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Abstract In this article we discuss a formal framework
for casting the inverse problem of detecting the location
and shape of an insonified scatterer embedded within a two-
dimensional homogeneous acoustic host, in terms of a partial-
differential-equation-constrained optimization approach. We
seek to satisfy the ensuing Karush–Kuhn–Tucker first-order
optimality conditions using boundary integral equations. The
treatment of evolving boundary shapes, which arise natu-
rally during the search for the true shape, resides on the use
of total derivatives, borrowing from recent work by Bonnet
and Guzina [1–4] in elastodynamics. We consider incom-
plete information collected at stations sparsely spaced at the
assumed obstacle’s backscattered region. To improve on the
ability of the optimizer to arrive at the global optimum we:
(a) favor an amplitude-based misfit functional; and (b) iterate
over both the frequency- and wave-direction spaces through a
sequence of problems. We report numerical results for sound-
hard objects with shapes ranging from circles, to penny- and
kite-shaped, including obstacles with arbitrarily shaped non-
convex boundaries.
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1 Introduction

Inverse scattering problems are of considerable practical
interest in various areas of science and engineering due, in
part, to the ever broadening spectrum of important applica-
tions that range from medical, to geophysical, to target identi-
fication investigations. In particular, inverse problems arising
in acoustics are of relevance in, amongst others, ultrasound
imaging (for medical or other non-destructive assessments),
seismic imaging, underwater surveillance and target acqui-
sition, and in the detection of objects in the ocean, whether
fully submerged or partially buried in the seafloor.

Invariably, in all of the aforementioned areas the common
goal is to arrive at a description of unknown parameters
of an interrogated object, whether these parameters refer
to material properties, boundary conditions, or geometric
measures, by, typically, relying on knowledge of input para-
meters (e.g. interrogating frequencies) and output measure-
ments (e.g. response at coarsely distributed sensor locations).
Due to the incomplete data set such problems are inher-
ently ill-posed (and numerically ill-conditioned), with the
ill-posedness originating from any or all of three possible
sources, namely, solution non-existence, non-uniqueness,
and/or (numerical) instability [5–7]. To alleviate or overcome
the considerable algorithmic challenges imposed by the ill-
posedness, specialized schemes need to be devised. In this
article, we provide a description of such a specialized scheme
applied to the acoustic case, with, however, sufficient
generality to allow the treatment of similar problems in other
areas including electromagnetics, elastodynamics, or multi-
physics problems.
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2 Background

Of interest here is the problem of recovering the shape of an
insonified scatterer from scant measurements of its response
when excited by impinging plane waves. We treat the case of
a sound-hard scatterer embedded in full-space (Fig. 1). The
problem has received considerable attention in the literature;
among the many reviews on the topic we mention the works
in [8–10]. One may roughly classify the approaches that have
been followed, into methods that rely on optimization-based
schemes (e.g. [1–4,11–18]), and methods that do not explic-
itly seek to minimize a misfit functional (e.g. [19–23]). The
advantage of the latter category methods is that the shape
reconstruction can be carried out without necessarily relying
on a priori information, whereas, when optimization methods
are used, the solution feasibility space may be considerably
narrowed due to a priori knowledge—almost a necessity for
robust solution schemes. In this work we favor optimiza-
tion methods for the generality they offer and explore con-
tinuation algorithms that have, thus far, provided promising
results. We remark that a considerable body of work exists
where solutions are sought based on complete information: in
the context of the shape detection problem of interest in this
article, complete information refers to, for example, scattered
pressure data that circumscribe the scatterer. Even if such
measurements were collected on only a coarse discretization
of a boundary surface surrounding the scatterer, they still cir-
cumscribe the sought obstacle and are tantamount to a finite-
dimensional description of complete information. However,
in many engineering applications, obtaining complete infor-
mation is practically impossible, and thus the focus on the
numerical examples in this article is exclusively on prob-
lems where the measurement stations are distributed in the
backscattered region only.

This study comes closest to the elegant treatment of
similar inverse shape detection problems reported by Bonnet,
Guzina, and their collaborators in [1–4]. Here we try to
improve on the sensitivity to the initial guess they reported, by
using amplitude-based misfit functionals, and continuation
schemes. In addition, the problem is cast within a systematic
partial-differential-equation (PDE)-constrained optimization
framework that leads to a set of Karush–Kuhn–Tucker (KKT)
conditions, which we then seek to satisfy in an attempt to
reconstruct the sought shape.

3 Mathematical modeling

3.1 The forward problem

We are concerned with the classical time-harmonic
boundary-value problem that is governed by the Helmholtz
equation in two dimensions. Let Γ be a (smooth) closed

Fig. 1 Scattering from a sound-hard object in full space and sampling
stations

surface with exterior Ω ⊂ R
2 as shown in Fig. 1. The exterior

domain Ω is occupied by a linear, inviscid, and compressible
(acoustic) fluid, characterized by wave velocity c. Γ is the
bounding surface of an immovable rigid (sound-hard) obsta-
cle S. When S is insonified by an incident plane wave field
uinc, the scattered field can be recovered as the solution to
the following problem:

∆us(x) + k2us(x) = 0, x ∈ Ω, (1)

∂us(x)

∂n
= −∂uinc(x)

∂n
, x ∈ Γ, (2)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0. (3)

In these equations us denotes scattered pressure; x is the posi-
tion vector; n is the outward unit normal on Γ (pointing to the
interior of S); ∆ is the Laplace operator; k is the wavenum-
ber (k = ω

c , with ω denoting circular frequency). Condition
(3), in which r is radial distance, is the Sommerfeld radiation
condition. The incident field uinc describes incoming plane
waves, i.e.:

uinc = e−ik(x cos α+y sin α), (4)

in which α is the angle formed between the normal to the
traveling wave front and the global x-coordinate axis, and an
eiωt time factor has been assumed throughout.

