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Abstract We discuss an optimization methodology for
focusing wave energy to subterranean formations using
strong motion actuators placed on the ground surface. The
motivation stems from the desire to increase the mobility of
otherwise entrapped oil. The goal is to arrive at the spatial
and temporal description of surface sources that are capable
of maximizing mobility in the target reservoir. The focusing
problem is posed as an inverse source problem. The underly-
ing wave propagation problems are abstracted in two spatial
dimensions, and the semi-infinite extent of the physical
domain is negotiated by a buffer of perfectly-matched-
layers (PMLs) placed at the domain’s truncation boundary.
We discuss two possible numerical implementations: Their
utility for deciding the tempo-spatial characteristics of opti-
mal wave sources is shown via numerical experiments.
Overall, the simulations demonstrate the inverse source
method’s ability to simultaneously optimize load locations
and time signals leading to the maximization of energy
delivery to a target formation.
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1 Introduction

Elastic wave stimulation of oil reservoirs has been sug-
gested as a viable recourse for the purpose of enhanced oil
recovery (EOR) [3, 4, 6, 10, 12, 16]. Seismic EOR, as it is
sometimes referred to, relies on the ability of propagating
waves, generated by sources placed on or below the ground
surface, to mobilize trapped oil particles. Laboratory and
field experiments [4] suggest that such mobilization is pos-
sible either by dislodgement into the fluid flow of the oil
particles adhering to the pore wall [12] or by the release
of trapped oil-blobs from the pores due to a Haines jump-
like phenomenon [2, 3, 6]. After the droplets are dislodged,
conventional methods can be used for recovery. In general,
wave-based EOR methods are economically competitive
and do not suffer from low sweep efficiency problems
in heterogeneous reservoirs when compared to other EOR
methods [10, 14].

From a technical perspective, uniform, or as uniform
as possible, illumination of the reservoir by a sufficiently
strong wave field is essential to the success of wave-based
EOR methods. Radiation damping, intrinsic, and apparent
attenuation present challenges in the field implementation
of any wave-based EOR process. Although the dissipa-
tive character of the problem cannot be altered, intelligent
choices for the locations and frequency content of the wave
sources can help maximize reservoir shaking. For example,
wave sources operating at certain amplification frequencies
(characteristic of the reservoir and its surroundings) have
been shown to produce stronger wave motion in the targeted
formations [10] than blind sources operating at arbitrarily
selected frequencies. It can also be argued that if the sources
are situated and synchronized in a manner that promotes
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constructive interference at the target formation, then suffi-
ciently strong motion may result despite the attenuation. In
this article, we discuss a systematic methodology for mak-
ing a judicious choice about both the placement and the
frequency content of wave sources used for focusing wave
energy to subsurface formations.

Frequency sweep is one possibility for determining the
optimal (monochromatic) frequency of a ground motion
actuator at which the oil mobility in the formation will
be maximized. When given the location and strength of
the wave sources, the frequency sweep relies on a lin-
ear elastodynamic or poroelastodynamic model for captur-
ing the relevant physics and for determining the strength
of the wave field within the reservoir over the driving
frequency range of interest. Although traversing the fre-
quency spectrum with fixed load locations is a compu-
tationally manageable task, an exhaustive search for the
optimal load locations that could potentially maximize
mobility is computationally prohibitive. This shortcoming
of the frequency sweep approach could be overcome if
the problem were formulated in terms of a search for the
optimal source characteristics, both spatial and temporal,
which, in turn, calls for casting the search as an inverse
source problem.

The inverse source problem approach for the maxi-
mization of motion in a target formation is akin to the
inverse medium problem typically arising in exploration
geophysics [1, 5, 7, 11, 18], where subsurface imaging relies
on the minimization of the difference between experimen-
tally collected and computationally obtained data. Similarly,
the inverse source problem is formulated as a constrained

optimization problem, where minimization of an appropri-
ate objective functional is tantamount to the maximization
of wave motion in the reservoir. The search for optimal
source characteristics is carried out by staying within the
constraints of the governing physics and of equipment
limitations.

