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Abstract We discuss a systematic methodology that leads
to the reconstruction of the material profile of either sin-
gle, or assemblies of one-dimensional flexural components
endowed with Timoshenko-theory assumptions. The probed
structures are subjected to user-specified transient excita-
tions: we use the complete waveforms, recorded directly
in the time-domain at only a few measurement stations, to
drive the profile reconstruction using a partial-differential-
equation-constrained optimization approach. We discuss the
solution of the ensuing state, adjoint, and control problems,
and the alleviation of profile multiplicity by means of either
Tikhonov or total variation regularization. We report on
numerical experiments using synthetic data that show sat-
isfactory reconstruction of a variety of profiles, including
smoothly and sharply varying profiles, as well as profiles
exhibiting localized discontinuities. The method is well
suited for imaging structures for condition assessment pur-
poses, and can handle either diffusive or localized damage
without need for a reference undamaged state.
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1 Introduction

Non-destructive testing of structural components is at the
very core of structural health monitoring, system identifica-
tion, and diagnostics for infrastructure systems. The goal of
condition assessment is the localization and quantification
of alterations imparted on a (structural) system between the
time it was placed in operation (or even its original design
state), and the moment condition assessment is requested. To
date, a plethora of condition assessment methods have been
used, where methods relying on the analysis of the dynam-
ics of a structure, following its probing by a time-dependent
excitation, continue to be dominant. Probing refers to target-
ing the structure using acoustic, electromagnetic, or stress
waves, and/or their combination. The analysis of the resulting
dynamics refers to post-processing the structure’s response,
aiming at reconstructing the profile; typically, the response
has been collected at a few points, a limited area, or in gen-
eral, a subset of the structure’s bounding surface. One could
broadly classify these dynamics-based methods into methods
relying on the analysis of the structure’s modal parameters
(eigenfrequencies, mode shapes, curvatures of mode shapes,
etc.), or on the analysis of travel times associated with the
induced wave motion. By and large, both classes of meth-
odologies underutilize either the frequency spectrum, or the
transient record: analyses based on modal parameters rely
typically on a few modes, irrespective of the particular modal
quantity used to drive the detection process, whereas analyses
based on the propagation of waves use travel times and first
arrivals to infer the location of structural flaws (e.g. cracks).

Of particular interest in this article is the exploitation of the
complete waveforms for damage detection, or more broadly,
for reconstructing the material profile of a probed struc-
ture consisting of Timoshenko-type beams. The approach
formally gives rise to an inverse problem, which, even though
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it lacks the deterministic character of the aforementioned
methodologies, it takes advantage of the complete wave-
forms and uses the totality of the recorded information to
infer the profile. In this sense, there is reasonable expectation
for a more accurate profile reconstruction, when compared
to other approaches, at the (affordable) expense of algorith-
mic complexity. The battleground for full waveform methods
has been the geophysical exploration arena, where the goal
is to recover the material distribution by wave probing, for
the purpose of identifying hydrocarbon pockets embedded
in highly heterogeneous domains. From a methodological
point of view, structural systems are similar to geologic for-
mations, under the unifying assumption of a linear elastic
behavior during wave probing.

We highlight next developments related to dynamics-
based probing, to place the proposed methodology in
context. Early efforts were primarily focused on damage
detection given experimentally determined modal parame-
ters. Pioneering work on this class of problems involved the
use of eigenfrequencies. Adams et al. [1] devised a damage
detection scheme based on shifts in the natural frequencies
between the virgin and damaged state of a structure, for which
a priori knowledge of the virgin state was necessary (in fact,
the virgin state was assumed to correspond to the theoreti-
cally perfect structure). The authors considered the problem
of undamped axial vibrations of a rod. Damage was modeled
as a massless spring of infinitesimal length and unknown
stiffness (Ka). It was assumed that the mode shapes of the
undamaged structure remain unchanged in the damaged state.
The location of the damage and the value of Ka were the
unknowns to be determined using the observed frequency
shifts. Liang et al. [9] utilized a similar approach for the
problem of flexural vibrations of an Euler–Bernoulli beam,
where cracks were modeled using rotational springs. The
authors plotted the values of normalized spring stiffness ver-
sus damage location for a few natural frequencies of the beam
to identify the damage site. The methods would fail for com-
ponents (e.g. a simply supported beam) for which symmetric
damage locations would produce the same frequency shifts.

To improve the performance of frequency-based methods,
mode shapes and improved crack models were included in
the analysis. Rizos et al. [15] presented such a method using
the flexural vibrations of a cantilever beam. The crack was
modeled by a massless rotational spring. Ideas from frac-
ture mechanics were used to relate the spring stiffness to
crack depth. The amplitudes of the induced motion at two
locations on the beam were used to obtain the damage loca-
tion and damage severity. Pandey et al. [13] demonstrated
a methodology based on changes in the curvature of mode
shapes. Mode shapes for a damaged and undamaged beam
were obtained using the finite element method. Vibrations of
a simply supported and a cantilever beam were considered.
It was found that curvature mode shapes were more sensitive

to damage detection than displacement mode shapes. The
method was helpful in determining a damage zone, but could
not provide any quantitative estimate of the damage mag-
nitude. Cao and Zimmerman [3] suggested load-dependent
Ritz vectors extracted from the dynamic response data [4]
as drivers for damage detection. Minimum rank perturbation
theory was used to calculate the stiffness loss using mea-
sured eigenvectors and eigenfrequencies as an input. The
presence and location of damage was determined in terms of
a generalized damage residual; the Ritz vectors were found
to be more sensitive to damage than modal vectors. Ruotolo
and Surace [16] presented a method for damage identifica-
tion in multiply-cracked beams by employing optimization
techniques and genetic algorithms. Cerri and Vestroni [5]
addressed the problem of diffused cracking in a beam. Two
methods, based on characteristic equation error, and compar-
ison between measured and analytical frequencies respec-
tively, were discussed. Binici and Kallivokas [2] suggested a
method for crack detection in beams utilizing multiple spec-
tra. First-order perturbation approximations were employed
to calculate the first few frequencies of the damaged beam.
Crack locations and severities were obtained by minimizing
the misfit between measured and computed eigenfrequen-
cies. Solution multiplicity was alleviated by using data from
auxiliary experiments using small masses to modify the used
spectra. Many of the aforementioned approaches lack the
ability to quantify the damage magnitude, and, could not
lead to quantification of remaining strength. Moreover, most
modal parameter-based methods require calibration with the
structure’s virgin state. However, the ease of experimenta-
tion and the low computational cost make these techniques
desirable, despite their shortcomings.