3.2 BEM-based forward problem solution

Using boundary integral equations, the solution to the for-
ward problem given by Eqs. 1–3 can be obtained by the
following standard integral representations (for a smooth
boundary Γ ):

us = S

[
∂us

∂n

]
− D[us], in Ω, (5)
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where S and D are the single- and double-layers defined for
any smooth function q as:1

S[q](x) =
∫
Γ

q( y)G(x, y) dΓ ( y), x ∈ Ω, y ∈ Γ, (6)

D[q](x) =
∫
Γ

q( y)
∂G(x, y)

∂n y
dΓ ( y), x ∈ Ω, y ∈ Γ, (7)

with G(z) denoting the fundamental solution, or Green’s
function, i.e.,

G(z) = i

4
H (2)

0 (kz), (8)

where z = |x − y| is the distance between a point x within
Ω and a point y on Γ ; H (2)

0 denotes the zeroth order Hankel
function of the second kind, and i = √−1 is the imaginary
unit. Equation 5 provides the scattered field in Ω; by taking
into account the following jump relations,

lim
Ω�x→x∈Γ

S[q](x) = S[q](x), or S[q] = S[q], (9)

lim
Ω�x→x∈Γ

D[q](x) = −1

2
q(x) + D[q](x), or

D[q] = −1

2
q + D[q], (10)

in which

S[q](x) =
∫
Γ

q( y)G(x, y) dΓ ( y), x, y ∈ Γ, (11)

D[q](x) =
∫
Γ

q( y)
∂G(x, y)

∂n y
dΓ ( y), x, y ∈ Γ, (12)

there follows, by taking limits in (5), the classical boundary
integral representation:

1

2
us − S

[
∂us

∂n

]
+ D[us] = 0, on Γ. (13)

The solution of the inverse problem, as it will be shown,
entails a number of solutions of the forward problem, each
corresponding to a shape perturbation of the boundary Γ ; let
us denote with Γ ξ each such boundary instantiation, imply-
ing a dependence on a, yet to be defined, scalar parameter
ξ . Then, Eq. 13 provides the basis for the numerical solution
of the forward problem, for any boundary instantiation Γ ξ .
We remark that (13) corresponds to the exterior acoustics
problem, for which, it is well known (e.g. [24]) that there
exists a set of distinct frequencies, corresponding to eigen-
frequencies of the interior problem (non-physical), for which
(13) becomes singular. A number of schemes to alleviate the

1 We use Euler script letters (e.g. D) for domain representations of the
layers, i.e. when x ∈ Ω , and roman letters (e.g. D) for their boundary
counterparts (when x ∈ Γ ).

difficulty have been reported [24–26]; though mindful of the
difficulty, here we have not implemented any special scheme
to address it. In practice, we avoid interrogating frequencies
that coincide with the fictitious singular ones.

3.3 The inverse problem

We are concerned with establishing the location of the
scatterer S, as well as with describing its boundary Γ . Our
problem is driven by measurements at Ns stations (Fig. 1). In
such cases, classical lines of investigation suggest the con-
struction of a misfit functional between the measured and
computed fields. For example, one candidate choice is:

J 1(Γ
ξ ; ξ) = 1

2

Ns∑
j=1

|us(x j , ξ) − us
m(x j )|2

|us
m(x j )|2 , (14)

where x j denotes the location of the stations. us
m(x) is the

measured scattered field at x j , and us(x j , ξ) denotes the
forward solution computed for some boundary perturbation
Γ ξ , also at the same locations x j . J1 defines the misfit, in the
least-squares sense, of the amplitude of the difference of the
complex-valued scattered fields normalized with respect to
the measured field, and is a reasonable starting point. How-
ever, in a recent article [27], we presented arguments in favor
of an amplitude-based misfit functional, defined as:

J (Γ ξ ; ξ) = 1

2

Ns∑
j=1

(|us(x j , ξ)| − |us
m(x j )|

)2

|us
m(x j )|2 . (15)

In [27], we argued that J1 becomes highly oscillatory even
for moderate frequencies, presents the optimizer with multi-
ple minima, whose basin of attraction ever narrows as the
frequency increases. By contrast, the amplitude-based J ,
even though it is missing the enforcement of equality in the
phase-angles between the measured and computed fields,
is considerably less oscillatory, thereby lending hope that
local optimization methods may arrive at the global opti-
mum. Numerical evidence supporting these arguments can
be found in [27]. In physical terms, J exploits the fact that
around obstacles embedded in a homogeneous full-space the
scattered amplitude distribution is a rather smooth-varying
field, as, for example, can be seen in Fig. 2 for the case of a
kite-shaped obstacle insonified by plane waves (α = −45◦)
at four different frequencies (this assertion will not be true, in
general, for inhomogeneous hosts). With the choice of (15),
we seek next the minimization of J subject to the strong
form (1)–(3), written for the domain and boundary pertur-
bations Ωξ and Γ ξ , respectively. Accordingly, we define an
augmented functional L, and seek next to satisfy the first-
order optimality conditions. We remark that J is a linear
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Fig. 2 Scattered pressure
amplitude distribution around a
kite-shaped rigid scatterer;
insonification angle α = −45◦;
multiple frequencies; a = kite
height; kite parametrization:
(x(θ), y(θ)) = (cos(θ) +
0.65(cos 2θ − 1),−10 +
1.5 sin θ), θ = 0 . . . 2π .
a ka = 0.3 b ka = 3.0
c ka = 15.0 d ka = 30.0
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functional (over the field of real numbers; in Appendix I, we
derive the functional’s first variation, needed in Sect. 3.6).

3.4 Augmented functional

The weak imposition of the strong form (1)–(3) via Lagrange
multipliers λ(xξ , ξ) allows casting the constrained optimiza-
tion problem as an unconstrained problem and yields the fol-
lowing augmented functional, which we seek to minimize:

L(us, λ, ξ)

= 1

2

Ns∑
j=1

[|us(x j , ξ)| − |us
m(x j )|

]2

|us
m(x j )|2

+Re

⎧⎪⎨
⎪⎩
∫

Ωξ

λ(xξ , ξ)
[
∆us(xξ , ξ) + k2us(xξ , ξ)

]
dΩξ

−
∫

Γ ξ

λ(xξ , ξ)

[
∂us(xξ , ξ)

∂n
+ ∂uinc(xξ , ξ)

∂n

]
dΓ ξ

−
∫

Γ ∞
λ(xξ , ξ)

[
∂us(xξ , ξ)

∂n
− ikus(xξ , ξ)

]
dΓ ∞

⎫⎬
⎭ .

(16)

In (16), only the real part of the weak imposition of (1)–(3)
appears, since this is sufficient for ensuring that the strong
form is satisfied, while conveniently allowing for a real-valued

functional, which greatly facilitates the computational process.
Seeking the minimization of L in (16) is tantamount to ensur-
ing, simultaneously, the matching of the measured to the
computed response, and the satisfaction of the governing
equations for the true shape of the interrogated scatterer. To
this end, we seek to satisfy the Karush–Kuhn–Tucker (KKT)
first-order optimality conditions [28,29], by requiring that the
variations of L with respect to λ, us, and ξ vanish. However,
since here the model parameters amount to parameterizations
of boundary shapes Γ ξ that change during the search itera-
tions, we discuss first the necessary relations for addressing
the mathematical details of the subsequent development.