Schematically, the inversion procedure is depicted in
Fig. 1. The procedure is initialized with the definition of
the motion metric in the objective functional (L) and with
initial guesses for the source characteristics, i.e., for the
source location and the associated time signals (control
variables). Following a constrained optimization approach,
whereby the governing IBVP is side-imposed to L, the
first-order optimality conditions typically lead to a triad
of forward, adjoint, and control problems (box A, Fig. 1).
The wave source characteristics are updated, following, for
example, a gradient-based scheme, which requires compu-
tation of the functional’s gradients in the space of the source
characteristics. Thus, in general, the numerical solution of
the inverse source problem performs two key operations:
optimization (minimization) in the space of the control
variables and discretization of the ensuing triad of BVPs.
These operations can be performed in different order and
would yield different gradients of the objective functional in
question. Depending on the operational order, there arises
either an optimize-then-discretize (OTD) or a discretize-
then-optimize (DTO) approach; they are both shown in
Fig. 2 [8, 15].

Either of the two approaches can be used to solve an
inverse source problem aimed at the maximization of wave
motion within a reservoir. For example, in Jeong et al. [9,

Fig. 1 General framework of
the inverse source process
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Fig. 2 Candidate algorithms for
the core optimization scheme

depicted in box A of Fig. 1

10], the OTD approach was used for optimizing the fre-
quency content of surface sources used in wave-based
EOR for reservoirs abstracted in one or two spatial dimen-
sions, where, however, the load locations were treated as
fixed.

In this article, we adopt a similar two-dimensional elastic
setting for optimizing the wave source characteristics, but
seek to optimize both the source frequency content (or time
signal) and the source locations. The reservoir is represented
by a target inclusion within an arbitrarily heterogeneous
geological formation. We utilize hybrid perfectly-matched-
layers (PMLs) [13] to truncate the physical domain of
interest. We discuss the formulation and implementation
of both the OTD and the DTO approaches and conduct
numerical experiments. We compare the performance of the
frequency sweep approach with that of the inverse source
problem approach and show that simultaneous optimization
with respect to both source locations and time signals is
important for a higher energy yield. We also discuss the
effect of polarization of the applied surface tractions on the
efficiency of energy focusing and report results attesting to
the ability of the inverse source approach to prescribe wave
sources that could improve the mobility of a reservoir’s
bypassed oil.

2 The forward problem

Our working hypothesis is that the material properties of
the targeted geostructure and those of the surrounding for-
mations are known a priori. For example, if �a in Fig. 3
is the target reservoir, then the properties of both �a and
its surrounding formations �reg are considered known. The

forward problem consists of finding the displacement field
(velocity and acceleration) in the domain of interest, given
suitable boundary and initial conditions, which include the
applied surface tractions. We discuss next the elements of
the forward problem.

2.1 Strong form

We are concerned with elastic wave propagation in a
two-dimensional (2D) heterogeneous, elastic halfspace. We
intend to use finite elements for the numerical solution of

Fig. 3 Problem definition
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the BVPs. This choice, in turn, necessitates the truncation of
the semi-infinite domain. We use hybrid perfectly-matched-
layers (PMLs)[13] to realize a physically faithful simula-
tion of wave propagation within the computational domain.
Figure 3 shows the truncated 2D elastic domain �reg that
has been augmented with PMLs (�PML). �reg envelops the
target inclusion �a. ua(x, t) represents the displacement
field in the target inclusion (�a), whereas ub(x, t) denotes
the displacement in the rest of the domain (�reg ∪ �PML).
The governing equations in � = �a∪�reg∪�PML, for time
t ∈ (0, T ] = J, are given as :

div
[
μa

(
∇ua + ∇uT

a

)]
+ div [{λa div ua} I]
− ρaüa = 0, x ∈ �a, (1)

and

div
[
μb

(
∇ub + ∇uT

b

)]
+ div [{λb divub} I]
−ρbüb = 0, x ∈ �reg, (2a)

div
(
ṠT �̃e + ST �̃p

)
− ρb (aüb + bu̇b + cub) = 0,

x ∈ �PML, (2b)

D : (aS̈ + bṠ + cṠ) − 1

2

[
∇ub�̃p + �̃p(∇ub)T

+∇u̇b�̃e + �̃e(∇u̇b)T
]

= 0, x ∈ �PML, (2c)

where an overdot ( ˙ ) denotes a derivative with respect
to time and a colon (:) represents tensor inner product.
Equations 1 and 2 are the elastodynamics equations for a
semi-infinite medium, augmented by PMLs [13]. S(x, t) is
the stress history tensor, given by,

S(x, t) =
[
S11(x, t) S12(x, t)
S21(x, t) S22(x, t)