Among methods that do not rely on modal characteris-
tics for assessment, the most prominent is the impact-echo
method [17]. It uses stress waves to quantify the thickness of
slabs, but also to detect cracks, primarily in concrete struc-
tures, and has been standardized by ASTM (ASTM C 1074)
and ACI (ACI 228.1R). The technique is based on the reflec-
tion of P-waves. The damaged component is subjected to
an impact and the resulting motion is recorded using a trans-
ducer. Either travel times or the frequency content of the time
signal can be used to detect the presence and location of the
flaw. The method was developed to test concrete pavements,
slabs, or other plate-like structures. For example, the spec-
trum of an undamaged plate shows peak at the so-called plate
thickness frequency, and that of a damaged plate presents a
shift in the location of this peak. The depth at which the crack
is located can be calculated using this shift. Similar to the
methods mentioned earlier, the impact-echo is cumbersome
for finding defects in frames or bridge decks, due to the diffi-
culties in the interpretation of the collected response, owing
to the multiple reflections/refractions [18]. The method pro-
vides only qualitative measurement of the damage, which is
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not directly useful in predicting the future response of the
structure to any other applied load, or remaining strength. In
addition, the method is, in general, more suitable for detect-
ing cracks running parallel to a test surface than those running
orthogonal to it.

On the other hand, the territory of direct time-domain-
based inversion schemes remains, by and large, unexplored.
In this work, we discuss a total wavefield-based inversion
technique using a partial-differential-equation (PDE) con-
strained optimization approach for reconstructing the mate-
rial properties of a flexural member or of complete frames.
The proposed approach yields the spatial variability of a tar-
get property, leading to a better quantitative estimate, with-
out requiring a priori knowledge of the undamaged state. It
is equally effective in recovering smooth as well as sharply
varying profiles, albeit computationally more expensive than
the modal parameters-based algorithms discussed earlier.

The inversion process is inspired by similar developments
in geophysical exploration, where full waveform approaches
are increasingly favored. The inversion process is driven by
the misfit between measured and computed responses to a
known excitation (in the time-domain). Thus, the experi-
mental setup is no different than what is currently used by
other methods. The measured response is the measured time-
history of the deflections at a few sensor locations in the
damaged member, and contains information about the spa-
tial variability of the material property we seek to deter-
mine. Reconstruction of the property’s spatial variability will
reveal any structural flaws, if present; it will also allow for
the complete imaging of the probed structure. The computed
response refers to the time-history of the component’s deflec-
tions at the same locations as the recordings, calculated using
an estimate of the sought property. The actual spatial distribu-
tion of the property is the one that makes the misfit identically
zero. This condition is too strong to satisfy in practice, and
hence we try to minimize the misfit functional, while satisfy-
ing the underlying physics, using the systematic framework
of PDE-constrained optimization. Fulfillment of the pertinent
physics is achieved by augmenting the misfit functional by
the weak imposition of the governing PDEs, boundary and
initial conditions, as well as of any continuity conditions [10].
For a convex functional, minimization corresponds to satis-
fying the first-order optimality conditions; convexity here
is not ensured, and thus, instead, we seek to satisfy sta-
tionarity of the augmented functional. These conditions lead
to time-dependent state and adjoint problems, and a time-
independent control problem, which upon discretization lead
to a classic KKT (Karush–Kuhn–Tucker) system. Numeri-
cal solutions of the state and adjoint problems are obtained
using finite elements. We adopt a reduced-space scheme to
solve the KKT system, and iteratively update the material
properties until convergence. In general, uniqueness
(or even existence) of the solution to the inverse problem

A

A’

A

A’

L

q(x,t)w

x

dw
dxγ

ψ

Fig. 1 Schematic of Timoshenko beam: initially plane cross-section
AA’ remains plane post-deformation with shear effects taken into
account

cannot be guaranteed; to tackle solution multiplicity we use
regularization schemes such as Tikhonov (TN) and total
variation (TV). Normally, both these methods require a
user-selected regularization factor as input: here, we use a
regularization factor continuation scheme, which automati-
cally selects the factor based on the current state of variables
in the control problem. In the following sections, we describe
the approach in detail.

2 The forward problem

To fix ideas, we focus on the problem of undamped flexural
vibrations of a simply-supported beam. In order to be able
to capture localized damage, it is, in general, necessary that
high frequencies (or high wavenumbers) be used for prob-
ing. This, in turn, necessitates the adoption of Timoshenko
beams for modeling the flexural elements [21,22], since the
usual Euler–Bernoulli theory leads to a non-physical dis-
persion relation, according to which high-frequency com-
ponents travel almost instantaneously [6]. By contrast, the
inclusion of rotary inertia and shear effects, per the
Timoshenko assumptions, allows for a fairly accurate disper-
sion curve (when compared to three-dimensional solutions),
and a physically faithful representation of flexural waves
in the beam. Denoting the transverse displacement by w(x),
the slope due to bending by ψ(x), and the contribution
to the total slope due to shear deformation by γ (x), the total
bending slope, per the Timoshenko model, can be expressed
as (Fig. 1):

dw(x)

dx
= ψ(x)+ γ (x). (1)

Then, the problem of the undamped vibrations of a
Timoshenko beam, or forward problem, can be stated as:
find w(x, t) and ψ(x, t), such that:
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∂

∂x

{
G AKs

(
∂w

∂x
− ψ

)}
− ρA

∂2w

∂t2 = −q, (2)

G AKs

(
∂w

∂x
− ψ

)
+ ∂

∂x

(
E I
∂ψ

∂x

)
− ρ I

∂2ψ

∂t2 = 0, (3)

where x denotes position, with x ∈ (0, L), and t denotes time,
with t ∈ (0, T ] (T is the total observation time). E ≡ E(x) is
Young’s modulus, G ≡ G(x) is the shear modulus,ρ ≡ ρ(x)
is the mass density, and A ≡ A(x), I ≡ I (x) denote the
cross-sectional area and moment of inertia, respectively. Ks

denotes the Timoshenko shear factor, which depends on the
cross-sectional geometry, and q ≡ q(x, t) is the applied exci-
tation. Either E or G can be eliminated from the above equa-
tions using G = E

2(1+ν) , where ν is Poisson’s ratio. Equations
(2) and (3) are subject to appropriate boundary and initial
conditions; for example, for a simply supported beam, we
require:
Boundary conditions

w(0, t) = 0, w(L , t) = 0, (4)

E I
∂ψ

∂x
(0, t) = 0, E I

∂ψ

∂x
(L , t) = 0. (5)

Initial conditions

w(x, 0) = 0, ψ(x, 0) = 0, (6)
∂w

∂t
(x, 0) = 0,

∂ψ

∂t
(x, 0) = 0. (7)

3 The inverse problem

3.1 Objective functional

Without loss of generality, we select the Young’s modulus
E(x) as the inversion variable, whose spatial distribution
we seek to determine; in Sect. 6 we discuss other possible
choices. We seek to minimize the misfit functional J , in the
least-squares sense, between computed and measured deflec-
tions, subject to the physics implied by the forward problem.
To alleviate the inherent solution multiplicity we also aug-
ment the misfit J by a regularization term R(E) to arrive
at an objective functional F . Thus, we seek to minimize:

F =J +R(E)

= 1

2

N∑
i=1

T∫
0

[wm(xi , t)− w(xi , t)]2 dt +R(E), (8)

subject to (2)–(7). In Eq. (8), xi denotes the location of
the i-th sensor, and N denotes the total number of sensors
used.wm(x, t) andw(x, t) represent the measured and com-
puted responses, respectively, with w(x, t) corresponding to
an assumed profile E(x).

