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Abstract In this paper we discuss the performance of
second-order absorbing conditions prescribed on
ellipsoidally-shaped truncation boundaries for the
resolution of scalar wave phenomena in three dimen-
sions. The second-order conditions employed herein
belong to a larger class of arbitrarily-shaped convex
absorbing boundaries developed earlier [21] for acoustic
scattering and radiation problems in unbounded do-
mains. In [21] we discussed their performance when used
on spherical truncation boundaries for applications in
both the time- and frequency-domains. Here, we extend
their applicability to ellipsoidal geometries and demon-
strate that significant computational savings are attain-
able due to the reduced computational domain afforded
by the ellipsoid.

1 Introduction

In a plethora of practical engineering problems there is
need to resolve the propagation of acoustic waves in
unbounded domains. Problems of interest involving the
study of acoustic scattering and radiation phenomena
typically arise in underwater acoustics, in fluid-structure
interaction, in target-identification problems, and in the
noise-control industry.

Invariably, such problems involve scatterers embed-
ded in a wave-supporting unbounded medium; the

primary challenge in the numerical modeling of the
propagating waves is rooted in the infinite extent of the
host medium. If domain discretization methods are
used, the unbounded domain must be replaced by a
finite computational domain that results when a trun-
cation boundary limits the infinite extent of the original
domain. For well-posedness of the ensuing mathemati-
cal problem, an appropriate boundary condition need
accompany the introduction of the truncation boundary
(see e.g., [19] for a recent review). The condition can be
seen as a near-field instantiation (as opposed to at-
infinity) of the Sommerfeld radiation condition. Such a
condition is exact, referred to as the DtN map (see [16,
17] for reviews of exact treatments), for it relates the
Dirichlet with the Neumann datum on the truncation
boundary; it is, however, non-local in both space and
time. Local approximants of the DtN map that relax the
spatial, or the temporal non-locality, or both, are
capable of reducing the computational cost associated
with non-local conditions, albeit at the expense of
accuracy.

Local conditions are desirable even in frequency-
domain applications where the boundary element
method has been long- dominant: despite the advantage
integral equations offer in accurately treating the un-
bounded medium via the embedded Green’s functions,
at the high-frequency regime the resulting dense alge-
braic systems will exact even advanced modern-day
hardware architectures for applications in three dimen-
sions.

Overcoming the computational cost associated with
boundary integral formulations, infinite elements, an
approach pioneered by Bettess and Zienkiewicz [8, 9],
offer a competitive alternative in the context of domain
methods. The central idea in infinite elements is to allow
for asymptotic expansions of the solution exterior to the
truncation boundary in the (outwardly) radial direction.
Finite elements incorporating, via appropriately con-
structed shape functions, radial expansions of variable
order can then be prescribed on the truncation bound-
ary. Implementations of infinite element ideas in
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acoustics, particular to canonical truncation geometries
(prolate and oblate spheroidal and ellipsoidal), have
been implemented by Burnett [11, 12]. However, their
application is limited to the frequency domain; more-
over, recent studies on the convergence of infinite ele-
ment formulations [2–4, 25] reveal difficulties with the
conditioning of the resulting algebraic systems.

An early modification to infinite elements [7] was
due to Astley’s novel idea of allowing the test functions
to be (weighted) complex conjugates of the trial func-
tions, in the context of Galerkin finite elements (see [24]
for a theoretical justification). The approach gave rise
to the so-called wave-envelope elements (see [4] for an
overview), that are closely related to the more recent
‘‘conjugated’’ infinite element formulations [15].
Whereas wave-envelope elements are not immune to
the aforementioned conditioning difficulty, the problem
can be alleviated by a judicious choice of the radial
basis [4]. The choice of complex conjugates for the test
and trial functions is a significant one, for it endows
the wave-envelope elements with the capability to
tackle transient applications [5, 6], contrary to most
infinite element formulations. Still, whether conjugated
or unconjugated, infinite or wave-envelope elements,
with or without conditioning difficulties, such ‘‘infinite’’
element formulations are captive to the particular
coordinate system for which the radial expansions were
originally written.

Similarly dependent on the coordinate system are the
very few efforts to derive exact (DtN) conditions at a
truncation boundary that is neither circular or spherical.
For example, in [18] the authors derived DtN maps for
elliptical and spheroidal boundaries. Implementations of
these conditions in the context of finite elements
appeared later in [27]. However, the conditions, by
construction, remain non-local, entailing the computa-
tional difficulties alluded to earlier. Thus, for the
computational advantages local conditions offer over
non-local boundary treatments, and for the ease by

which they can be coupled with domain methods, in this
work we favor local absorbing conditions and report on
the performance of ellipsoidally-shaped boundaries. The
work builds on earlier developments: in [21] we presented
a procedure for constructing a family of absorbing
boundary conditions for three-dimensional truncation
geometries, which, to the best of our knowledge, were the
first to be systematically developed for arbitrarily-convex
boundary shapes. Earlier systematic developments
include the works of Engquist and Majda, and Bayliss
and Turkel [10, 13, 14]; the local conditions derived in
these works were however limited to canonical geome-
tries. In [20], Jones developed a three-dimensional
second-order condition for general convex geometries
by extending to three dimensions a two-dimensional
condition developed earlier by Kriegsmann [23], who
in turn used an ad-hoc procedure for extending the
Bayliss and Turkel conditions [10] to arbitrarily convex
geometries. Jones in [20], used the three-dimensional
condition as an on-surface radiation condition; however,
in [21, 22] we showed that the condition was not stable
for time-domain applications and sub-optimal for
frequency-domain applications.