]
=
∫ t

0
σ (x, τ )dτ, (3)

where σ is the Cauchy stress tensor. �̃e and �̃p are com-
ponents of the stretching tensor, and a, b, c are coefficients
defining coordinate stretching in the PML region. Their
detailed definitions are beyond the scope of this article
and can be found in [13]. (λa, μa, ρa) and (λb, μb, ρb)
are the Lamé parameters and mass density for the inclu-
sion �a and �reg ∪ �PML, respectively. D is the com-
pliance tensor, so that the constitutive law takes the form
D : Ṡ = 1

2 (∇ub + ∇uT
b ). For t ∈ J, the govern-

ing equations are subjected to the following boundary
conditions:

ub(x, t) = 0, x ∈ �PML
fixed , (4a)[

μb

(
∇ub + ∇uT

b

)
+ {λb div ub} I

]
n = f(x, t),

x ∈ �load, (4b)[
μb

(
∇ub+∇uT

b

)
+{λb div ub} I

]
n = 0, x ∈ �free, (4c)

(
ṠT �̃e + ST �̃p

)
n = 0, x ∈ �PML

free ; (4d)

interface conditions :

u+
b = u−

b , x ∈ �I, (5a)[
μb

(
∇ub + ∇uT

b

)
+ {λb div ub} I

]
n+
I =

−
(
ṠT �̃e + ST �̃p

)
n−
I , x ∈ �I, (5b)

ua(x, t) = ub(x, t), x ∈ �a, (5c)

σ a(x, t)T n−
a = −σ b(x, t)T n+

a , x ∈ �a; (5d)

where

σ a(x, t) = μa

(
∇ua + ∇uT

a

)
+ λa(div ua)I, (5e)

σ b(x, t) = μb

(
∇ub + ∇uT

b

)
+ λb(div ub)I; (5f)

and initial conditions :

ua(x, 0) = 0, u̇a(x, 0) = 0, x ∈ �a, (6a)

ub(x, 0) = 0, u̇b(x, 0) = 0, x ∈ �reg ∪ �PML, (6b)

S(x, 0) = 0, Ṡ(x, 0) = 0, x ∈ �PML. (6c)

The strong form of the forward problem can be stated as:
given loads f(x, t), find ua ∈ H1(�a) × J, ub ∈ H1(�reg ∪
�PML) × J, and S ∈ L2(�PML) × J, so that they satisfy
Eqs. 1 and 2 and conditions (4)–(6), where the pertinent
function spaces for a scalar f , vector u, and tensor T are
given by:

L2(�) = {f :
∫

�

|f |2d� < ∞}, (7a)

L2(�) = {T : T ∈ (L2(�))2×2}, (7b)

H 1(�) = {f :
∫

�

(|f |2 + |∇f |2)d� < ∞,

f (x) = 0 if x ∈ �PML
fixed}, (7c)

H1(�) = {u : u ∈ (H 1(�))2}. (7d)

2.2 Weak form

Next, we cast the forward problem in its weak form in the
Galerkin sense. We multiply (1) by a vector test function
va, multiply (2a), (2b) by a vector test function vb, integrate
by parts on their corresponding domains, and add them.
Similarly, we multiply (2c) with tensor test function T and
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integrate over �PML. After some simplifications, using the
boundary conditions (4) and interface conditions (5), we
arrive at the following weak form:

∫

�a

{
∇va :

[
μa (∇ua + ∇uT

a ) + λa (div ua)I
]

+va · ρaüa} d�

+
∫

�reg

{
∇vb :

[
μb(∇ub + ∇uT

b ) + λb (div ub)I
]

+vb · ρbüb} d�

+
∫

�PML

{
∇vb :

(
ṠT �̃e + ST �̃p

)

+vb · ρb (aüb + bu̇b + cub)} d� =
∫

�load

vb · f d�, (8a)

∫

�PML

T :
{
D : (aS̈ + bṠ + cṠ) − 1

2

[
∇ub�̃p

+�̃p(∇ub)T + ∇u̇b�̃e + �̃e(∇u̇b)T
]}

d� = 0. (8b)

2.3 Semi-discrete form

Numerical solution of the forward problem requires dis-
cretization in space and time. We introduce spatial approx-
imations via shape functions �(x) ∈ H1

h(�) and 	(x) ∈
L2

h(�PML). Thus, the trial and test functions can be
expressed as,

va =
[
vT
a1�(x)

vT
a2�(x)

]
, ua =

[
�(x)T ũa1(t)
�(x)T ũa2(t)

]
,

vb =
[
vT
b1

�(x)
vT
b2

�(x)