3.2 Regularization

The misfit functional contains incomplete information about
the dynamic response of the probed component(s), due to
the fact that, in practice, only a few sensors are used to mea-
sure the response. Thus, the inverse problem that is based
solely on the misfit functional suffers from non-uniqueness
of the solutions for E(x). The difficulty is commonly alle-
viated by enforcing an additional constraint in the form of
regularization. Two types of regularization schemes are used
in this work, namely, Tikhonov (TN) regularization, and total
Variation (TV) regularization.

Tikhonov regularization is one of the most frequently used
regularization schemes [20]. It is defined as the L2-norm of
the gradient of the inversion variable; accordingly, and for
the one-dimensional Timoshenko problem of interest here,
the last term in (8) assumes the form:

RT N (E) = RE

2

L∫
0

(
d E

dx

)2

dx, (9)

where RE is the regularization factor—a user-defined scalar
constant that weighs the penalty imposed by the regulariza-
tion term. In general, TN regularization tends to smoothen
sharp variations of the inversion variable, as betrayed by the
derivative term in (9). By contrast, total variation regulari-
zation, in general, allows for easier recovery of discontinu-
ities, due to the presence of a semi-norm in its definition, as
in:

RT V (E) = RE

L∫
0

[(
d E

dx

)2

+ ε
] 1

2

dx, (10)

where ε is a small positive constant (e.g. 10−6 for applica-
tions). We remark that the choice of the regularization factor
is critical for the performance of either the TN or the TV
scheme. In Sect. 4, we discuss a regularization factor contin-
uation scheme that aids in the convergence of the inversion
process.

3.3 PDE-constrained optimization

3.3.1 Lagrangian functional

The constrained problem defined in 3.1 is cast as an
unconstrained minimization problem by means of the weak
imposition of the forward problem (2)–(7) on the objective
functional F in (8) via Lagrange multipliers; there results a
Lagrangian functional—L :
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L (w,ψ, λw, λψ, λB1, λB2λI 1, λI 2, E)

= 1

2

N∑
i=1

T∫
0

[wm(xi , t)− w(xi , t)]2 dt +R(E)

+
T∫

0

L∫
0

λw

[
∂

∂x

{
G AKs

(
∂w

∂x
− ψ

)}

− ρA
∂2w

∂t2 + q

]
dx dt

+
T∫

0

L∫
0

λψ

[
G AKs

(
∂w

∂x
− ψ

)

+ ∂

∂x

(
E I
∂ψ

∂x

)
− ρ I

∂2ψ

∂t2

]
dx dt

+
T∫

0

λB1

[
E I
∂ψ

∂x

]
x=0
+ λB2

[
E I
∂ψ

∂x

]
x=L

dt

+
L∫

0

λI 1

[
∂w

∂t

]
t=0
+ λI 2

[
∂ψ

∂t

]
t=0

dx, (11)

where only Neumann-type conditions have been imposed
(Dirichlet conditions will be explicitly enforced), and λw,
λψ, λB1, λB2, λI 1, λI 2 denote the Lagrange multipliers
(or adjoint variables). We seek a stationary point for L , by
requiring the satisfaction of the first-order optimality condi-
tions. Specifically, we require that the first variation of L
with respect to the state variables (w,ψ), the Lagrange mul-
tipliers (λ), and the control variable (E), vanish. This, in turn,
gives rise to state, adjoint, and control problems, as discussed
in the following sections.

3.3.2 The first optimality condition

We require the vanishing of the first variation of the
Lagrangian functional with respect to the Lagrange multi-
pliers (or adjoint variables):

δλwL = 0, δλψL = 0, δλB1L = 0,

δλB2L = 0, δλI 1L = 0, δλI 2L = 0.
(12)

It is easily verifiable that Eq. (12) yield the state problem,
which is identical to the forward problem (2)–(7).

3.3.3 The second optimality condition

The vanishing of the first variation of the Lagrangian with
respect to the state variables (w,ψ), that is:

δwL = 0, δψL = 0, (13)

gives rise to the adjoint problem.

Adjoint Problem

∂

∂x

[
G AKs

(
∂λw

∂x
− λψ

)]
− ρA

∂2λw

∂t2

=
N∑

i=1

[wm(xi , t)− w(xi , t)], (14)

G AKs

(
∂λw

∂x
− λψ

)
+ ∂

∂x

[
E I
∂λψ

∂x

]
− ρ I

∂2λψ

∂t2 = 0,

(15)

for x ∈ (0, L), and t ∈ [0, T ), and subject to boundary con-
ditions:

λw(0, t) = 0, λw(L , t) = 0, (16)
∂λψ

∂x
(0, t) = 0,

∂λψ

∂x
(L , t) = 0, (17)

and final conditions:

λw(x, T ) = 0, λψ(x, T ) = 0, (18)
∂λw

∂t
(x, T ) = 0,

∂λψ

∂t
(x, T ) = 0. (19)

We remark that, as is evident by (2), (3) and (14), (15), the
state and adjoint problems are governed by identical opera-
tors, which greatly facilitates the numerical implementation
and alleviates the computational cost. Notice further that,
whereas the state problem is driven by the applied excita-
tion, the adjoint problem is driven by the misfit between
the measured and computed responses [right-hand-side of
(14)]. Moreover, the state problem is an initial value prob-
lem, whereas the adjoint problem is a final value problem.

3.3.4 The third optimality condition

Lastly, we require that the first variation of the Lagrangian
L with respect to the control variable E vanish:

δEL = 0, (20)

which gives rise to the control problem. The particular form
of the control problem depends on the type of regularization
used. We state the control equations for both the TN and TV
regularization schemes:
Control Problem—TN scheme

δEL = −
L∫

0

{
RE

d2 E

dx2

+
T∫

0

[
AKs

2(1+ ν)
(
∂w

∂x
− ψ

)(
∂λw

∂x
− λψ

)

+ I
∂ψ

∂x

∂λψ

∂x

]
dt

}
δE dx = 0, (21)

subject to
( d E

dx

)
x=0 = 0 and

( d E
dx

)
x=L = 0.

123

Author's personal copy



122 Comput Mech (2011) 47:117–136

Control Problem—TV scheme

δEL = −
L∫

0

⎧⎨
⎩REε

d2 E

dx2

[(
d E

dx

)2

+ ε
]− 3

2

+
T∫

0

[
AKs

2(1+ ν)
(
∂w

∂x
− ψ

) (
∂λw

∂x
− λψ

)

+ I
∂ψ

∂x

∂λψ

∂x

]
dt

⎫⎬
⎭ δE dx = 0, (22)

subject also to
( d E

dx

)
x=0 = 0 and

( d E
dx

)
x=L = 0.