More recently, Antoine et al. [1], using pseudo-
differential calculus, developed a second-order condition
for arbitrarily-convex absorbing boundaries and applied
it as an on-surface condition in the frequency-domain
only; our own conditions are, in some cases, (e.g., con-
dition of order 3

2 in [1]) reducible to their conditions.
In [26] the authors used the second-order condition of
Antoine et al. in the context of a finite element formu-
lation and presented results for ellipsoidal boundaries in
the frequency-domain. In this paper, we use the condi-
tions we had developed earlier [21] and particularize
them to ellipsoidally-shaped boundaries in both the
frequency-and the time-domains: we show that signifi-
cant computational gains are attainable when ellipsoidal
boundaries are used over spherical, without a significant
loss of accuracy.

Fig. 1 a Model of scatterer
embedded in an unbounded
acoustic fluid X, b model with
finite computational domain
Xa and absorbing boundary
Ca



2 Exterior problem – strong form statement

We are concerned with the initial-and-boundary value
problem (IBVP) associated with the time-dependent
scalar wave equation in an unbounded domain. Let C be
a closed surface with exterior X � <3; X is occupied by a
linear, inviscid, and compressible fluid (Fig. 1a). With-
out loss of generality we consider the radiation problem
in which C is subjected to a prescribed acceleration
field1. Then the strong form becomes: find pðx; tÞ such
that:

€pðx; tÞ ¼ c2Dpðx; tÞ; x 2 X; t � 0 ; ð1Þ

pmðx; tÞ ¼ fN ðx; tÞ; x 2 C; t > 0 ð2Þ

lim
r!1

rðpr þ
1

c
_pÞ ¼ 0 ; and ð3Þ

pðx; 0Þ ¼ 0; _pðx; 0Þ ¼ 0; x 2 �X ; ð4Þ

where p denotes pressure; x is the position vector, t is
time; m is the outward unit normal on C; c is the velocity
of wave propagation; pm denotes the normal derivative of
the pressure p; D is the Laplace operator; an overdot
denotes derivative with respect to time; an overbar de-
notes closure; and fN is a prescribed function. Condition
(3), in which r is radial distance and pr the derivative of
the pressure along the radial direction, is the Sommer-
feld radiation condition. Condition (4) indicates that the
system is taken to be initially at rest.

Next, to resolve the propagating waves within X
using domain discretization methods, one needs to
truncate the exterior region by introducing an artificial
boundary Ca, as shown in Fig. 1b. This truncation
gives rise to a bounded subdomain Xa (with exterior
the unbounded Xþ). In order for the solution p to
coincide with that of the original problem within the
truncated region Xa, it is necessary to specify a
boundary condition on Ca that will ensure that the
outgoing waves crossing Ca are undisturbed by the
presence of this boundary. This boundary condition,
which can be determined in terms of the actual solution
p on Ca is of the form:

pmðx; tÞ ¼ F½ptð�; �Þ�ðxÞ; x 2 Ca ; ð5Þ

where the dots following pt indicate dummy variables,
and F is a pseudo-differential operator that depends on
pt, the time history of p, i.e.,

ptðtÞ ¼ pðt � sÞ; 8s : 0 � s � t : ð6Þ

The operator F captures symbolically the exact form of
the DtN map needed for well-posedness of the resulting
IBVP over the (now) truncated computational domain
Xa. F , however, is non-local in time and space, that is to

say, the motion at any given instant t at every point on
the artificial boundary Ca is coupled with the time his-
tories of all other points on Ca. The non-local character
of the exact F makes it unsuitable for implementation in
the context of domain methods. Herein, as shown later,
we employ a localized approximant to F that is partic-
ularly well-suited for numerical implementation using
finite elements.