]
, ub =

[
�(x)T ũb1(t)
�(x)T ũb2(t)

]
, (9a)

T =
[
TT
11	(x) TT

12	(x)
TT
21	(x) TT

22	(x)

]
,

S =
[

	(x)T S̃11(t) 	(x)T S̃12(t)
	(x)T S̃21(t) 	(x)T S̃22(t)

]
, (9b)

where, henceforth, quantities with a tilde over the quantity
symbol (̃) denote vectors of nodal values of the subtended
quantity. Introducing Eq. 9 into Eqs. 8a and 8b yields the
following semi-discrete equation:

Md̈ + Cḋ + Kd = F, (10)

where,

d =
[
ũa1 ũa2 | ũregb1

ũregb2
| ũPML

b1 ũPML
b2 S̃11 S̃22 S̃12

]T
,(11)

F =
[
0 0 | F1 F2 | 0 0 0 0 0

]T
. (12)

We note that M,C, and K are the global mass, damp-
ing, and stiffness matrices, respectively, d is the vector

of unknown displacements (everywhere) and stress histo-
ries (PML only), and F is the force vector. The definitions
of the element matrices used in our formulation are given
in Appendix A. Further details of the global and element
matrices can be found in [13].

2.4 Time integration

The time line is now discretized using a timestep 
t . We
define the vector di = d, at time t = i
t . The equation of
motion of the spatio-temporally discretized system at time
t = (i + 1)
t can be written as,

Md̈i+1 + Cḋi+1 + Kdi+1 = Fi+1. (13)

We employ Newmark’s time integration scheme to integrate
Eq. 13 in time. At time t = 0:

Md̈0 = F0 − Cḋ0 − Kd0, (14)

where d0 and ḋ0 are the prescribed displacement and veloc-
ity vectors. For any time t ∈ J, i.e., for i ≥ 0, we calculate
the acceleration (d̈i+1) by solving,

Meffd̈i+1 = Reff, (15)

where,

Meff = M + Cγ (
t) + K(
t)2β

= M + b4C + b2K, (16)

Reff = Fi+1 − Kdi − [C + (
t)K] ḋi

−
[
(1 − γ )(
t)C + (0.5 − β)(
t)2K

]
d̈i

= Fi+1 − L0di − L1ḋi − L2d̈i . (17)

We, then, calculate the displacement and velocity at the (i+
1)-th timestep using,

di+1 = di + (
t)ḋi + (0.5 − β)(
t)2d̈i + β(
t)2d̈i+1

= di + b0ḋi + b1d̈i + b2d̈i+1, (18)

ḋi+1 = ḋi + (1 − γ )(
t)d̈i + γ (
t)d̈i+1

= ḋi + b3d̈i + b4d̈i+1. (19)

Solution of the forward problem can be obtained by starting
with i = 0 and marching in time (i ← i+1), using Eqs. 14–
19. In Eqs. 15 to 19, we have introduced constants b0 − b4
and matrices L0 − L2. Their definitions are given below:

b0 = 
t, b1 = ( 12 − β)(
t)2, b2 = β(
t)2, (20a)

b3 = (1 − γ )(
t), b4 = γ (
t), (20b)

L0 = K, L1 = C + b0K, L2 = b3C + b1K. (20c)

3 Load modeling

In the inverse source formulation, the surface loads are
treated as unknowns. The load descriptors are updated iter-
atively during the inversion process (e.g., ξ in Fig. 1).
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This calls for parameterization of the spatio-temporal char-
acteristics of the loads. Specifically, the tractions f(x, t)
applied on �load consist of contributions fi (x, t) from ns

sources. The i-th source consists of a spatial θi(x) and a
temporal fi(t) component. θi is further decomposed into
the x1-directional component θi1(x) and the x2-directional
component θi2(x). Thus,

f(x, t) =
ns∑

i=1

fi (x, t) =
ns∑

i=1

[
θi1(x)
θi2(x)

]
fi(t). (21)

In our numerical experiments, we use loads in either the x1
or x2 direction, and, thus, consistently with equipment lim-
itations that allow load application in one direction only,
either θi1(x) = 0 or θi2(x) = 0. We parameterize the
(unknown) time signal using piecewise quadratic Lagrange
polynomials τj (t) whose temporal nodal values are denoted
by ξij . This allows us to express fi(t) as

fi(t) =
nf∑
j=1

ξij τj (t), (22)

where nf is the total number of Lagrange polynomials. The
spatial variation of the i-th load on �load is captured by θiK ,
where subscript K describes the direction in which the load
acts. For example, a constant pressure load applied verti-
cally on part of the surface (x2 = 0) can be expressed
as