3.5 Total differentiation due to boundary shape evolution

Following the works of Bonnet, Guzina, and Fata [1–4], here
too we adopt the concept of a moving boundary to describe
the boundary shape evolution between successive updates of
the boundary parameterization. In other words, we assume
that between shape updates the boundary evolves or moves
according to a transformation velocity v (Fig. 3). Of course,
this velocity is fictitious, yet it provides the proper context
for computing derivatives and integrals over a domain (Ω)
and boundary (Γ ) that keep changing as the estimates for the
location and shape of the scatterer get updated. In general,
the transformation velocity has two components (for a pla-
nar curve), one tangential (vt ), and one normal (vn) to the
boundary. It is the imposition of this velocity field on the
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Fig. 3 Boundary shape evolution under a velocity transformation field

boundary that forces the boundary shape to evolve, driven by
the optimizer’s enforcing of the underlying physics. Here,
we assume that the boundary evolution is due only to the
normal velocity component vn (vt ≡ 0). We remark that this
choice is not restrictive, under the assumption of relatively
small boundary perturbations (see [30]). The derivatives of
integrals and functionals defined on a volume and boundary
evolving by means of a scalar parameter were originally pro-
vided by Petryk in [30]. We repeat the key expressions below
to ease the development.

Let x be a point on the boundary Γ (Fig. 3). Then, under
the action of the velocity field vn , Γ evolves to Γ ξ , and x
becomes such that:

Γ � x → x + ξ vn(x) n(x) ≡ xξ ∈ Γ ξ , (17)

where, for a given normal velocity field, the scalar parame-
ter ξ is all that is needed to characterize the evolving shape
[clearly, from (17), ξ is such that ξ ≡ 0 on Γ ]. Next, we
are concerned with the derivatives (sometimes termed total,
or material, or Eulerian, or shape) of a scalar field and the
derivatives of line and domain integrals defined over Γ ξ and
Ωξ , respectively. Let f (xξ , ξ) denote a scalar field defined
over Ωξ . Then:[

D f (xξ , ξ)

Dξ

]
ξ=0

= ∗
f (x, 0)

= ∂ f (xξ , ξ)

∂ξ
+ ∇ f (xξ , ξ) · v(x) = ḟ + vn

∂ f

∂n
, (18)

where ḟ = ∂ f
∂ξ

. The total derivatives of integrals over Γ ξ and

Ωξ are similarly defined as:⎡
⎢⎣ D

Dξ

∫

Γ ξ

f (xξ , ξ)dΓ ξ

⎤
⎥⎦

ξ=0

=
∫
Γ

[ ∗
f (x, 0) + f (x, 0) divsv

]
dΓ

=
∫
Γ

[
ḟ + vn

∂ f

∂n
− κ f vn

]
dΓ. (19)

In (19), we used divsn ≡ t · ∂n
∂s = −κ , where κ denotes

the curvature of the boundary Γ , div denotes the divergence
operator, divs denotes the boundary or surface divergence
operator, t denotes the unit tangential vector on Γ , and s
denotes arclength (Fig. 3). Similarly, it can be shown that:

⎡
⎢⎣ D

Dξ

∫

Ωξ

f (xξ , ξ)dΩξ

⎤
⎥⎦

ξ=0

=
∫
Ω

ḟ dΩ +
∫
Γ

f vndΓ.

(20)

3.6 The first-order optimality conditions

We turn next to the computation of the first-order optimality
conditions. Specifically, we require that:

⎧⎨
⎩

δλL
δusL
δξL

⎫⎬
⎭ = 0. (21)

Notice that the variation with respect to ξ is equivalent to the
variation with respect to the shape perturbation parameters.
We derive next the first-order conditions. By taking the vari-
ation of L in (16) with respect to the Lagrange multiplier (or
adjoint variable), there results:

δλL = Re

⎧⎪⎨
⎪⎩
∫

Ωξ

δλ
(
∆us + k2us

)
dΩξ

−
∫

Γ ξ

δλ

(
∂us

∂n
+ ∂uinc

∂n

)
dΓ ξ

−
∫

Γ ∞
δλ

(
∂us

∂n
− ikus

)
dΓ ∞

⎫⎬
⎭ . (22)

Setting δλL = 0 in (22), while taking into account that δλ is
arbitrary, recovers the state problem ∀ ξ :
State problem:

∆us(x) + k2us(x) = 0, x ∈ Ωξ, (23)

∂us

∂n
(x) = −∂uinc

∂n
(x), x ∈ Γ ξ , (24)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0. (25)

Similarly, by taking the variation of L with respect to the
state variable, there results:
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δusL = δusJ + Re

⎧⎪⎨
⎪⎩
∫

Ωξ

λ
(
∆δus + k2δus

)
dΩξ

−
∫

Γ ξ

λ
∂δus

∂n
dΓ ξ −

∫
Γ ∞

λ

(
∂δus

∂n
−ikδus

)
dΓ ∞

⎫⎪⎬
⎪⎭.

(26)

Using integration by parts for the first integral in (26) yields:

δusL = δusJ

+Re

⎧⎪⎨
⎪⎩
∫

Ωξ

(
∇ · (λ∇δus)−∇λ · ∇δus+λk2δus

)
dΩξ

−
∫

Γ ξ

λ
∂δus

∂n
dΓ ξ −

∫
Γ ∞

λ

(
∂δus

∂n
−ikδus

)
dΓ ∞

⎫⎪⎬
⎪⎭ .

(27)

Using the divergence theorem for the first term of the first
integral, and integration by parts for the second term of the
same integral yields:

δusL = δusJ + Re

⎧⎪⎨
⎪⎩
∫

Γ ξ

λ
∂δus

∂n
dΓ ξ +

∫
Γ ∞

λ
∂δus

∂n
dΓ ∞

+
∫

Ωξ

(
δus∆λ−∇ · (δus∇λ

))
dΩξ+

∫

Ωξ

λk2δusdΩξ

−
∫

Γ ξ

λ
∂δus

∂n
dΓ ξ −

∫
Γ ∞

λ

(
∂δus

∂n
−ikδus

)
dΓ ∞

⎫⎪⎬
⎪⎭ .

(28)

Finally, using the divergence theorem for the second term of
the third integral of (28), and (62) from Appendix I for the
variation of the misfit J , there results the variation of the
augmented functional with respect to the state variable us:

δusL = Re

⎧⎪⎨
⎪⎩
∫

Ωξ

Ns∑
j=1

δus ūs

|us
m |2

[
1 − |us

m |
|us|

]
∆D dΩξ

+
∫

Ωξ

δus
(
∆λ + k2λ

)
dΩξ

∫

Γ ξ

δus ∂λ

∂n
dΓ ξ

−
∫

Γ ∞
δus

(
∂λ

∂n
−ikλ

)
dΓ ∞

⎫⎬
⎭ , (29)

where an overbar (ūs) denotes complex conjugate. Next,

setting δusL = 0 for arbitrary δus recovers the adjoint
problem:
Adjoint problem:

∆λ(x) + k2λ(x) = −
Ns∑
j=1

ūs(x)

|us
m(x j )|2

[
1 − |us

m(x j )|
|us(x)|

]

×∆D(x − x j ), x ∈ Ωξ, (30)

∂λ

∂n
= 0, on Γ ξ , (31)

lim
r→∞

√
r

(
∂λ

∂r
− ikλ

)
= 0. (32)

Notice that the adjoint problem is nearly identical to the state
problem: the governing operator is the same, however the
forcing term in the adjoint problem, provided by the right-
hand-side of (30), depends on the state variable us at the
measurement stations. The boundary condition on the surface
of the scatterer is also affected, per (31).