3 The Absorbing Boundary

In [21], a family of localized approximants to the exact
pseudo-differential operator F for arbitrarily-convex
truncation boundaries Ca was developed, and its mem-
bers were used in applications involving spherical trun-
cation boundaries. The development in [21] was based
on high-frequency asymptotic expansions in the
Laplace-transform domain inspired by geometrical
optics ideas. Herein, we use a second-order2 approxi-
mant to F , henceforth denoted by F 2, prescribed on
ellipsoidal or (its degenerate counterparts) spheroidal
boundaries. In [21], to accommodate the arbitrary
geometry we introduced a new coordinate system in �Xþ:
if Ca is described by the parametric representation
Xðu;wÞ where X denotes the position vector on Ca, and

u;w are the surface parameters, then a new coordinate
system is introduced by the description:

Rðu;w; nÞ ¼ Xðu;wÞ þ n mðu;wÞ; n � 0 ; ð7Þ

where R denotes position vector in Xþ, n is a scalar, and
m is the outward normal to Ca (Fig. 1b). Since Ca is
convex and smooth, the new system is global in Xþ.
Notice that for n ¼ 0, (7) provides the parametric rep-
resentation of Ca. Using this coordinate system, the
second-order local approximant to the operator symbol
in (5) is [21]: first, in the frequency-domain (a caret over
a variable denotes its Laplace-transformed counter-
part3):

p̂m ¼ F̂2½ p̂� ¼ �
s
c

p̂ þ Hp̂ þ c
2ðsþ cÞ

þ
(

1ffiffiffi
h
p 1ffiffiffi

h
p h22p̂u � h12p̂wð Þ
� �

u

�

þ 1ffiffiffi
h
p �h12p̂u þ h11p̂wð Þ
� �

w

�

þ ðH2 � KÞp̂
)

; ð8Þ

where F̂2 denotes the approximate functional of sec-
ond-order. Translation of (8) back to the time-domain
yields:

1Scattering problems are similarly treated.

2Second-order with respect to frequency, i.e., the second-order
condition is Oðs�2Þ, with s denoting frequency.
3With s ¼ ix, where x denotes circular frequency.



_pm þ cpm ¼�
1

c
€p þ H � c

c

� �
_p þ Hcp

þ c
2

(
1ffiffiffi
h
p 1ffiffiffi

h
p h22pu � h12pwð Þ
� �

u

�

þ 1ffiffiffi
h
p �h12pu þ h11pwð Þ
� �

w

�

þ ðH2 � KÞp
)

: ð9Þ

In conditions (8) and (9), H , K denote the mean and
Gaussian curvatures of the boundary, respectively, c is a
stability parameter that depends on the wave velocity c
and a curvature measure of the artificial boundary [21,
22], and hijði; j ¼ 1; 2Þ and h denote the components of
the Euclidean metric tensor on the boundary Ca. We
remark that Ca is oriented such that H < 0; 8 x 2 Ca;
notice also that K > 0; 8 x 2 Ca, since Ca is convex by
definition4.

Conditions (8) and (9) are written for an arbitrarily-
shaped convex boundary; for the particular case of an
ellipsoidal boundary, the various geometric measures
introduced in (8)–(9), reduce to:

h11 ¼ a2 cos2 h cos2 /þ b2 sin2 h cos2 /þ d2 sin2 /;

h22 ¼ a2 sin2 hþ b2 cos2 h
� 	

sin2 /;

h12 ¼ ðb2 � a2Þ sin h cos h sin/ cos/;

h ¼ a2b2 cos2 /


þd2 sin2 /ða2 sin2 hþ b2 cos2 hÞ

�
sin2 /;

J ¼ a2b2 þ d2ða2 � b2Þ sin2 h� b2ða2 � d2Þ

 �

sin2 /Þ

 �

;

K ¼ abd
J

� 2

;

H ¼ � abd

2J
3
2

� a2 þ b2 þ


ða2 � b2Þ



� sin2 h� ða2 � d2Þ

�
sin2 /

�
; ð10Þ

where the following surface parameterization was used
(Fig. 2):

x ¼ a cos h sin/;

y ¼ b sin h sin/; ð11Þ
z ¼ d cos/; with / 2 ½0; p� and h 2 ½0; 2pÞ ;

and noting that u � / and w � h in (8) and (9).
Equations (8) and (9), with the definitions (10), are the
desired second-order absorbing boundary conditions
suitable for ellipsoidal truncation geometries of inter-
est herein. We remark that (9) can also be used for
mixed geometries, e.g., a closed-cylinder boundary, or

a box, etc, where the various geometric quantities in
(8) and (9) need be appropriately modified. Whereas,
depending on the boundary surface, curvature terms
may vanish (e.g., for plane segments), invariably the
tangential derivative terms survive. A mixed-geometry
or box-type shape may allow for tighter circumscrip-
tion of elongated scatterers; herein, notwithstanding
the wider applicability of (8) and (9), we report only
on ellipsoidal/spheroidal boundaries.

4 Finite element implementation

To set the stage for the numerical experiments we revisit
next the key steps outlined in [21] and particularize to
the ellipsoidal truncation geometry.