θi2(x1, 0) = H
(
ηi − bi

2

)
− H

(
ηi + bi

2

)
, (23)

where H is the Heaviside function, ηi is the x1 co-ordinate
of the load’s center-line, and bi is the i-th load width. A
vertical load varying like a Gaussian function in space about
ηi is given by

θi2(x1, 0) = −exp
[−(x1−ηi )

2

bi

]
. (24)

In our numerical experiments, we use (approximately) 2-m
-wide loads. Thus, we set bi = 2 m in Eq. 23 and bi =
1.25 m in Eq. 24.

4 The inverse source problem

Next, we discuss the formulation and solution of the inverse
problem. The inverse source problem aims at maximizing a
motion metric (e.g., the kinetic energy) in the target domain
by seeking optimal time signals and locations for the surface
tractions. In this section, we discuss the formulations for
both the OTD and DTO approaches.

4.1 Optimize-then-discretize (OTD) approach

We use a standard PDE-constrained-optimization approach
to resolve the inverse source problem. The objective func-
tional is cast in its continuous form. The constraints
imposed by the governing PDEs and Neumann-type bound-
ary conditions are incorporated by augmenting the objec-
tive functional with the PDEs and boundary conditions,
multiplied by continuous Lagrange variables. Upon dis-
cretization of the first-order optimality conditions, the
resulting KKT (Karush–Kuhn–Tucker) system is solved
numerically using a reduced-space approach. Maximiza-
tion of the kinetic energy within the elastic inclusion (�a)

is tantamount to minimization of the following objective
functional:

L = 1∫

�a

∫ T

0
ρa [u̇a · u̇a] dt d�

, (25)

subject to the governing Eqs. 1 and 2, boundary, interface,
and initial conditions (4)–(6). We side impose the PDEs (1)
to (2c), and the boundary conditions (4b), (4d) on L to form
the Lagrangian A. Other boundary, initial, and interface
conditions will be explicitly imposed. There results:

A = 1∫

�a

∫ T

0
ρa [u̇a · u̇a] dt d�

+
∫

�a

∫ T

0
λua ·

[
μa div

(
∇ua + ∇uT

a

)

+div [{λa div ua} I] − ρaüa] dt d�

+
∫

�reg

∫ T

0
λub1 ·

[
μb div

(
∇ub + ∇uT

b

)

+div [{λb div ub} I] − ρbüb]

+
∫

�PML

∫ T

0
λub2 ·

[
div

(
ṠT �̃e + ST �̃p

)

−ρb (aüb + bu̇b + cub)] dt d�

+
∫

�PML

∫ T

0
λS : {D : (aS̈ + bṠ + cṠ)

−1

2

[
∇ub�̃p + �̃p(∇ub)T

+∇u̇b�̃e + �̃e(∇u̇b)T
]}

dt d�

+
∫

�load

∫ T

0
λF ·

[[
μb

(
∇ub + ∇uT

b

)

+ {λb div ub} I]n − f(x, t)] dt d�

+
∫

�PML
free

∫ T

0
λb ·

(
ṠT �̃e + ST �̃p

)
n dt d� (26)

Notice that λ = {λua, λub , λS, λF, λb} are the continuous
Lagrange multipliers. We, now, seek to satisfy the first-order
optimality conditions.
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4.1.1 State problem

The variation of the Lagrangian with respect to the Lagrange
variables results in:

δλuai
A = 0, i = 1, 2

δλubi
A = 0, i = 1, 2

δλSij
A = 0, ij = 11, 12, 21, 22

δλFi
A = 0, i = 1, 2

δλbi
A = 0, i = 1, 2.

(27)

Equations 27 are satisfied when the (continuous) forward
problem, i.e., Eqs. 1–6, is satisfied. The discrete form of the
forward problem has been addressed in Section 2.