Finally, the variation of L with respect to ξ results in:

δξL = Re

⎡
⎣ ∫

Ω

Ns∑
j=1

u̇s ūs

|us
m |2

(
1 − |us

m |
|us|

)
∆D dΩ

⎤
⎦

+ D

Dξ
Re

⎡
⎢⎣
∫

Ωξ

λ
(
∆us + k2us

)
dΩξ

−
∫

Γ ξ

λ

(
∂us

∂n
+ ∂uinc

∂n

)
dΓ ξ

−
∫

Γ ∞
λ

(
∂us

∂n
− ikus

)
dΓ ∞

⎤
⎦

ξ=0

= Re

⎡
⎣ ∫

Ω

Ns∑
j=1

u̇s ūs

|us
m |2

(
1 − |us

m |
|us|

)
∆D dΩ

⎤
⎦

+ D

Dξ
Re

⎡
⎢⎣
∫

Ωξ

(
−∇λ · ∇us + k2λus

)
dΩξ

−
∫

Γ ξ

λ
∂uinc

∂n
dΓ ξ

⎤
⎥⎦

ξ=0

, (33)

where we used:

∫

Ωξ

∇ · λ∇us dΩξ =
∫

Γ ξ

λ
∂us

∂n
dΓ ξ +

∫
Γ ∞

λ
∂us

∂n
dΓ ∞. (34)
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Using the total derivative from (20), (33) becomes:2

δξL = Re

⎡
⎣ ∫

Ω

Ns∑
j=1

u̇s ūs

|us
m |2

(
1 − |us

m |
|us|

)
∆D dΩ

⎤
⎦

−Re

⎡
⎣ ∫

Ω

(
∇λ̇ · ∇us+∇λ · ∇u̇s−k2λ̇us−k2λu̇s

)
dΩ

+
∫
Γ

(
∇λ · ∇us − k2λus

)
vn dΓ

+ D

Dξ

⎡
⎢⎣
∫

Γ ξ

(
λ

∂uinc

∂n

)
dΓ ξ

⎤
⎥⎦

ξ=0

⎤
⎥⎦ . (35)

In (35), the last term, using (19), can be expanded as follows:

D

Dξ

⎡
⎢⎣
∫

Γ ξ

(
λ

∂uinc

∂n

)
dΓ ξ

⎤
⎥⎦

ξ=0

=
∫
Γ

{
∂

∂ξ

(
λ

∂uinc

∂n

)
+ vn

∂

∂n

(
λ

∂uinc

∂n

)

−κ

(
λ

∂uinc

∂n

)
vn

}
dΓ

=
∫
Γ

{
λ̇

∂uinc

∂n
+ λ

∂

∂ξ

(
∂uinc

∂n

)
+ vn

∂λ

∂n

∂uinc

∂n

+vnλ
∂

∂n

(
∂uinc

∂n

)
− vnκλ

∂uinc

∂n

}
dΓ. (36)

In Appendix II, we show that:

∂

∂ξ

(
∂uinc

∂n

)
= −∂uinc

∂s

∂vn

∂s
+ vn

∂uinc

∂s
divt. (37)

Thus, using (37), first in (36), and then substituting the result-
ing expression back in (35), yields:

δξL = Re

⎡
⎣∫

Ω

Ns∑
j=1

u̇s ūs

|us
m |2

(
1 − |us

m |
|us|

)
∆D dΩ

⎤
⎦

−Re

⎧⎨
⎩
∫
Ω

(
∇λ · ∇u̇s − k2λu̇s

)
dΩ

+
∫
Ω

(
∇λ̇ · ∇us − k2λ̇us

)
dΩ +

∫
Γ

λ̇
∂uinc

∂n
dΓ

+
∫
Γ

(
∇λ · ∇us − k2λus

)
vn dΓ

2 On physical grounds, neither λ nor us on Γ ∞ depend on ξ , and thus
D

Dξ
[∫

Γ ∞ λusdΓ ∞]ξ=0 = 0, and thus the term is henceforth ommited.

−
∫
Γ

λ
∂uinc

∂s

∂vn

∂s
dΓ +

∫
Γ

vnλ
∂uinc

∂n
divt dΓ

+
∫
Γ

vn
∂λ

∂n

∂uinc

∂n
dΓ +

∫
Γ

vnλ
∂

∂n

(
∂uinc

∂n

)
dΓ

−
∫
Γ

vnκλ
∂uinc

∂n
dΓ

⎫⎬
⎭ . (38)

The first two terms in (38) constitute a weak form of the
adjoint problem (30) with u̇s as a weight function, and they,
thus, vanish. Similarly, the third and fourth terms in (38)
constitute a weak form of the state problem (23) with λ̇ as
a weight function, and, thus, they too cancel out. Owing to
(31), the eighth term vanishes, and the following expression
admits the simplification:

∇λ · ∇us = ∂λ

∂s

∂us

∂s
on Γ. (39)

Using (39), (38) reduces to:3

δξL = Re
∫
Γ

vn

[
−∂λ

∂s

∂(us + uinc)

∂s
− λ

∂uinc

∂s
divt

+k2λ(us + uinc)

]
dΓ. (40)

Equation (40) vanishes only when the assumed boundary
Γ coincides with the true boundary (or a local minimum).
For an assumed boundary, the state us and adjoint variables
λ satisfying the first and second optimality conditions can
be obtained by solving the state and adjoint problems (23)–
(25), and (30)–(32), respectively. Therefore, the optimization
process is equivalent to finding the boundary that forces (40)
to vanish with the previously computed state and adjoint vari-
ables. This gives rise to the control problem:
Control problem:

Re
∫
Γ

vn

[
−∂λ

∂s

∂(us + uinc)

∂s
− λ

∂uinc

∂s
divt

+k2λ(us + uinc)

]
dΓ = 0. (41)

4 Inversion process

In this section, we discuss the numerical implementation of
a reduced-space method for the solution of the inverse shape
detection and localization problem. Specifically, the focus is
on the solution of the state (23)–(25), the adjoint (30)–(32),