4.1 Semi-discrete form

In order to arrive at the semi-discrete forms valid for Xa
using finite elements, we return to the strong statement
(1), in order to recast it into a weak form. Notice, that
the infinite domain X in (1) will now be replaced by the
finite annular region Xa. Following classical lines, the
weak statement can be cast as:

1

c2

Z
Xa

dp €p dXa þ
Z

Xa

rdp � rp dXa

�
Z

Ca

dp pm dCa ¼ �
Z

C
fN dp dC : ð12Þ

The goal now is to replace pm in (12) with the local
approximant F 2 given by either (8) (in the frequency-
domain), or by (9) (in the time-domain). Notice, how-
ever, that as argued in [21], (9) needs further treatment,
since it involves both the normal derivative of the
pressure pm and its first time derivative _pm. In [21] we
introduced auxiliary variables on Ca that allowed the
decomposition of (9) and its ready incorporation into
the weak form (12). Accordingly, let qð1Þ and qð2Þ denote
the auxiliary variables on Ca. Then, one can show via
Laplace transforms in time that the following set of
three equations is equivalent to (9):

�pm ¼
1

c
_p � Hp � c

2c
J qð1Þ � c

2c
ðH2 � KÞqð2Þ ; ð13Þ

Fig. 2 Ellipsoidal absorbing boundary geometry

4Also, ðH2 � KÞ � 0; 8 x 2 Ca.



J p � J qð1Þ � 1

c
J _qð1Þ ¼ 0 ; ð14Þ

p � qð2Þ � 1

c
_qð2Þ ¼ 0 : ð15Þ

Here J is the (Beltrami) differential operator defined by:

J � ¼ 1ffiffiffi
h
p 1ffiffiffi

h
p h22ð�Þu � h12ð�Þw
� 	� �

u

�

þ 1ffiffiffi
h
p �h12ð�Þu þ h11ð�Þw
� 	� �

w

�
: ð16Þ

Next, we multiply (13) by dp, (14) by dqð1Þ, and (15) by
dqð2Þ, where dqð1Þ and dqð2Þ are appropriate test functions
and integrate by parts the terms associated with the
operator J . There results:

�
Z

Ca

dppmdCa ¼
1

c

Z
Ca

dp _pdCa �
Z

Ca

HdppdCa

þ c
2

Z
Ca

1

c
rsdp � rsqð1ÞdCa

� c
2

Z
Ca

1

c
ðH2 � KÞdpqð2ÞdCa ; ð17Þ

c
2

Z
Ca

1

c
rsdqð1Þ � rspdCa

� c
2

Z
Ca

1

c
rsdqð1Þ � rsqð1ÞdCa

� c
2

Z
Ca

1

c2
rsdqð1Þ � rs _qð1ÞdCa ¼ 0 ; ð18Þ

� c
2

Z
Ca

1

c
ðH2 � KÞdqð2ÞpdCa

þ c
2

Z
Ca

1

c
ðH2 � KÞdqð2Þqð2ÞdCa

þ c
2

Z
Ca

1

c2
ðH2 � KÞdqð2Þ _qð2ÞdCa ¼ 0 ; ð19Þ

in which rs is the surface gradient on Ca defined as:

rsð�Þ ¼ 1

h
h22ð�Þu � h12ð�Þw
� 	

Xu

þ 1

h
�h12ð�Þu þ h11ð�Þw
� 	

Xw : ð20Þ

In addition, qð1Þ and qð2Þ are required to vanish at t ¼ 0.
Equations (17)–(19) can then be used to complete the
weak-form formulation: the right side of (17) replaces
the third term in (12), and (18) and (19) are added to the
resulting modified weak form. We remark that with
the decomposition (17)–(19), (12) will lead, upon spatial
discretization, to a symmetric system of ordinary
differential equations, in both the frequency-and

time-domains. In other words, the contributions from
the absorbing boundary maintain both the symmetric
structure of the interior problem and the sparsity of the
associated system matrices.

4.2 System matrices

We use standard finite element isoparametric elements
for approximating the geometry and for the spatial
discretization of the pressure p in Xa and on Ca and of
the auxiliary pressures qð1Þ and qð2Þ on Ca. Notice that
the presence of first-order derivatives in (17)–(19) in-
creases the usual smoothness requirements on the arti-
ficial boundary; in short, we seek p and dp that belong to
H1ðXaÞ � H1ðCaÞ where H1 denotes the Sobolev space of
degree 1. Similarly, qð1Þ and dqð1Þ need also belong to
H1ðCaÞ. We introduce:

pðx; tÞ ¼ w1
T ðxÞpðtÞ; dpðxÞ ¼ dpT w1ðxÞ ; ð21Þ

qð1Þðx; tÞ ¼ w2
T ðxÞqð1ÞðtÞ; dqð1ÞðxÞ ¼ dqð1Þ

T
w2ðxÞ ; ð22Þ

qð2Þðx; tÞ ¼ w3
T ðxÞqð2ÞðtÞ; dqð2ÞðxÞ ¼ dqð2Þ

T
w3ðxÞ ; ð23Þ

in which, w1; w2 and w3 are vectors of shape functions
and p, qð1Þ and qð2Þ are vector fields of the unknown
nodal functions in time. Substitution of (21)–(23) into
(12) and (17)–(19) results in a system of ordinary dif-
ferential equations with the following classical second-
order structure:

M€PðtÞ þ C _PðtÞ þ KPðtÞ ¼ FðtÞ ; ð24Þ

where, PT ¼ ½ pT
C; p

T
Xa
; pT

Ca
; qð1Þ

T
; qð2Þ

T � and pC, pXa
,

pCa
denote partitions of p over C, Xa, and Ca, respec-

tively; M, C and K are the mass, damping and stiffness
matrices of the system, and F denotes the excitation.
The matrices M, C and K have the following form:

Fig. 3 Typical tetrahedral mesh over the bounded computa-
tional domain Xa; shown are the element traces on the
absorbing boundary and the scatterer surface



M ¼

Mf
pCpC

Mf
pCpXa

0 0 0

Mf
pXa pC

Mf
pXa pXa

Mf
pXa pCa

0 0

0 Mf
pCa pXa

Mf
pCa pCa

0 0

0 0 0 0 0

0 0 0 0 0

2
6666664

3
7777775
; ð25Þ

C ¼

0 0 0 0 0

0 0 0 0 0

0 0 Ca
pCa pCa

0 0

0 0 0 Ca
qð1Þqð1Þ 0

0 0 0 0 Ca
qð2Þqð2Þ

2
66666664

3
77777775
; ð26Þ

K¼

Kf
pCpC

Kf
pCpXa

0 0 0

Kf
pXa pC

Kf
pXa pXa

Kf
pXa pCa

0 0

0 Kf
pCa pXa

Kf
pCa pCa

þKa
pCa pCa

Ka
pCa qð1Þ Ka

pCa qð2Þ

0 0 Ka
qð1ÞpCa

Ka
qð1Þqð1Þ 0

0 0 Ka
qð2ÞpCa

0 Ka
qð2Þqð2Þ

0 0

2
666666666666664

3
777777777777775

:

ð27Þ

As it can be seen from (25)–(27), the top left blocks
are the standard mass and stiffness matrices associated
with the fluid (superscript f ), and the bottom right
blocks represent, respectively, the effective damping
and stiffness introduced by the absorbing boundary

(superscript a). Notice that there is no inertia associ-
ated with our approximate absorbing boundary and
that the only damping in the system comes from the
absorbing boundary which is associated with the
radiated energy in the actual unbounded system.
Finally, the forcing vector F in (24) is given as:

FT ¼ ½FT
N ; 0

T ; 0T ; 0T ; 0T �;

with FN ¼ �
Z

C
fN w1 dC :

4.3 Element matrices

Since Ca and Ka in (26) and (27) are local and sym-
metric, they can be constructed element by element and
incorporated into the equations of motion by standard
assembly techniques using existing finite element soft-
ware. All that is necessary is to incorporate the corre-
sponding element matrices ca and ka into the finite
element library of any existing software package for
interior problems. The element matrices ka and ca are
given as:

Fig. 4 Model of rigid scatterer surrounded by an absorbing
boundary

Table 1 Relative L2ðCÞ errors (E) in percent for ka ¼ 1

Boundary Shape Ellipsoid Prolate
Spheroid

Sphere

Sx : Sy : Sz 3:2:1.5 3:2:2 3:3:3
DOF 37872 50636 91138

n ¼ 0 m ¼ 0 0.8422 0.5355 0.3945
n ¼ 1 m ¼ 0 1.5315 1.3608 1.2393
n ¼ 1 m ¼ 1 1.1909 1.4208 1.1976
n ¼ 2 m ¼ 0 3.1995 2.9018 2.5407
n ¼ 2 m ¼ 1 2.2802 2.7782 2.5387
n ¼ 2 m ¼ 2 3.0689 3.5767 2.5455
n ¼ 3 m ¼ 0 6.7732 5.7986 3.9113
n ¼ 3 m ¼ 1 6.4525 5.8156 3.8641
n ¼ 3 m ¼ 2 6.4559 6.4001 3.9757
n ¼ 3 m ¼ 3 6.6228 6.7067 3.9882

Table 2 Relative L2ðCÞ errors (E) in percent for ka ¼ 5

Boundary Shape Ellipsoid Prolate
Spheroid

Sphere

Sx : Sy : Sz 3:2:1.5 3:2:2 3:3:3
DOF 37872 50636 91138

n ¼ 0 m ¼ 0 2.9756 3.3767 1.2395
n ¼ 1 m ¼ 0 2.1816 2.8964 1.2621
n ¼ 1 m ¼ 1 3.0025 3.3346 1.2378
n ¼ 2 m ¼ 0 2.6664 2.2713 1.3868
n ¼ 2 m ¼ 1 2.0696 2.3027 1.7639
n ¼ 2 m ¼ 2 2.0950 2.5630 1.5205
n ¼ 3 m ¼ 0 2.9083 2.5435 1.9721
n ¼ 3 m ¼ 1 3.2518 2.9509 1.8849
n ¼ 3 m ¼ 2 3.5907 3.7041 2.0487
n ¼ 3 m ¼ 3 3.4565 3.8703 1.7824



