, then 

pr’=O and pr = -pE at the interface . (46) 

Fig. 16(a) depicts the geometric characteristics of the two scatterers; the diameter of the spherical 
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(g) On Cavity Boundary 
(ms . n=3, e&P, +‘l9) 

- Exact 
- - - FEM(19c.y=yo) 
- - FEM(l9b) 

-~- FEhf(19a) 

Fig. 15. Transient response due to a square-pulse excitation of duration tclRi = 1; absorbing boundary at R,IR, = 1.6; various 
absorbing conditions; various harmonics. 

Fig. 16. (a) Geometry of spherical and cubic rigid scatterers; (b), (c) comparison between two FEM solutions along the perimeter 
of the cubic scatterer due to different positions of the absorbing boundary ((19~) with y = yO). 

scatterer is equal to the side a of the cubic obstacle. The wavenumber was chosen so that ka = 3 for 
both scatterers. Figs. 16(b,c) show the distribution of the amplitude of the total pressure along two 
different horizontal paths, on the surface of the cubic scatterer, one on the middle plane (z = 0) and the 
other on the upper edge of the cube (z = OSa), for two different positions of the absorbing surface. The 
two traces are practically indistinguishable, thereby indicating that accurate solutions are obtained for 
this problem by placing the impedance-infinite element as close as R, = 1.4~. 

Fig. 17 shows pressure contours for the spherical and cubic rigid scatterers. Figs. 17(a,b) show the 
normalized scattered pressure patterns, while Figs. 17(c,d) show the normalized total pressure 
distribution, on a cross section along the middle plane. (z = 0) of the three-dimensional domain. Finally, 
Fig. 18 shows the distribution of the normalized total pressure on the surface of a cubic and a spherical 
scatterer. Once the pressure directly on the scatterer has been established, the pressure anywhere 
within the fluid can be obtained readily, e.g. by the use of an integral representation. 

6. Concluding remarks 

This paper had two major objectives: (a) to introduce a systematic procedure for constructing 
artificial boundary conditions for the three-dimensional scalar wave equation, and (b) to present a 
robust, efficient and accurate methodology based on the finite element method, standard step-by-step 
time integration, and a new impedance-infinite element that allows for numerical solutions in both the 
time- and frequency-domains. In light of the excellent agreement between the approximate and exact 
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Fig. 17. Normalized pressure distributions on the midsection horizontal plane around rigid cubic and spherical scatterers due to 
an impinging plane wave; normalized frequency ka = 3; (a), (b) scattered field (top row); (c), (d) total field (bottom row). 

solutions obtained for the test problems, it appears that the proposed methodology is a powerful tool 
for solving accurately and efficiently problems in structural acoustics involving complex interior 
structures. 

The new impedance-infinite element permits one to retain the familiar form of the discretized 
equations of motion with their sparsity and symmetry intact. Since the element is completely 
represented by a pair of local, symmetric, frequency-independent, stiffness and damping matrices, the 
entire procedure lends itself to easy incorporation into existing finite element codes for interior 
problems. It also allows for ready parallelization that will best exploit the main features of particular 
advanced architectures, 

In this paper we have obtained results using the impedance-infinite element on a spherical artificial 
boundary. It is anticipated that further economy of the computational domain will result from the use of 
an ellipsoidal artificial boundary. 
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Fig. 18. Normalized total pressure distributions on the surface of rigid cubic and spherical scatterers due to an impinging plane 
wave; normalized frequency ka = 3; (a), (b) back-scattered region (top row); (c), (d) forward-scattered region (bottom row). 

Appendix A 

In this appendix we provide a proof for (6a), i.e. we show that 

6(~,~)=~e-“‘B(~,s;t)dr, ccEfi+, (A.1) 

is indeed a solution to the following initial and boundary value problem for the exterior wave equation: 
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p(x, t) = c2 A&, t) , x E L2+ ) tao, (A.2a) 

p(x, t) = B(x, s:; t) ) x E r, , t>O, (A.2b) 

P(X, 0) = 0 , a, 0) = 0 7 xEfi+. (A.2c) 

To this end, we consider the same problem (A.2) with, however, a unit step function as the Dirichlet 
datum on r,. Accordingly, let q(x, t) by the solution to 

q(x,t)=c2Aq(n,t), xefi+, t~0, 

q(r,t)=l, XET,, t>O, 

4(x, 0) = 0 , lj(x,O)=O, XEd’. 