3 We also took into account that uinc satisfies the Helmholtz equation

and therefore: ∂2uinc

∂n2 = κ ∂uinc

∂n − ∂2uinc

∂s2 − k2uinc.
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and the control problem (41). In principle, all three problems
could be solved simultaneously (a full-space method) for the
unknown state variables, adjoint variables, and model para-
meters. To avoid the increased computational cost, we opt
for a reduced-space method, whereby the state and adjoint
variables are eliminated first. To solve the state and adjoint
problems, any numerical method (finite differences, finite
elements, boundary elements, etc.) can be used; here we favor
the boundary element method, for the benefit that it provides
with the automatic satisfaction of the radiation condition, and
for the dimensionality reduction that it affords for discretiza-
tion purposes (only Γ needs to be discretized). Accordingly,
the state problem (23)–(25) is tantamount (as discussed in
Sect. 3.2) to the following boundary integral equation:

1

2
us + D[us] = −S

[
∂uinc

∂n

]
, on Γ. (42)

Similarly, the boundary integral equation for the adjoint prob-
lem (30)–(32) can be written as:

1

2
λ + D[λ] = −

Ns∑
j=1

G(x, x j )
ūs(x j )

|us
m(x j )|2

×
(

1 − |us
m(x j )|

|us(x j )|
)

, on Γ. (43)

Notice that the single-layer term S[ ∂λ
∂n ] vanishes for the

adjoint variable by virtue of (31). Equations (42) and (43)
are discretized per the standard procedures of the boundary
element method; here we use quadratic isoparametric ele-
ments. Notice further, that the left-hand-side operators of
both integral equations are the same: only a single system
matrix inversion is needed for both problems.

For every estimate (and description) Γ ξ of Γ , first (42) is
solved to return us on Γ ξ ; notice that the forcing term on the
right-hand-side of (43) depends on the incoming wave uinc.
Once us is obtained, the forcing term on the right-hand-side
of (43) is completely defined, and thus, (43) can be solved to
return the adjoint variable λ, also on Γ ξ . Both of these steps
would satisfy the first two optimality conditions.

There are many approaches to ensure the satisfaction of
the third optimality condition (41); here we reason as fol-
lows: once, for an assumed shape, the state problem has been
solved, then the side constraints in (16) vanish, and thus the
minimization of the augmented functional L is tantamount to
the minimization of the misfit functional J . Therefore, with
the proviso of the satisfaction of the state problem, there also
holds that:

δpi L = ∇pi J , (44)

where pi denotes the i th model parameter (unknown).

However, from (40), it follows that:

δpi L = Re
∫
Γ

vi
n

[
−∂λ

∂s

∂(us + uinc)

∂s
− λ

∂uinc

∂s
divt

+k2λ(us + uinc)

]
dΓ, (45)

where vi
n denotes the velocity corresponding to the i th model

parameter. Therefore, if we now seek to minimize the origi-
nal misfit J , using, for example, a conjugate-gradient (CG)
scheme, the components of the gradient of the misfit are read-
ily given by (45), while at the same time both the state and
adjoint problems would have been satisfied. Thus, all that
remains is to define the components of the transformation
velocity. To this end, let Ψ ( p) denote the (vector) function
describing the parameterization of the unknown boundary, in
terms of a finite set of unknown model parameters p. Then,
the transformation velocity at a point x ∈ Γ is defined as:

vi
n(x) = ∂Ψ ( p)

∂pi

∣∣∣∣
x

· n(x). (46)

Consequently, the components of the gradient of the mis-
fit functional J that are needed for the CG (or any other
gradient-based scheme) are given as:

∇pi J = Re
∫
Γ

[
∂Ψx

∂pi
nx + ∂Ψy

∂pi
ny

]

×
[
−∂λ

∂s

∂(us + uinc)

∂s
+ λ

∂uinc

∂s

(
∂ny

∂x
− ∂nx

∂y

)

+k2λ(us + uinc)

]
dΓ, (47)

where Ψx and Ψy are the cartesian components of the para-
meterization function Ψ , and nx , ny are similarly the com-
ponents of the normal vector. In our implementation we use
a Polak-Ribière CG scheme with the following termination
criterion:

2|Jprevious − Jcurrent|
|Jprevious| + |Jcurrent| + ε

< TOL, (48)

where ε is a small positive number, and TOL is a user-
controllable tolerance, and Jprevious,current refer to previous
and current shape iteration calculations of the misfit J ,
respectively (we typically set TOL and ε to 10−8). We remark
that during each search iteration, the state and adjoint prob-
lems are each solved once, in order to allow computation of
the misfit’s gradient.

4.1 Frequency-continuation scheme

One of the difficulties of wavefield-based inversion is asso-
ciated with the presence of multiple local minima due to
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the highly oscillatory nature of the misfit functionals. To
improve the chances of the described procedure to converge
we employ continuation schemes. Clearly, even if conver-
gence is achieved for a single frequency and a single wave
direction, there is no guarantee that the converged model
parameters correspond to the true scatterer location and shape.
In addition, at high probing frequencies, the initial estimates
have to be quite close to the target ones, since there are mul-
tiple attraction basins that are quite narrow. Our motivation
for embracing continuation schemes stems from physical
and technological grounds, recognizing that contemporary
probing devices have considerable frequency and direction-
ality agility. The key idea behind continuation schemes is
to employ a sequence of seemingly uncoupled problems,
whereby the converged model parameters from one problem
are fed as initial guesses to the next, and so forth, until all
problems converge under the same set of model parameters;
details can be found in [27]. There are at least three forms
the continuation scheme may take in the shape detection and
localization problem: (i) continuation over multiple probing
wave frequencies, (ii) continuation over multiple incidence
angles, and (iii) continuation over multiple probing wave fre-
quencies and directions. Algorithm 1 captures tersely the
continuation scheme, when multiple frequencies are used
(extensions to accommodate multiple probing directions or
combination of directions and frequencies are straightfor-
ward).

The algorithm, as sketched, is concerned with a series of
decoupled inverse problems, that is, one problem for each fre-
quency (even at multiple wave incidence angles), even though
the scatterer is the same. The coupling of all these problems
is a loose one: it is achieved through the revisiting of the
misfit functional values for all frequencies at the end of the
process to ensure that the final set of converged model para-
meters satisfies all problems (steps 10–17 in Algorithm 1).
In practice, we apply the continuation scheme by starting
with a low probing frequency and increase the frequency
until convergence. Our numerical results indicate that a few
frequencies (three to four) are typically sufficient for resolv-
ing the shape and localization problem. It is noteworthy that
low probing frequencies typically allow for the resolution of
location, rather than the shape, whereas higher frequencies
fine-tune the shape without affecting the location.

5 Numerical experiments

In this section we examine the performance of the proposed
scheme via numerical experiments, and report on the results.
In all example problems, the measured scattered pressures
are synthesized numerically by solving the forward problem
using the boundary element method with a mesh different
from the one we use in the inversion process in order to

avoid committing a classical “inverse crime.” Throughout,
we assume that convergence to a set of model parameters
describing the sought object has been attained when criterion
(48) has been met.