ka ¼ c
2

2
c k11 k12 �k13

kT
12 �k22 0

�kT
13 0 k33

2
6664

3
7775;

ca ¼ c
2

2
c2 c11 0 0

0 �c22 0

0 0 c33

2
6664

3
7775 ; ð29Þ

with the following definitions for the individual matri-
ces:

k11 ¼ �
Z

Ce
a

H w1 w1
T dCe

a;

k22 ¼
Z

Ce
a

1

c
rs

w2 � r
s
w2

T dCe
a;

k33 ¼
Z

Ce
a

1

c
ðH2 � KÞ w3 w3

T dCe
a;

k12 ¼
Z

Ce
a

1

c
�rs w1 � r

s
w2

T dCe
a; ð30Þ

k13 ¼
Z

Ce
a

1

c
ðH2 � KÞ w1 w3

T dCe
a;

c11 ¼
Z

Ce
a

w1 w1
T dCe

a;

c22 ¼
Z

Ce
a

1

c2
rs

w2 � r
s
w2

T dCe
a;

c33 ¼
Z

Ce
a

1

c2
ðH2 � KÞ w3 w3

T dCe
a ;

where dCe
a and the operator rs

denote the area dif-
ferential and the approximation of the surface gradient
rs (or (20)) on an element Ce

a of Ca, respectively.
Notice that the element defined by (29) is a surface-
only element.

We remark that, as it can be seen from (30), the
element matrices characterizing the absorbing element

implicate integrands that include expressions of the
two curvature measures (Gaussian K, and mean H
curvature) of the boundary. Whereas the geometry of
the boundary is approximated piecewise (isoparametric
elements), by low-order surfaces (e.g., planes), we have
chosen to use the exact expressions (10) for the cur-
vatures. This choice introduces a discrepancy since the
curvatures refer to boundary segments not represented
by the isoparametric description; however, the error
introduced by the mismatch is of order higher than

Fig. 5 Geometry of elongated scatterer; dimensional ratio
along the median axes is 8:1:1

Table 3 Wave incidence vectors

Incidence index Incidence vector (ax; ay; az)

Pix ð0o; 90o; 90oÞ
Piy ð90o; 0o; 90oÞ
Piz ð90o; 90o; 0oÞ
Pi125 ð125:26o; 125:26o; 125:26oÞ

Fig. 6a, b Geometry of absorbing boundaries for finite cylin-
der problem



the approximation error, does not dominate, and can
thus be safely neglected.

5 Numerical experiments

The second-order condition (8) (or (9)) was im-
plemented on ellipsoidally-shaped boundaries, as per
the details of the preceding section. We implemented
trilinear 8-noded elements for the discretization of the
finite domain Xa, and 4-noded bilinear quadrilaterals
for the absorbing boundary elements on Ca; however,
for all results presented here, we used unstructured
tetrahedral meshes and triangularly-shaped surface
elements on the absorbing boundary (Fig. 3). The tet-
rahedral and triangular elements were obtained as de-
generate cases of the trilinear hexahedral and bilinear

quadrilateral elements we implemented. Furthermore,
we used w1 ¼ w2 ¼ w3. Numerical experiments to
assess the performance of the condition and the asso-
ciated discrete forms (absorbing element (29)) have
been conducted for both radiation and scattering pro-
blems in the frequency-and time-domains. We report
here on a subset of our numerical experiments.
Throughout all problems we used:

c ¼ �cH ; ð31Þ
for the stability parameter c in (8)–(9). With this choice
the stability criterion for time-domain calculations es-
tablished in [21] is satisfied.5

All numerical results reported herein were obtained
using a sequential implementation for constructing the
various matrices, and a parallel implementation for
solving the resulting algebraic systems. For the latter
we used MPICH (Argonne National Laboratories) for
the message passing interface, and a solver from the
suite of Krylov-subspace methods available through
PETSc [28] on a 4-processor Ultra-80 symmetric
multiprocessor system.

5.1 Radiation problems – frequency-domain

To assess the performance of the boundaries we consider
first the radiation problem arising from prescribing an
acceleration field on the surface of a spherical scatterer
(Fig. 4) of radius a; specifically, let:

pr ¼ qA0P ðmÞn ðcos/Þ cosmheixt; at r ¼ a ; ð32Þ

Table 4 Computational cost in terms of number of degree-of-
freedom per type of absorbing boundary

Types of absorbing boundary Sx : Sy : Sz DOF
Reference (spherical) 8:8:8 201692

AB-S Spherical 5:5:5 50016
AB-PS1 Prolate spheroidal 1 5:3:3 23774
AB-PS2 Prolate spheroidal 2 5:1.5:1.5 7262
AB-E Ellipsoidal 5:2.5:1.5 11374