Then, by direct application of Duhamel’s principle [7], one obtains 

]P(X9 01X&+ = [4(x, OLn+[&7 s; f)Lr, 

(A.3a) 

(A.3b) 

(A.3c) 

(A-4) 

Application of the L,aplace transform on (A.4) while taking into account the initial conditions (A.~c), 
leads to 

I%, s) = s[q(x, s)lxEn+ 1: e-s’[&, s; OL-, dt 

= 
I ’ 0 

e-%[4(x, sILti + [&, s; OlxEral dt 

c 
I 
' e-"'[P(x,s;t)]xEo+ dt , 
0 (A.9 

where we define 

P(x, s; 91 xEn+ = d8k ~Lfz!+[& s; ~Lr, * (A.6) 
Notice that (A.6) hlolds also for x on 4, since, by virtue of (A.3b), 4(x, S) = l/s on c. Eq. (A.5) 
completes the proof. Alternatively, it can also be seen, by inspection, that (A.l) (or (6a)) satisfies the 
field equation (4) and the boundary condition (5b). 

Appendix B 

The components g, of the Euclidean metric tensor and the determinant g with elements g, that 
characterize the transformation from a Cartesian coordinate system to the coordinate system defined by 
(13), are given as 

g,, = R, *R, = E - 2rL + t2(2HL - KE) , (B.la) 

g,, = g,, = R, ~ R, = F - 25M + t2(2HM - KF) , (B.lb) 

g,, = R, *R, =: G - 25N + cf2(2HN - KG) , (B.lc) 

g,,=R,*R,=l, (B.ld) 

g,,=g,,=R,~~R,=O, (B.le) 

g,,=g,,=R;R,=O, (B.lf) 

g = ]g,) = (EC: - F2)(t2K - 2.5H + 1)2, (B-id 
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where K and H are the Gaussian and mean curvature of r,, respectively. We use the customary notation 
for the coefficients of the first and second fundamental forms of the parametric representation of c, 
namely the triplets E, F, G and L, M, N, respectively. They are defined by 

E=X;X,, F=X;X,, G=X;X,,, , 

1 
L = -x, * vu ) M=-~(xu*v,+X;v,), 

H= 
EN+GL-2FM LN-M2 

2(EG- F2) ’ 
K= 

EG-F2 ’ 

In deriving (B. 1) we also made use of 

v;v,=2HL-KE, v;v,,,=2HA4-KF, 

N= -X,-v,,, , 

(B.2a) 

(B.2b) 

(B.2c) 

v;v,=2HN-KG. (B.3) 

In all of the above subscripts U, w and 5 denote the corresponding partial derivatives. Notice, that for 
[ = 0, (B.la,b,c,g) reduce to 

g&=,,=h,,=L &21~=0 = h,* = F 7 g&=o = h22 = G 7 g(,,, = h = EG - FZ . 

(B.4) 

It can be further shown that for any scalar field @ one has 

V@ = $ (g22@u - g12QZw)K + + (-glz@u + gll@,)K + @‘$$ 9 (BSa) 

(B.5b) 

By virtue of (B.5a) and the definition (13) the following also holds true: 

@“=v@*v=Qq. 03.6) 

We remark that &” is oriented such that H < 0, Vr E r,; notice also that K > 0, Vx E < since r, is 
convex by definition. For these values of K and H it can be shown that the second term in the 
right-hand side of (B.lg) has no real zeroes for 5 20. Therefore, the zeroes of the determinant g 
correspond only to the singularity points of r, (and to the singularity points of all the surfaces parallel to 
c within 0’) (Fig. lb). If, for example, c is a sphere and spherical coordinates are used for its 
parametric representation, then g is zero at the poles. 

Finally, if V” denotes the surface gradient on r, then 

V”@ =; (h22@u - h12@,,,)Xu + +(-h12cDu + h,,@,)X,,, . (B.7) 

Appendix C 

The radial component Q,, in (40) is given by 

Qex = 
hr’(kr) 

nhF)(kRi) - kRihy?,(kRi) ’ 
(C.1) 

where hr’ is the spherical Hankel function of the second kind and of nth order. Similarly, the radial 
component Q$L in (41) is given as 

Q"' = 
aPP 

(C.2a) 
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where the coefficients B!‘, C, for (Y = 1,2 are given as 

261 

(C.2b) 

(C.2c) 

(C.2d) 

(C.2e) 

hr’ is the spherical Hankel function of the cuth kind and of nth order. 
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