Algorithm 1 Frequency-continuation scheme
1: Set InitialModelParameters
2: Set ModelParameters = InitialModelParameters
3: for all Frequencies do
4: Set ith-Frequency
5: Use ModelParameters
6: Single-Frequency-Direction CG Algorithm

(Save ith-Misfit)
(Save ConvergedModelParameters)

7: Set ModelParameters = ConvergedModelParameters
8: end for
9: Set LastModelParameters = ConvergedModelParameters
10: for all Frequencies do
11: Compute Misfit (Use LastModelParameters)
12: if Misfit ≤ ith-Misfit then
13: Converged
14: else
15: Failed; Exit
16: end if
17: end for

5.1 Example I: circular scatterer

We begin with a simple example problem in which we have
a priori information that the unknown obstacle is of circular
shape. Accordingly, the location and the size of the obstacle
is defined by three unknown parameters: the center’s coordi-
nates x0 and y0, and the radius R. The boundary parameter-
ization function is cast as:

Ψ ( p) =
{

x
y

}
=
{

x0 + R cos θ

y0 + R sin θ

}
, (49)

where θ ranges from 0 to 2π , and p = [x0, y0, R]T . The
true obstacle is centered at (0, −10), and has unit radius. We
start the search process with a circle of radius 3, centered at
(15, −20). We use a plane wave with an incidence angle α =
−45◦. We measure the response at three observation stations
located at (−10, 0), (0, 0) and (10, 0). The configuration of
the problem is depicted in Fig. 4.

We use both the single-frequency and the frequency-
continuation scheme to resolve the shape. For the single-
frequency scheme, we use an incident wave with a wave
number k = 0.1 and TOL = 10−8. To illustrate the effects of
the frequency-continuation scheme, we use three frequencies
corresponding to k = 0.1, 1.0, and 2.0 and set TOL to 10−2.
The convergence patterns of the unknown parameters using
the single-frequency and the frequency-continuation scheme
are shown in Fig. 5; the results are summarized in Table 1
and the path to convergence when the frequency-continuation
scheme is used is depicted in Fig. 6.
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Stations

True obstacle

Initial guess

Acoustic field

=-45°α

Fig. 4 Example I configuration—circular scatterer

As it can be seen in Fig. 5, all three parameters
converge to the target values under both the single-frequency
scheme and the frequency-continuation scheme. Notice that
the set tolerance is, by design, different between the single-
frequency and frequency-continuation schemes: for example,
for TOL = 10−2, when k = 0.1 the inversion procedure ter-
minates at the 3rd iteration [criterion (48) has been met] with
the “converged” values as shown in Table 1. Similarly for
k = 1.0. When the set tolerance is decreased to (TOL = 10−8)
(single-frequency case), then the iterations continue until
convergence in the 69th iteration. We remark that in both
cases the model parameters are near identical.4 Thus, when
the frequency-continuation scheme is used, convergence is
faster (Fig. 5). Furthermore, we note that the convergence to
the true obstacle failed when the single-frequency scheme
was used with a higher frequency (k = 2.0). It is also note-
worthy that when, instead of using the amplitude-based mis-
fit functional, we used J1 [defined in (14)], convergence to
the true scatterer failed for the same initial guess and over-
all configuration; convergence was possible only when the
initial guess came very close to the target. Thus far, these
results lend support to the claim that the combination of
the amplitude-based misfit functional with the frequency-
continuation scheme alleviate the difficulties associated with
the solution multiplicity.

5.2 Example II: penny-shaped scatterer

Next, we examine the performance of the proposed scheme
using a penny-shaped scatterer. To realize the penny-shaped
scatterer, we used an ellipse whose ratio of the minor axis
length (b) to the major axis length (a) is 1/10. The center
coordinate (x0, y0) of the true scatterer is at (0, −10), and

4 Single-frequency scheme: x0 = 1.0453 × 10−5, y0 = −10.00002,
R = 0.99999; frequency-continuation: x0 = 1.3726 × 10−5, y0 =
−9.99999, R = 0.99999.

Iteration
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True x0

Estimated x0 using

single frequency
Estimated x0 using

frequency continuation

k=0.1 k=1.0 k=2.0(a)

x0 convergence pattern

Iteration
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

y 0

-40

-30

-20

-10

0

True y0

Estimated y0 using

single frequency
Estimated y0 using

frequency continuation

k=0.1 k=1.0 k=2.0(b)

y0 convergence pattern

Iteration
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

R

0.5

1.0

1.5

2.0

2.5

3.0
True R
Estimated R using 
single frequency
Estimated R using
frequency continuation

k=0.1 k=1.0 k=2.0(c)

R convergence pattern

Fig. 5 Convergence patterns of the model parameters of a circular scat-
terer using a single-frequency and a frequency-continuation scheme.
a x0 convergence pattern b y0 convergence pattern. c R convergence
pattern

the length of the major semi-axis (a) and minor semi-axis
(b) are 1.5 and 0.15, respectively. Accordingly, the boundary
parameterization function is cast as:

Ψ ( p) =
{

x
y

}
=
{

x0 + a cos θ

y0 + b sin θ

}
, (50)
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Table 1 Example I estimated parameters

x0 y0 R

Initial values 15.000 −20.000 3.000

Frequency continuation scheme

3rd iteration (k = 0.1) −33.063 −35.668 1.775

25th iteration (k = 1.0) −0.001 −10.000 1.000

29th iteration (k = 2.0) 0.000 −10.000 1.000

Single frequency scheme

29th iteration (k = 0.1) 0.241 −9.631 0.997

69th iteration (k = 0.1) 0.000 −10.000 1.000

Target values 0.000 −10.000 1.000
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y
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Fig. 6 Convergence path of a circular scatterer using the frequency-
continuation scheme

Stations

True obstacle

Initial guess

Acoustic field

=-45°=-135°

Fig. 7 Example II configuration—penny-shaped scatterer

where θ ranges from 0 to 2π , and p = [x0, y0, a, b]T . We use
two probing waves at incidence angles α = −45◦, −135◦;
the scattered pressure is measured at three stations located at
(−10, 0), (0, 0) and (10, 0). The configuration of the problem
is depicted in Fig. 7.