Table 5 Relative L2 errors (E) in percent for ka ¼ 1

Incidence
index

AB-S AB-PS1 AB-E AB-PS2

Pix 2.6459 2.8439 5.3357 7.0457
Piy 2.2093 2.5848 3.2001 3.3657
Piz 2.4309 2.4429 3.0799 3.7976
Pi125 1.3816 1.3838 2.0062 2.2500

Fig. 7a–d Amplitude of total
pressure; cases a and b due to
head-on incidence (Pix ); cases
c and d due to oblique inci-
dence (Pi125 )

5In [21] we had shown that a necessary condition for stability is

that c � ccr ¼ c
2
�H2�K

H

� �
max

; with c ¼ �cH, and the assertions

H < 0, K > 0; 8 x 2 Ca, the stability criterion leads to
H2 þ K > 0.



where pr denotes radial pressure derivative, q denotes
the surrounding fluid’s density, A0 is the amplitude of
the prescribed field, h is the meridional angle, / is the
polar angle, n;m denote the order of the tesseral har-
monics, P ðmÞn is the associated Legendre function of the
first kind, degree n, and order m, and x is the driving
circular frequency. In this case, the exact solution for the
radiated field in the domain exterior to the scatterer
(r � a) is:

pexðr; h;/Þ ¼ qA0Ri
hð2Þn ðkrÞ

n hð2Þn ðkaÞ � ka hð2Þnþ1ðkaÞ
� P ðmÞn ðcos/Þ cosmh ; ð33Þ

where hð2Þn is the spherical Hankel function of the second
kind and of n-th order; in (33), k denotes wavenumber
(k ¼ x=c).

We surround the spherical cavity with co-centric
ellipsoids of various sizes and semi-axes values and solve
the boundary value problem in Xa using the second-
order condition on Ca (Fig. 4). We measure the relative
error using L2-norms on the scatterer’s boundary C as:

E ¼

R
C jjpex � pappjj2dC

h i1
2

R
C jjpexjj

2dC
h i1

2

� 100% ; ð34Þ

where papp is the approximate solution obtained by
solving (24) in the frequency-domain.

Denoting the ellipsoid’s semi-axes with Sx, Sy , and Sz,
respectively, (Fig. 4), Tables 1 and 2 summarize the er-
rors associated with the prototype radiation problem for
a relatively low frequency ka ¼ 1, and a medium fre-
quency ka ¼ 5, respectively, and for three different
absorbing boundaries: an ellipsoid, a prolate spheroid,
and a sphere. Shown also is the computational cost in
terms of the total number of degrees-of-freedom. The
typical mesh size for all cases was 0:12a. With the
exception of the higher modes (e.g., n ¼ 3 and ka ¼ 1)
the performance of the ellipsoidal and spheroidal
boundaries is comparable, in terms of accuracy (error
levels), to the spherical boundary, at a substantial
reduction of the computational cost (by nearly 60%).
However, even though there are cases (e.g., n ¼ 2;m ¼ 1
in Table 1) where the errors associated with the ellip-
soidal are less than those of the spherical boundary, the
overall trend is that the spherical boundary results in
smaller errors, albeit at increased computational cost.
We remark though that the results are sensitive to the
quality of the mesh: we have observed deterioration of
the accuracy for the higher modes when using the
ellipsoidal boundary due to numerical dispersion, while
still using the same mesh density as with the spherical
boundary66. In other words, the errors reported in
Tables 1 and 2 include the total discretization error (due
to both the geometry and the solution approximations),
the dispersion error, and the error introduced by the use
of the approximant to the exact boundary condition.
The dispersion error is a significant part of the total
error, and dominates in the case of the non-spherical
geometries; this is so, since it is easy to create a radially-
aligned mesh (and thus minimize dispersion error) in the
case of the spherical annulus; by contrast, we used highly
unstructured meshes for all other cases (see Fig. 3).
Hence, the reported errors tend to unduly favor the
spherical boundaries.

We further remark that, by construction [21], we
expect the boundaries to perform quite well at the
medium to high frequency range, and exhibit poor
accuracy at the low end of the spectrum (e.g., ka < 0:5),
and particularly so for near-static cases. However, as it
can be seen from Table 1, the performance, even at the
lower end, is still quite satisfactory. Notice also that the
smallest distance from the scatterer to the absorbing
boundary for the reported radiation problems is only a
small fraction of the dominant wavelength: the distance
from the ‘‘north pole’’ of the scatterer (Fig. 4) to the
absorbing boundary is 0:5a, when the wavelength for

Fig. 8 Real and imaginary parts of scattered pressure on the
surface of the scatterer along the xz-plane due to oblique
incidence (Pi125 )

6Dispersion is not addressed here, since no special schemes
have been implemented to alleviate the dispersion error.



ka ¼ 1 is 2pa. That is, the boundary is, approximately,
0:08 wavelengths away from the scatterer. Whereas, such
a close placement may be too tight for applications, we
believe that, based on numerical experiments not re-
ported herein, satisfactory results can be obtained with
boundaries placed at 0:2 of the dominant wavelength
(still at only a fraction of a wavelength).