We note that the control equations are time-independent. Sta-
tionarity of the Lagrangian functional is achieved when a set
of variables - {w(x, t), ψ(x, t), λw(x, t), λψ(x, t), E(x)},
satisfying the state, adjoint, and control problems is obtained.
We discuss next the inversion scheme that leads to the recon-
struction of E(x).

4 The inversion process

There are at least two schemes to resolve the triplet of the
state, adjoint, and control problems. In a full-space method,
all three problems are solved simultaneously, resulting in
increased computational cost. In a reduced-space method,
the three problems are solved in sequence: firstly the time-
dependent state problem is solved to yield the state variables
(deflections w(x, t), and slopes ψ(x, t)) for an assumed dis-
tribution of Young’s modulus E(x). Then, the time-
dependent adjoint problem is solved driven by the misfit, to
yield the adjoint variables λw(x, t) and λψ(x, t). As will be
discussed, standard finite elements are used to resolve numer-
ically both the state and adjoint problems. Finally, the control
equation is used as the reduced gradient in a gradient-based
scheme to provide updates for the inversion variable/materi-
al property. The cycle is repeated, until convergence. The
details are outlined below.

4.1 The state problem—semi-discrete form

Following standard lines, we multiply the governing PDEs
of the state problem (2) and (3) by test functions u(x) and
v(x), respectively, and integrate over the domain (0, L); there
results:

−
L∫

0

G AKs
∂w

∂x

∂u

∂x
dx +

L∫
0

G AKsψ
∂u

∂x
dx

−
L∫

0

uρA
∂2w

∂t2 dx = −
L∫

0

uq dx, (23)

Nodal deflections − w(x,t) (cubic)

Nodal moduli − E(x) (linear)

ψ(x,t) (quadratic)Nodal slopes −

Fig. 2 Nodes associated with the element interpolants for the nodal
deflections w, nodal slopes ψ , and nodal Young’s moduli E

L∫
0

vG AKs
∂w

∂x
− vG AKsψ dx −

L∫
0

E I
∂v

∂x

∂ψ

∂x
dx

−
L∫

0

vρ I
∂2ψ

∂t2 dx = 0. (24)

Next, the test u, v, and trial functionsw,ψ are approximated
by:

u(x) � uTφ(x), v(x) � vT g(x), (25)

w(x, t) � φ(x)T W(t), ψ(x, t) � g(x)T�(t), (26)

where W(t) and �(t) are vectors of unknown nodal deflec-
tions and slopes, respectively, and φ(x) and g(x) are vectors
of shape functions. For the latter, there are several choices
proposed in the literature [8,19,14]. Among those, we favor
consistent choices, whereby the order of the approximant
for the deflections remains one order higher than that of the
slopes, to avoid spurious energy modes, or the need for under-
integration. To this end, we select standard Lagrange 4-noded
cubic polynomials to approximate w (and u), and Lagrange
3-noded quadratic polynomials to approximateψ (and v); we
use linear interpolants h(x) for E(x) (Fig. 2). Given these
choices, the element mass and stiffness matrices are 7× 7.

Introduction of (25) and (26) in the weak form (23) and
(24) yields the following semi-discrete system:

Mst d̈st + K st dst = Qst, (27)

where a dot denotes time-derivative of the subtended quan-
tity, and,

Mst =
[ ∫ L

0 ρAφφT dx 0
0

∫ L
0 ρ I g gT dx

]
, (28)

K st =
[∫ L

0 G AKsφ
′φ′T dx

∫ L
0 G AKsφ

′ gT dx∫ L
0 G AKs gφ′T dx

∫ L
0

(
G AKs g gT + E I g′ g′T )

dx

]
,

(29)

dst =
[

W
�

]
, Qst =

[− ∫ L
0 φq dx

0

]
, (30)
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where a prime (′) denotes differentiation with respect to x . In
Eqs. (27)–(30), Mst and K st represent the mass and stiffness
matrices, respectively, Qst is the load vector, and dst is the
vector of unknown nodal values of w and ψ .

4.2 The adjoint problem—semi-discrete form

As noted in Sect. 3.3.3, the governing operators for the state
and adjoint problems are identical. We thus resort to identical
interpolants to the state problem, for approximating λw and
λψ . The adjoint weak form becomes:

−
L∫

0

G AKs
∂λw

∂x

∂u

∂x
dx +

L∫
0

G AKsλψ
∂u

∂x
dx

−
L∫

0

uρA
∂2λw

∂t2 dx = −
L∫

0

u θ dx, (31)

L∫
0

vG AKs
∂λw

∂x
− vG AKsλψ dx −

L∫
0

E I
∂v

∂x

∂λψ

∂x
dx

−
L∫

0

vρ I
∂2λψ

∂t2 dx = 0, (32)

where θ is the driver for the adjoint problem, defined as:

θ(x, t) =
N∑

i=1

[wm(x, t)− w(x, t)] δ(x − xi ). (33)

Introducing next the approximants (25), as well as:

λw(x, t) � φ(x)Tλw(t), λψ(x, t) � g(x)Tλψ (t), (34)

yields the following semi-discrete system:

Madj d̈adj + K adjdadj = Qadj, (35)

where,

Madj = Mst, K adj = K st, (36)

dadj =
[
λw
λψ

]
, Qadj =

[− ∫ L
0 φθ dx

0

]
. (37)

Due to (36), the computational cost associated with matrix
assembly is reduced considerably, since the matrices need to
be assembled only once during each inversion iteration for
both the state and adjoint problems. The time integration pro-
cedure for the state and adjoint problems is, however, slightly
different, since the state problem is an initial value problem,
whereas the adjoint problem is a final value problem. We
address these schemes next.

4.3 State and adjoint time integration

We use standard Newmark average acceleration schemes for
both the state and adjoint problems. Denoting with a super-
script n the subtended quantity’s value at the n-th time-step,
the resulting scheme for the state problem can be summarized
as:

Meff
st d̈

n+1
st = Qeff

st , (38)

where,

Meff
st = Mst + 1

4
�t2 K st, (39)

Qeff
st = Qn+1

st − K stdn
st −�t K st ḋ

n
st −

1

4
�t2 K st d̈

n
st, (40)

and�t is the time-step. To initiate the process, we use silent
initial conditions and the following equation:

Mst d̈
0
st = Q0

st − K std0
st. (41)

Upon recovering of the accelerations d̈
n+1
st , the velocities and

the displacements can be obtained using:

ḋ
n+1
adj = ḋ

n
adj +

1

2
�t

[
d̈

n+1
adj + d̈

n
adj,

]
(42)

dn+1
adj = dn

adj +�t ḋ
n
adj +

1

4
�t2

[
d̈

n+1
adj + d̈

n
adj

]
. (43)

By contrast to the state problem, the adjoint problem is
initiated using the final time conditions at t = T , to obtain
the final time adjoint “accelerations,” as:

Madj d̈
T
adj = QT

adj − K adjdT
adj. (44)

To resolve the accelerations at subsequent time-steps, we tra-
verse the time-line in the negative direction, and adjust the
Newmark scheme accordingly:

Meff
adj d̈

n−1
st = Qeff

st , (45)

where,

Meff
adj = Madj +�t2 1

4
K adj = Meff

st , (46)

Qeff
adj = Qn−1

adj − K adjdn
adj +�t K adj ḋ

n
adj −

1

4
�t2 K adj d̈

n
adj.