We used a frequency-continuation scheme, where the
insonification frequencies were set at k = 0.1, 1.0, and 2.0

Table 2 Example II estimated model parameters

Iteration No. x0 y0 a b

Initial values 1.00e+1 −2.00e+1 2.00e+0 2.00e+0

10th (k = 0.1) −1.59e+0 −1.12e+1 1.34e+0 3.32e−1

20th (k = 1.0) 2.03e−3 −9.93e+0 1.48e+0 1.93e−1

60th (k = 2.0) 3.63e−8 −1.00e+1 1.50e+0 1.50e−1

Target values 0.00e+0 −1.00e+1 1.50e+0 1.50e−1

(TOL = 10−8). The convergence patterns of the four model
parameters are shown in Fig. 8 and the results are summa-
rized in Table 2. The final parameter values obtained using the
frequency-continuation scheme are (3.631×10−8, −10.000,
1.500, 0.1500), which are quite close to the true ones (0,
−10, 1.5, 0.15). It can be seen that the frequency-continuation
scheme yields more accurate estimates than the single-
frequency scheme, which, for the low frequency of k = 0.1,
resulted in converged values of (−1.594, −11.200, 1.343,
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Fig. 8 Convergence patterns of the model parameters of a penny-
shaped scatterer using the frequency-continuation scheme. a Conver-
gence pattern of the center coordinates. b Convergence pattern of the
major- and minor-semi axes
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0.332). Notice that, by contrast to Example I, here the single-
frequency scheme fails to converge for a low frequency and
a low tolerance. Clearly, as the frequency increases, the solu-
tions come closer to the true values. Again, if the process
were to start at a higher frequency (e.g. k = 2.0), the solu-
tion would diverge due to the optimizer becoming trapped in
a local minimum. It appears important that the frequency
initiating the continuation-scheme is a low one. Figure 9
depicts the convergence path to the true penny-shaped
scatterer.

5.3 Example III: kite-shaped scatterer

We discuss next one of the most severe inverse scattering
tests treated in the literature [20,31,32]: a kite-shaped scat-
terer whose non-convex parts greatly complicate the recon-
struction process (Fig. 10; see also Fig. 2).
The true shape is defined by:

x(θ) = cos θ + 0.65 (cos 2θ − 1), (51)

y(θ) = 1.5 sin θ − 10, (52)

where θ ranges from 0 to 2π . In order to resolve the true
shape, we use three incident waves at angles of −45◦,−90◦,
and −135◦. In addition, the scattered pressure is measured
at five stations located at (−20, 0), (−5, 0), (0, 0), (5, 0),
and (20, 0), all in the backscattered region. We use k =
0.1 and k = 0.5 for the frequency-continuation scheme. In
order to approximate the boundary, the following boundary
parameterization function is employed:

Ψ ( p) =
{

x
y

}
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a17

a18

+
[

a0+
8∑

i=1

{
a2i−1 cos(iθ) + a2i sin(iθ)

}]
cos θ

+
[

a0+
8∑

i=1

{
a2i−1 cos(iθ) + a2i sin(iθ)

}]
sin θ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(53)

where θ ranges from 0 to 2π , and p = [a0 . . . a18]T .
Figure 11 depicts the convergence path. Figure 11a is the
convergence path for k = 0.1; in this case, the solution
converged at the 14th iteration; however, as shown in the
figure, the shape is still far from the true one. In the next
step, the wavenumber is increased to k = 0.5, and, per the
continuation scheme, the minimization process started from
the converged solution of the previous wavenumber. The
results from the second wavenumber are shown in Fig. 11b.
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Fig. 9 Convergence path of a penny-shaped scatterer using the
frequency-continuation scheme. a Convergence path of penny-shaped
scatterer using k = 0.1. b Convergence path of penny-shaped scatterer
using k = 1.0. c Convergence path of penny-shaped scatterer using
k = 2.0

As it can be seen in the figure, convergence is attained
(Table 3).
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Fig. 10 Example III configuration: kite-shaped scatterer
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Fig. 11 Convergence path of a kite-shaped scatterer using the
frequency-continuation scheme. a Convergence path of kite-shaped
scatterer using k = 0.1. b Convergence path of kite-shaped scatterer
using k = 0.5

We also judge solution fitness by computing the area
delineated by the mismatch between the exact and computed
boundary shapes (shaded area in Fig. 12), normalized by the
total area of the true scatterer. For the kite-shaped scatterer,
this fitness metric is 0.4613 and 0.1138, for the 15th and
95th iterations, respectively. Though, the latter indicates an

Table 3 Example III estimated model parameters

i Initial 15th iteration 95th iteration
ai (k = 0.1) (k = 0.5)

0 1.0 1.227 1.172

1 0.0 −0.049 −0.034

2 0.0 0.060 0.107

3 0.0 −0.217 −0.151

4 0.0 0.024 0.043

5 0.0 0.146 0.312

6 0.0 −0.037 −0.040

7 0.0 −0.187 −0.189

8 0.0 0.072 0.046

9 0.0 −0.057 0.012

10 0.0 −0.036 −0.023

11 0.0 0.002 0.083

12 0.0 −0.039 −0.014

13 0.0 0.037 −0.109

14 0.0 0.031 0.030

15 0.0 −0.009 0.063

16 0.0 −0.028 −0.028

17 5.0 −0.313 −0.192

18 −15.0 −9.764 −10.183

Fig. 12 Example III—shape
mismatch at the 95th iteration

error of about 11%, we expect the fitness to be improved
given additional incidences at angles different than the ones
we already considered, which will assist in illuminating the
non-convex kite zone.

5.4 Example IV: arbitrarily-shaped scatterer

In the previous examples we approximated the boundary by
the parameterization function using a relatively small num-
ber of parameters. In this example, we seek the boundary by
directly inverting for the nodal coordinates which are used in
the boundary element discretization for solving both the for-
ward and adjoint problems. We use a potato-shaped scatterer,
five recording stations, and three incident waves at angles of
−45◦, −90◦ and −135◦. The configuration of this problem
is depicted in Fig. 13, and the exact shape definition of the
sought scatterer is given by:
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Initial guess

True obstacle

Stations

=-45°=-135°

Acoustic field

α α

Fig. 13 Example IV configuration—arbitrarily-shaped scatterer

{
x(θ)

y(θ)

}
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a7

a8

+
[
a0 +

3∑
i=1

{a2i−1 cos(iθ)+a2i sin(iθ)}
]

cos θ

+
[
a0+

3∑
i=1

{a2i−1 cos(iθ)+a2i sin(iθ)}
]

sin θ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(54)

where [a0, . . . , a8]T = [1, 0.2,−0.3, 0.125, 0.125, −0.05,
−0.05, 5, −20]T , and θ = 0 . . . 2π . We resolve this problem
using a single-frequency (k = 0.1) and two different bound-
ary discretizations. First, we discretize the boundary using 10
quadratic boundary elements, which implies 20 nodes and a
total of 40 parameters (for x and y). Notice that, in this case,
the discretization is not fine enough to obtain accurate solu-
tions. Then, we also resolve the same problem using a finer
mesh, with 80 nodes and a total of 160 inversion parame-
ters. The results of these two cases are presented in Fig. 14.
As shown in Fig. 14a, the solution converges to the target
one quite closely even though the discretization is not fine
enough. However, in the case of the fine mesh (Fig. 14b), it
is observed that the estimated boundaries form a sawtooth
shape and the final solution is less accurate than that of the
previous case. When using nodal coordinates as inversion
variables, we need to guarantee boundary smoothness in the
form of an additional penalty in the augmented functional.
A candidate form includes a Tikhonov-like penalty on the
boundary curvature, as in:

Rκ

∫
Γ

∇κ · ∇κ dΓ. (55)
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Convergence path of arbitrarily-shaped scatterer using 20 nodes 
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(a)

(b)

Fig. 14 Convergence path of arbitrarily-shaped scatterer. a Conver-
gence path of arbitrarily-shaped scatterer using 20 nodes. b Conver-
gence path of arbitrarily-shaped scatterer using 100 nodes

Furthermore, it is also required that self-intersecting shapes
be rejected. These algorithmic features have not been imple-
mented.