5.2 Scattering problems – frequency-domain

The computational savings are expected to be greater in
the presence of elongated scatterers, where an ellipsoidal
boundary can offer a tighter circumscription of the in-
sonified obstacle. To this end, we discuss the response of
a rigid finite cylinder (Fig. 5; the cylinder is terminated

with two semi-spherical caps) to four different cases of
an incoming plane wave impinging on the scatterer at
different angles of incidence. Specifically, we prescribe
the incident plane wave of unit amplitude:

pinc ¼ e�ikðx cos axþy cos ayþz cos azÞeixt ; ð35Þ
where ax, ay , and az are the angles formed between the
normal to the traveling wave front and the three coor-
dinate axes. We considered four cases of incidence cor-
responding to the sets indicated in Table 3 and a single
frequency (ka ¼ 1).
We surround the cylinder with four different absorbing
boundaries, that is, a sphere, two different prolate
spheroids, and an ellipsoid, as depicted in Fig. 6 and
Table 4; the characteristic mesh metric was 0:25a. Since
in these cases there is no exact solution to compare

Fig. 9 Normalized scattered
pressure traces; transient
response to a traveling plane
wave (Ricker pulse)



against we create a reference solution by placing a
spherical absorbing boundary at a distance of 8a
(Table 4), also endowed with a second-order condition
(we use the same mesh density). We measure errors
again in the L2-norm, defined in (34), with respect to this
reference solution. Table 5 summarizes the errors on the
surface of the scatterer. Figure 7 depicts the distribution
of the total pressure on the surface of the scatterer for
two out of the four incidence cases (Pix and Pi125 ) and for
two absorbing boundary surfaces (AB-S and AB-E).
Figure 8 depicts the variation of the normalized real and
imaginary parts of the scattered pressure along the xz-
plane on the surface of the scatterer for the case of ob-
lique incidence for all four absorbing boundaries. It is
clear that the agreement is excellent. Notice further that,
while in all cases, the spherical boundary performs better
when compared against the reference solution (Table 5),

the gain in accuracy is marginal in all cases with the
exception of AB-PS2 for which the circumscription is
very tight. It is thus important to observe that, for
example, AB-PS1 offers essentially the same accuracy
for less than 50% of the computational cost associated
with the spherical boundary.

5.3 Scattering problems – time-domain

To illustrate the applicability of the absorbing elements
to time-domain applications, Fig. 9 pertains to a direct
time-domain solution of (24) for the scattered pressure
field due to the insonification of the long cylinder by a
traveling plane wave. To formally define the IBVP
problem we set the normal derivative of the scattered
pressure equal to the negative of the normal derivative

Fig. 10 Traces of error eðtÞ;
transient response to a trav-
eling plane wave (Ricker
pulse)



of the incident pressure on the scatterer’s surface. We
use the implicit trapezoidal rule to integrate in time the
semi-discrete form (24) with a time step Dt c=a ¼ 0:1.
Finally, the time signal for the plane wave is given by a
modified Ricker pulse with a peak central frequency xr.
For the case shown in Fig. 9 we used xra=c ¼ 1. In
Fig. 9 depicted are the time traces of the scattered
pressure at selected surface points on the scatterer.
Figure 10 shows for the same problem the pointwise
error eðtÞ ¼ pref � papp between the reference solution
pref and the approximate solution papp –the latter ob-
tained using each of the four different absorbing
boundaries (spherical, 2 spheroidal, and ellipsoidal).
Finally, Fig. 11 depicts the time-dependent L2-norm
error EðtÞ ¼ ð

R
C½pref � papp�2dCÞ

1
2 sampled on the surface

of the scatterer, again for all four boundaries. The same
behavior and features already identified in the
frequency-domain characterize the response in time as
well. The agreement between the reference solution and,
the ellipsoidally-shaped boundaries are excellent (notice
the small L2 errors in Fig. 11).

6 Conclusions

In this article, we presented results pertaining to
second-order absorbing boundary conditions prescribed
on ellipsoidally-shaped boundaries for the three-
dimensional numerical simulation of scalar wave
propagation in either the time- or the frequency-
domains. The local wave absorption properties of the
condition depend on the curvatures of the truncation
boundary, and terms accounting for the curvature
variations appear explicitly in the developed conditions.
We have shown the equivalence of the conditions, upon

discretization under a Galerkin scheme, to simple wave
absorbing finite elements fully described by symmetric
frequency-independent element matrices. Based on the
obtained numerical results we conclude that significant
computational savings are attainable by the use of the
proposed ellipsoidally-shaped boundaries endowed with
second-order conditions compared to the correspond-
ing spherical boundaries. The savings, measured in the
number of unknowns in the resulting algebraic system,
are of the order of 50%� 80% over the spherical
boundaries.
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