(47)

The values of ḋ
n−1
adj and dn−1

adj can then be computed using:

ḋ
n−1
adj = ḋ

n
adj −

1

2
�t

[
d̈

n−1
adj + d̈

n
adj

]
, (48)

dn−1
adj = dn

adj −�t ḋ
n
adj −

1

4
�t2

[
d̈

n−1
adj + d̈

n
adj

]
. (49)
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4.4 Inversion variable updates

The reconstruction of the distributed Young’s modulus E(x)
begins with an initial guess. Then, the state variablesw(x, t),
ψ(x, t) satisfying Eqs. (2)–(7) are computed. Next, the adjo-
int variables λw(x, t), λψ(x, t), satisfying Eqs. (14)–(19) are
obtained. We, then, seek fulfillment of the control problem
(21) or (22), using the values of the state and adjoint vari-
ables, as well as the current profile of the inversion variable
E(x). The control problem is readily satisfied if the current
profile of the inversion variable is the true profile. This is not
the case, in general, and an iterative procedure is required to
recover the profile: such a procedure can be readily devised
by noticing that the non-vanishing left-hand-side of the con-
trol equation is the reduced gradient of the Lagrangian func-
tional (∇EL ). Furthermore, the reduced gradient is equal
to the gradient of the objective functional (∇EF ), since the
side constrains vanish on account of satisfaction of the state
problem. Thus:
Reduced gradient—TN regularization

∇EL = −RE
d2 E

dx2 −
T∫

0

[
AKs

2(1+ν)
(
∂w

∂x
−ψ

) (
∂λw

∂x
−λψ

)

+ I
∂ψ

∂x

∂λψ

∂x

]
dt, (50)

subject to
( d E

dx

)
x=0 = 0 and

( d E
dx

)
x=L = 0.

Reduced gradient—TV regularization

∇EL = −REε
d2 E

dx2

[(
d E

dx

)2

+ ε
]− 3

2

−
T∫

0

[
AKs

2(1+ ν)
(
∂w

∂x
− ψ

) (
∂λw

∂x
− λψ

)

+ I
∂ψ

∂x

∂λψ

∂x

]
dt, (51)

subject also to
( d E

dx

)
x=0 = 0 and

( d E
dx

)
x=L = 0.

From this point on, there are three options for handling the
inversion variable updates: one could treat (50) or (51) as
search directions in a gradient-based scheme, or seek to
enforce the control problem (21) or (22) in a weak sense,
using the variation δE as the weight function. We discuss
all three schemes and highlight the relative merits; we focus
first on the gradient-based scheme using a conjugate-gradient
method.

4.5 Gradient-based scheme for inversion variable updates

Let gk be the (discretized) reduced gradient (50) or (51) at
the k-th inversion iteration, i.e.,

gk = (∇EL )k . (52)

Moreover, let the vector E(k) denote the nodal values of the
inversion variable E at the k-th iteration. We compute the
updated vector E(k+1) of the inversion variable at the next
iteration as:

E(k+1) = E(k) + αdk, (53)

where dk is the search direction, and α is the step length. The
search direction dk can be obtained as:

dk =
{−gk if k = 0

−gk + gk ·gk
gk−1·gk−1

dk−1 if k ≥ 1
(54)

Thus, with the exception of the first iteration, the search
direction is updated at every inversion iteration based on
the reduced gradient of the previous iteration. However, in
practice, due to round-off errors that lead to the progressive
contamination of the search direction, dk is reset every m
iterations (we used m = 10); thus, the scheme is modified to
read:

dk =
{−gk if mod(k,m) = 0

−gk + gk ·gk
gk−1·gk−1

dk−1 otherwise
(55)

Once the update E (k+1) is obtained, we evaluate the mis-
fit functional J and compare it against a preset tolerance.
If the misfit is less than the tolerance, the inversion process
is terminated, and E(k+1) is regarded as the stationary solu-
tion. Otherwise, the outlined process is repeated. Lastly, to
determine appropriate values for the step length α in (53), an
inexact line search with backtracking is employed, subject to
the Armijo condition. The condition requires that α produce
a sufficient decrease in the misfit functional, that is:

J (E(k) + αdk) ≤J (E(k))+ μαgk · dk, (56)

for which we used μ = 10−12. In order to obtain an α sat-
isfying (56), the backtracking approach is utilized [12]. The
process is initialized with a suitable step length α = αo.
Then, the step length α is reduced by letting α ← ρα for
ρ < 1 until the Armijo condition is satisfied (ρ = 0.5 was
used throughout).

Remarks – We note that the reduced gradients (50) or (51)
require that the first derivatives of the inversion variable
vanish at domain ends ((d E/dx) = 0 at x = 0, L). We
explicitly impose these requirements by forcing a constant
value of E over the extreme elements of the domain: this
action realizes, in a finite-difference sense, the vanishing
of the derivatives.
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– We also remark that the direct use of (50) or (51) requires
the computation of the second spatial derivative of the
inversion variable E at element ends. Since E is approxi-
mated using, in general, C0 interpolants (linear herein), its
second derivative is a Dirac function at nodal locations. We
use a central finite-difference scheme to approximate the
second derivative, effectively smoothening numerically a
Dirac function. Though the finite difference approxima-
tion is inconsistent with the underlying assumptions, we
have not observed an impact on the convergence rate, or
the quality of the results. Alternatively, one could use the
scheme we describe next, which avoids the explicit com-
putation of the second derivatives, while also avoiding the
need for the explicit imposition of the vanishing of the first
derivatives at the domain ends.