6 Conclusions

We have discussed a systematic framework for localizing a
scatterer and detecting its shape when embedded in a homo-
geneous host. The methodology is based on a PDE-constra-
ined optimization approach, endowed with boundary integral
equations for the resolution of the ensuing state, adjoint, and
control problems that, in turn, ensure the satisfaction of the
first-order optimality conditions.

Our main observations are:

• To improve on solution feasibility, we adopted an
amplitude-based misfit functional and embedded the
inversion process within a frequency- and directionality-
continuation scheme. The benefits are twofold: first the
misfit functional is less oscillatory, and thus presents fewer
and farther-apart spaced local minima, than if one were
to consider the complex-valued misfit. Secondly, the con-
tinuation scheme enforces convergence over a number of
frequencies and/or incident wave directions.

123



Comput Mech (2008) 41:579–594 593

• A low probing frequency seems to enlarge the attraction
basin, and as a result, the frequency-continuation scheme
with a low initial frequency of the interrogating wave
greatly improves performance. Typically, in our exper-
iments, low frequencies localize the scatterer, whereas
higher frequencies refine the shape.

• The continuation schemes improve the convergence rate.
Even when a low initial frequency is used to widen the
attraction basin, the convergence rate in the region near
the optimum is slow since the slope of the misfit func-
tional is too flat at the low frequency. Therefore, gradual
increase of the insonified wave’s frequency helps to accel-
erate the convergence rate.

• We have also observed, though not supported by the exam-
ples reported herein, that the frequency-continuation
scheme yields more accurate estimates than a single-
frequency scheme, when both schemes converge. Increas-
ing the frequency of the insonified wave results in a
perceived increase of the misfit functional’s slope in the
neighborhood of the optimum, thereby accelerating con-
vergence and improving solution accuracy.

7 Appendix I: on the first variation of J (15)

In (15) we defined the misfit functional as the normalized
amplitude-based difference between measured and computed
responses. In the following, for brevity, we omit the normal-
ization term, which is always a non-zero positive scalar. We
recast (15) as:

1

2

Ns∑
j=1

(|us(x j )| − |us
m(x j )|

)2

=
Ns∑
j=1

1

2

∫
Ω

(|us(x)| − |us
m(x j )|

)2
∆D(x − x j ) dΩ(x),

(56)

where ∆D denotes the two-dimensional Dirac function. We
seek next the first variation of a single component of the
summation in (56), i.e., we seek the first variation of I, where:

I(us) = 1

2

∫
Ω

(|us(x)| − |α(x0)|
)2

∆D(x − x0) dΩ(x). (57)

Clearly I is real-valued; formally, I : Cb(R
2, C) → R,

where Cb denotes the set of continuous, bounded, complex-
valued functions on R

2 over the field of real numbers. Let
∆I be the functional increment defined by:

∆I(δus) = I(us + δus) − I(us), (58)

where δus(x) is the complex-valued increment. Then, it can
be shown that:

∆I(δus)

= 1

2

∫
Ω

[
us(x)δus(x) + us(x)δus(x)

]

×
[

1 − |α(x0)|
|us(x)|

]
∆D(x − x0) dΩ(x)

+1

2

∫
Ω

[
1 − |α(x0)|

|us(x)|
]

|δus(x)|2∆D(x − x0) dΩ(x)

= Φ(δus) + R(δus), (59)

where lim||δus||→0
R(δus) = 0, and the functional Φ is defined as:

Φ(δus) = Re
∫
Ω

us(x)δus(x)

×
[

1 − |α(x0)|
|us(x)|

]
∆D(x − x0) dΩ(x). (60)

It can be shown that Φ(δus) is a linear functional over the
field of real numbers, and thus, the first variation of I is [33]:

δI(us; δus) = Φ(us; δus). (61)

Using (61), while restoring the definition (15) for the misfit
functional J , yields its first variation:

δusJ = Re
Ns∑
j=1

∫
Ω

δus(x)
ūs(x)

|us
m(x j )|2

×
[

1 − |us
m(x j )|

|us(x)|
]

∆D(x − x j ) dΩ(x). (62)

Finally, we remark that station records are sampled only at
locations for which |us

m | = 0, and thus the first denomi-
nator in (62) is well-behaved. Furthermore notice that the
denominator |us| in the third term of (62) corresponds to
the computed response at the measurement stations, i.e., at
x = x j ; in general, there may be shapes rendered by the
inversion algorithm for which |us(x j )| vanishes (silent zone).
In such cases, the specific station could be removed from the
inversion process; in practice, given the alignment of stations
in the backscattered region, we have not encountered such
difficulties.

8 Appendix II: on the proof of (37)

We rewrite the left-hand-side of (37) as:

∂

∂ξ

(
∂uinc

∂n

)
= ∇u̇inc · n + ∇uinc · ṅ. (63)

Notice that u̇inc = 0, since the incident wave pressure is
independent of Γ and its variations. Moreover (see, for
example, [34]):
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[
Dn
Dξ

]
ξ=0

=∗
n= −∂vn

∂s
t = ṅ + vn(∇n)n, (64)

from which, there results:

ṅ = −∂vn

∂s
t − vn(∇n)n. (65)

Combining (63) and (65) yields:

∂

∂ξ

(
∂uinc

∂n

)
= −∂uinc

∂s

∂vn

∂s
− ∂uinc

∂s
vn(∇n)n · t

−∂uinc

∂n
vn(∇n)n · n. (66)

Notice that it is easy to show that (∇n)T n = 0, and thus, by
virtue of the identity (∇n)n ·n = n ·(∇n)T n, the last term in
(66) vanishes. We use next the identity

(∇n − (∇n)T
)

n =
(∇×n)×n and multiply both sides of it by t (inner product);
there results:

(∇n)n · t = [(∇ × n) × n] · t = (∇ × n) · (n × t)

= ∇ · [n × (n × t)] = ∇ · [(n · t)n − (n · n)t]
= −∇ · t = −divt, (67)

where various vector identities have been used. Substituting
(67) in (66) yields (37).
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