4.6 Weak-form-based scheme for inversion variable updates

We return to the control problem expression (21) or (22), and
use δE as a weight function, approximated by:

δE = zT h(x), (57)

where zT are arbitrary nodal quantities, and h(x) is the vector
of linear approximants (recall E(x) is similarly approximated
by h(x)). After integration by parts, there results:

L∫
0

dh(x)
dx

dh(x)T

dx
dx E

− 1

RE

T∫
0

L∫
0

h(x)
[

AKs

2(1+ ν)
(
∂w

∂x
− ψ

) (
∂λw

∂x
− λψ

)

+ I
∂ψ

∂x

∂λψ

∂x

]
dx dt = 0, (58)

where E above is the vector of nodal E(x) values. Equation
(58) can be solved for the nodal values E of the inversion
variable, without need to resort to a gradient-based scheme.
The right-hand-side is readily computable at each inversion
iteration, following the solution of the state and adjoint prob-
lems. The left-hand-side of (58) requires the computation of
a “stiffness-like” matrix only once for all inversion itera-
tions. The matrix, however, is singular with rank deficiency
of one, due to the pure Neumann character of the problem:
we recall that the only conditions imposed on E(x) were the
two Neumann end conditions

( d E
dx

)
x=0 and

( d E
dx

)
x=L . Thus,

to overcome the singularity, the value of E must be a pri-
ori fixed at one node of the discretization. This is, in effect,
the only disadvantage of this second scheme for computing
material updates.

Alternatively, (58) too can be used as the reduced gradient,
in its weak form, to drive the gradient-based scheme. Of the

three alternatives, the results presented herein were obtained
using the first scheme.

4.6.1 Regularization factor continuation

The choice of the regularization factor is, overall, critical
to the successful recovery of the true material profile. Very
small values of the regularization factor will not alleviate
solution multiplicity, while large values may hinder recon-
struction of the target profile. Here, we use a continuation
scheme, in which the regularization factor for every inver-
sion iteration is chosen based on values of the variables in
the control equation [7]. Thus,

RE = 0.5
|∇EFm |
|∇EFr | , (59)

where,

∇EFm =
T∫

0

[
AKs

2(1+ν)
(
∂w

∂x
−ψ

) (
∂λw

∂x
−λψ

)
+ I

∂ψ

∂x

∂λψ

∂x

]
dt,

(60)

∇EFr = d2 E

dx2 . (61)

The approach maintains a balance between the misfit part
and the regularization part of the control equation leading to
an improved estimate of RE over constant choices. Notice
that in the initial part of the inversion, when the misfit is
large, the regularization factor chosen by using Eq. (59) will
be similarly large, and will thus assist in reducing the fea-
sibility space of possible solutions. Once the misfit reduces
sufficiently, a smaller regularization factor will present the
optimizer with more flexibility in attaining the true profile
[7].

5 Results of numerical experiments

We use the inversion methodology outlined in the previous
sections to first reconstruct material profiles of single beams.
Extensions to frames are discussed in Sect. 6. We discuss
the reconstruction of smoothly-varying profiles, which are
typically easier to obtain using TN regularization, and the
reconstruction of sharply-varying profiles, typically indica-
tive of abrupt modulus changes, for which TV regulariza-
tion is better suited. We also report on profiles characterized
by localized damage extending over a fraction of the total
component length. We experiment with distributed loads,
which in practice will be more difficult to generate for con-
dition assessment purposes, but report also quite satisfactory
results with point loads, which are fairly easy to generate on
existing structures. In all of the reported results, the mea-
sured responses have been generated synthetically, using a
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different discrete system than the one we use for inversion
purposes to avoid biasing the inversion process. For the exam-
ples depicted in even-numbered figures, the measured data
used to drive the inversion process are also included.

We use a simply-supported beam to conduct the experi-
ments, with nominal values for the various beam parameters.
Specifically, we used:

L = 1, A(x) = 1, I (x) = 1

12
, ρ(x) = 1,

Ks = 5

6
, q(x, t) = β(x)τ (t), (62)

where β(x) and τ(t) denote the spatial and temporal depen-
dence of the applied probing excitation q(x, t). We con-
sider two cases for β, a uniform load - β(x) = Ao, and a
point load—β(x) = Aoδ(x − x0) applied at point x = x0.
Throughout all cases, a Gaussian time signal is used for τ(t):

τ(t) = exp

[−(t − Bo)
2

Co

]
, (63)

where Ao, Bo,Co are user-defined parameters: the value of
Co controls the frequency content of the time signal. The sig-
nal parameters, component geometry, load and sensor loca-
tions, are all shown in the figures that follow.

To start the process, the beam is subjected to the excitation
q(x, t) and the time history of the deflections is measured at
the N sensor locations. Generally, three or four sensors are
used per member. In the next step, the time histories at the
sensor locations are fed, via the misfit, as input to the inver-
sion algorithm outlined earlier. The Young’s modulus profile
E(x) corresponding to the stationary point of the Lagrangian
is recovered as output. Table 1 summarizes the data used for
all the examples we report herein: as could be seen from the
table, we used approximately 12–20 points per wavelength
(using the smallest wavelength to drive the element size).

Table 1 Example characteristics: smallest wavelength λ, element size
he, time-step �t , total observation time T , number of iterations

Example λ he �t T Iterations

Fig. 3 0.0855 0.0200 0.010 4 2,752

Fig. 4 0.0684 0.0125 0.008 4 2,454

Fig. 5 0.0855 0.0100 0.010 4 11,466

Fig. 6 0.0513 0.0100 0.006 4.2 4,646

Fig. 7 0.0684 0.0200 0.008 4 8,772

Fig. 8 0.0205 0.0050 0.002 3.6 8,780 (TN)

8,275 (TV)

Fig. 9 0.0513 0.0100 0.006 4.2 2,991

Fig. 10 0.0100 0.0020 0.001 3.6 2,250 (TN)

2,424 (TV)

Fig. 12 0.1710 0.0125 0.020 10 4,247

Fig. 13 0.0855 0.0100 0.008 13.2 1,344

Fig. 14 0.0205 0.0050 0.004 6.6 1,410

Fig. 15 0.0789 0.0067 0.008 6 990

For the cases exhibiting localized damage we remark that
structural flaws were detected using excitations with shortest
wavelength ranging from a fraction (Fig. 14) to about four
wavelengths (Fig. 9) of the structural flaw’s width.

Figures 3 and 4 show the results for smoothly varying
profiles, which were reconstructed using four sensors, and a
uniform and point load, respectively. Notice that in both cases
the initial guess was a uniform profile that is not related to
any prior undamaged component state. The recovered pro-
files match the targets quite well. Sharp profiles are simi-
larly well reconstructed, as evidenced by the results shown
in Figs. 5 and 6 pertaining to an abrupt 50% change in the
modulus over the central 20% portion of the beam, which
could represent a region experiencing diffuse cracking. Of

Fig. 3 Reconstruction of a
smooth target profile for a
simply-supported beam:
excitation, uniform load, sensor
distribution, TN regularization.
a Time signal τ(t), b geometry,
uniform load, and sensor
locations, c initial, target, and
converged profile
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Fig. 4 Reconstruction of a
smooth target profile for a
simply-supported beam:
excitation, point load location,
sensor distribution, TN
regularization. a Time signal
τ(t), b geometry, point load,
and sensor locations, c
measured response at the sensor
locations, d initial, target, and
converged profile
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Fig. 5 Reconstruction of a
sharp target profile for a
simply-supported beam:
excitation, uniform load, sensor
distribution, TV regularization.
a Time signal τ(t), b geometry,
uniform load, and sensor
locations, c initial, target, and
converged profile
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similar quality are the reconstructed results depicted in Figs. 7
and 8. The former pertains to a staircase-type profile, while
the latter depicts localized damage of different intensity in
two neighboring sections. In this latter example, both TN
and TV regularizations have been used: both schemes per-
form quite well, with the TV having a slight edge over the
TN in the sharpest regions of the profile; moreover, the TN
scheme took somewhat longer to converge (6%) over the

TV scheme, for the same level of accuracy (see Table 1,
Fig. 8d, e).

Figure 9 depicts the reconstructed profile obtained when
there is 10% Gaussian noise infused in the synthetic data.
Despite the noise, the profile is still fairly well reconstructed.

Lastly, Fig. 10 illustrates the use of the inversion pro-
cess in detecting a notch in a simply-supported beam. The
notch, introduced at x = 0.80, has a width equal to 1%
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Fig. 6 Reconstruction of a
sharp target profile for a
simply-supported beam:
excitation, point load location,
sensor distribution, TV
regularization. a Time signal
τ(t), b geometry, point load,
and sensor locations, c
measured response at the sensor
locations, d initial, target, and
converged profile
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Fig. 7 Reconstruction of a
multiply-sharp target profile for
a simply-supported beam:
excitation, uniform load, sensor
distribution, TV regularization.
a Time signal τ(t), b geometry,
uniform load, and sensor
locations, c initial, target, and
converged profile
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of the beam’s length, and represents a localized material
perturbation over an already heterogeneous profile. We used
both Tikhonov (TN) and total variation (TV) regularizations
to recover the profile. Figure 10b and e show the recorded
data at all four sensor locations: shown in these figures are
measured data for both the virgin beam (without a notch),
and the damaged beam (with the notch), to highlight the
fact that the response of the two beams is almost identical,
with only minor differences due to the presence of the notch.
Figure 10c compares the reconstructed profiles obtained
using TN and TV regularization when starting with a homo-

geneous initial guess; Fig. 10f zooms in at the location of
the notch. Overall, the TN scheme captured the overall pro-
file better than the TV scheme, even in the neighborhood of
the notch.

6 Extensions

The outlined process could be generalized to accommodate
damage detection and profile reconstruction in frames. In
addition, the inversion process could be cast in terms of
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Fig. 8 Reconstruction of
localized damage for a
simply-supported beam:
excitation, point load location,
sensor distribution, TN and TV
regularization. a Time signal
τ(t), b geometry, point load, and
sensor locations, c measured
response at the sensor locations,
d initial, target, and converged
profile: TN regularization, e
initial, target, and converged
profile: TV regularization
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the second moment of inertia, instead of Young’s modulus,
if a geometric measure of damage is desired. Both exten-
sions are addressed below. Finally, we briefly discuss can-
didate schemes for improving the chances of the optimizer
to recover the target profile, borrowing from past experience
with inverse problems in other applications.

6.1 Material profile reconstruction for frames

To fix ideas, we consider the modeling of the portal frame
shown in Fig. 11. All members are considered axially rigid
and modeled as Timoshenko beams. The forward problem
can be cast similarly to (2) and (3), stated now for each frame
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Fig. 9 Reconstruction of a
sharp target profile for a
simply-supported beam with
10% Gaussian noise in the data:
excitation, point load location,
sensor distribution, TV
regularization. a Time signal
τ(t), b geometry, point load,
and sensor locations, c initial,
target, and converged profile 0 0.2 0.4 0.6 0.8 1
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member (i = 1: column, i = 2: beam):

∂

∂xi

{
Gi Ai Ksi

(
∂wi

∂xi
− ψi

)}
− ρi Ai

∂2wi

∂t2 = −qi , (64)

Gi Ai Ksi

(
∂wi

∂xi
− ψi

)
+ ∂

∂xi

(
Ei Ii

∂ψi

∂xi

)
− ρi Ii

∂2ψi

∂t2 = 0.

(65)

Boundary conditions

w1(0, t) = 0, (66)

w2(0, t) = 0, (67)

w2(L2, t) = 0, (68)

ψ1(0, t) = 0, (69)

G1 A1 Ks1

(
∂w1

∂x
(L1, t)− ψ1(L1, t)

)
= 0, (70)

E2 I2
∂ψ2

∂x2
(L2, t) = 0, (71)

Continuity conditions

ψ1(L1, t) = ψ2(0, t), (72)

E1 I1
∂ψ1

∂x1
(L1, t) = E2 I2

∂ψ2

∂x2
(0, t), (73)

Initial conditions

wi (xi , 0) = ẇi (xi , 0) = 0, (74)

ψi (xi , 0) = ψ̇i (xi , 0) = 0. (75)

The frame-specific objective functional can be rewritten as:

F = 1

2

2∑
i=1

⎡
⎣ N∑

j=1

T∫
0

(wm
i j − wi j )

2 dt +Ri (Ei )

⎤
⎦ , (76)

subject to (64)–(75). After side-imposing on the objective
functional the Neumann-type conditions, among those in

(66)–(75), the Lagrangian becomes:

L =
2∑

i=1

⎡
⎣1

2

N∑
j=1

T∫
0

(wm
i − wi j )

2 dt +
Li∫

0

Ri (Ei ) dxi

+
T∫

0

Li∫
0

λiw

[
∂

∂xi

{
Gi Ai Ksi

(
∂wi

∂xi
− ψi

)}

−ρi Ai
∂2wi

∂t2 + qi

]
dxi dt

+
T∫

0

Li∫
0

λiψ

[
Gi Ai Ksi

(
∂wi

∂xi
−ψi

)
+ ∂

∂xi

(
Ei Ii

∂ψi

∂xi

)

−ρi Ii
∂2ψi

∂t2

]
dxi dt

+
L∫

0

λi1 (ẇi )t=0 + λi2
(
ψ̇i

)
t=0 dx

+
T∫

0

λ3

[
G1 A1 Ks1

(
∂w1

∂x
− ψ1

)]
x1=L1

+ λ4

[
E2 I2

∂ψ2

∂x2

]
x2=L2

dt

+
T∫

0

λ5

[
E1 I1

(
∂ψ1

∂x1

)
x1=L1

−E2 I2

(
∂ψ2

∂x2

)
x2=0

]
dt

⎤
⎦.

(77)

The first-order optimality conditions for the Lagrangian
(77) yield state, adjoint, and control problems similar to the
single-member problem presented earlier. Specifically, the
state and adjoint problems are each cast for the entire frame,
allowing through the interface conditions the coupling of the
motion of the column to the beam. The control problems,
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Fig. 10 Reconstruction of a
smooth target profile with a
notch for a simply supported
beam: excitation, point load
location, sensor distribution, TN
and TV regularization. a Time
signal τ(t), b measured
response at the sensor locations,
c initial, target, and converged
profile, d geometry, point load,
and sensor locations, e measured
response at the sensor locations,
f target and converged profile:
zoomed-in at notch location
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however, are uncoupled: each is identical to either of (21) or
(22) when written for either the beam or the column mem-
bers. Figures 12, 13, 14 present profile reconstruction results

for a variety of profiles, mixing sharp and smooth profiles for
the two-member frame, as well as localized damage sections
for the prototype frame of Fig. 11. As an example of the
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L2
L

1

2

1

Fig. 11 Prototype portal frame

generalization of the concepts to arbitrary-geometry frames,
Fig. 15 depicts a two-story frame, where the response has
been sampled at four sensors locations per member (all sensor
locations are given in Table 2), revealing localized damage

in the first-story beam, and a non-uniform modulus profile in
the second-story beam, while also recovering the in-service
material profile of the columns.

6.2 Inversion variables other than E

We remark that, if instead of the Young’s modulus there
is interest in reconstructing the distribution of the second
moment of inertia I (x), as a measure of cross-sectional dam-
age, there will be no change to the first and second optimality
conditions, which will still yield the same state and adjoint
problems. However, the regularization term, and the control
problems will be impacted: accordingly, the control problems
become:
TN regularization

δI L = −
L∫

0

⎧⎨
⎩RI

d2 I

dx2

−
T∫

0

[
E
∂ψ

∂x

∂λψ

∂x
+ λψρ ∂

2ψ

∂t2

]
dt

⎫⎬
⎭ δ I dx = 0, (78)

subject to
( d I

dx

)
x=0 = 0 and

( d I
dx

)
x=L = 0.

Fig. 12 Reconstruction of a
smooth target profile for a
prototype portal frame:
excitation, point load location,
sensor distribution, TN
regularization. a Time signal
τ(t), b initial, target, and
converged profile for the
column (member 1), c geometry,
point load, and sensor locations,
d initial, target, and converged
profile for the beam (member 2)
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Fig. 13 Reconstruction of a
sharp target profile for a
prototype portal frame:
excitation, point load location,
sensor distribution, TV
regularization. a Time signal
τ(t), b initial, target, and
converged profile for the
column (member 1), c geometry,
point load, and sensor locations,
d initial, target, and converged
profile for the beam (member 2)
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Fig. 14 Reconstruction of
localized damage for a prototype
portal frame: excitation, point
load location, sensor
distribution, TV regularization.
a Time signal τ(t), b initial,
target, and converged profile for
the column (member 1),
c geometry, point load, and
sensor locations, d initial, target,
and converged profile for the
beam (member 2)
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Fig. 15 Reconstruction of material profile including localized dam-
age for a frame using TV regularization. a Time signal (t) (beam B1),
b frame geometry, load, and sensor locations, c time signal (t) (beam
B2), d initial, target, and recovered profile for beam B1, e initial, target,

and recovered profile for column C1, f initial, target, and recovered pro-
file for column C2, g initial, target, and recovered profile for beam B2,
h initial, target, and recovered profile for column C3, i initial, target,
and recovered profile for column C4

TV regularization

δI L = −
L∫

0

⎧⎨
⎩RI ε

d2 I

dx2

[(
d I

dx

)2

+ ε
]− 3

2

+
T∫

0

[
E
∂ψ

∂x

∂λψ

∂x
+ λψρ ∂

2ψ

∂t2

]
dt

⎫⎬
⎭ δ I dx = 0, (79)

subject also to
( d I

dx

)
x=0 = 0 and

( d I
dx

)
x=L = 0.

The remainder of the inversion process for I (x) is the same
as the one followed for E(x).

6.3 Continuation schemes

In general, the frequency content of the source excitation
used to probe a structure is of importance. Fine features
(structural flaws) may not reveal themselves if, for example,
probing is attempted with a signal of low-frequency con-
tent. To improve on the detection process, or equivalently
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Table 2 Sensor locations for the frame shown in Fig. 15

Sensor x y

S1 0.0 0.2
S2 0.0 0.4
S3 0.0 0.6
S4 0.0 0.8
S5 0.0 0.1
S6 0.0 0.3
S7 0.0 0.6
S8 0.0 0.9
S9 0.1 2.0
S10 0.3 2.0
S11 0.5 2.0
S12 0.8 2.0
S13 1.0 0.1
S14 1.0 0.4
S15 1.0 0.7
S16 1.0 0.9
S17 1.0 0.2
S18 1.0 0.4
S19 1.0 0.7
S20 1.0 0.8
S21 0.1 1.0
S22 0.3 1.0
S23 0.5 1.0
S24 0.8 1.0

on the profile reconstruction, continuation schemes consti-
tute fairly simple means. For example, in [11] we discussed
one such scheme, whereby probing is initiated at a low fre-
quency, the inversion process is allowed to converge (to a
possibly erroneous profile), and then the converged profile is
fed as initial guess to a next stage of probing conducted using
a higher frequency. In this manner, we solve a sequence of
inverse problems by biasing the initial guess in all problems
other than the first with a profile that is, hopefully, closer to
the basin of attraction of the global optimum. The approach
meshes well with field equipment since it readily recognizes
the frequency/excitation agility of modern day probes. Sim-
ilar schemes, of a more numerical nature (e.g. grid contin-
uation) are also possible, and, invariably have a beneficial
effect on convergence.

7 Conclusions

We presented a systematic inversion methodology for recon-
structing the material profile in beams and frames of arbitrary
complexity, using total wavefields for both probing and inver-
sion purposes. We modeled the one-dimensional components
using Timoshenko beam theory, where both shear and rotary
inertia effects are accounted for, in order to allow for a more
accurate representation of the underlying wave physics when
compared to Euler–Bernoulli assumptions.

The optimization problem was cast based on a misfit func-
tional between the measured response and the numerically

computed response. Adherence to the physics of the prob-
lem was ensured by forming a Lagrangian functional, that
includes the misfit, a regularization term, as well as the side-
imposed governing PDEs, boundary, and initial conditions.
We discussed the numerical treatment of the ensuing state,
adjoint, and control problems, in the context of a reduced-
space method. Moreover, Tikhonov and total variation
regularization schemes were used to alleviate the inherent
ill-posedness of the inverse medium problem.

We reported numerical results for single beams, and
frames, involving either smooth or sharp material profiles,
which in a few cases were also consistent with localized
damage. Invariably, even in the presence of noise, the out-
lined procedure exhibited algorithmic robustness, using only
a few sensors per component. We note that the process is
well-suited for localizing and quantifying damage in frames
without need for knowing the undamaged state or any prior
state of the structure. In this context, the presented method-
ology offers a reasonable tool for condition assessment of
existing structures.
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