4.1.2 Adjoint problem - strong form

Variation of A with respect to the state variables yields:

δuai A = 0, i = 1, 2
δubi

A = 0, i = 1, 2
δSij

A = 0, ij = 11, 12, 21, 22.
(28)

Equations 28 give rise to the strong form of the adjoint
problem, for time t ∈ (T , 0] = Ja ,

div
[
μa

(
∇λua + ∇λT

ua

)]
+ div

[{
λa div λua

}
I
]

−ρaλ̈ua = f ua
, x ∈ �a, (29)

and

div
[
μb

(
∇λub + ∇λT

ub

)]
+ div

[{
λb div λub

}
I
]

−ρbλ̈ub = 0, x ∈ �reg, (30a)

div
(
−λ̇S�̃e+λS�̃p

)
−ρb

(
aλ̈ub−bλ̇ub+cλub

) = 0,

x ∈ �PML, (30b)

D :(aλ̈S − bλ̇S + cλS
)+ �̃e(∇λ̇b)

T − �̃p(∇λb)
T = 0,

x ∈ �PML, (30c)

where

f ua
= Eρaüa, E = −2(∫

�a

∫ T

0 ρa [u̇a · u̇a] dt d�
)2 ,

λS = λ
sym
S ,

subject to the following boundary conditions:

λub(x, t) = 0, x ∈ �PML
fixed , (31a)[

μb (∇λub + ∇λT
ub

) + λb(div λub)I
]
n = 0, x ∈ �load, (31b)

[
μb (∇λub + ∇λT

ub
) + λb(div λub)I

]
n = 0, x ∈ �free, (31c)

(
−λ̇S�̃e + λS�̃p

)
n = 0, x ∈ �PML

free , (31d)
(
−λ̇S�̃e + λS�̃p

)
n = 0, x ∈ �PML

fixed , (31e)

λF(x, t) = −λub(x, t), x ∈ �load, (31f)

λb(x, t) = −λub(x, t), x ∈ �PML
free ; (31g)

interface conditions :

λ+
ub

= λ−
ub

, x ∈ �I, (32a)(
μb (∇λub + ∇λT

ub
) + λb(div λub)I

)
n+
I =

−
(
−λ̇S�̃e + λS�̃p

)
n−
I , x ∈ �I, (32b)

λua(x, t) = λub(x, t), x ∈ �a, (32c)

λσa(x, t)
T n−

a = −λσb(x, t)
T n+

a , x ∈ �a; (32d)

where,

λσa(x, t) = μa (∇λua + ∇λT
ua

) + λa(div λua)I, (32e)

λσb(x, t) = μb (∇λub + ∇λT
ub

) + λb(div λub)I; (32f)

and final value conditions :

λua(x, T ) = 0, λ̇ua(x, T ) = −E u̇a, x ∈ �a, (33a)

λub(x, T ) = 0, λ̇ub(x, T ) = 0, x ∈ �reg, (33b)

λS(x, T ) = 0, λ̇S(x, T ) = 0, x ∈ �PML. (33c)

As it can be seen from the above, the adjoint problem
is driven by the body forces that, in turn, depend on
the value of the energy metric the forward problem com-
putes over the target formation, while the time line is
reversed.

4.1.3 Adjoint problem - weak form

We take an inner product of adjoint equations with appro-
priate test functions and integrate over the corresponding
domains to obtain the following weak form of the adjoint
problem:

∫

�a

{
∇va :

[
μa

(
∇λua + ∇λT

ua

)
+ {

λa div λua

}
I
]

+va · [ρaλ̈ua + ρf λ̈w

]}
d�

+
∫

�reg

{
∇vb :

[
μb

(
∇λub + ∇λT

ub

)
+ {

λb div λub

}
I
]

+vb · ρbλ̈ub

}
d�

+
∫

�PML

{
∇vb :

(
−λ̇S�̃e + λS�̃p

)
+ vb · ρb

(
aλ̈ub

−bλ̇ub + cλub

)
d� = −

∫

�a

va · f ua

}
d�. (34a)

∫

�PML

T :
{
D : (aλ̈S − bλ̇S + cλS

)+ �̃e(∇λ̇b)
T

−�̃p(∇λb)
T
}

d� = 0. (34b)

4.1.4 Adjoint problem - semi-discrete form

We introduce spatial approximations via shape functions
�(x) ∈ H1

h(�) and 	(x) ∈ L2
h(�PML). Thus, the trial and
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test functions are given by

va =
[
vT
a1�(x)

vT
a2�(x)

]
, λua =

[
�(x)T λ̃ua1(t)

�(x)T λ̃ua2(t)

]
,

vb =
[
vT
b1

�(x)
vT
b2

�(x)

]
, λub =

[
�(x)T λ̃ub1(t)

�(x)T λ̃ub2(t)

]
, (35a)

T =
[
TT
11	(x) TT

12	(x)
TT
21	(x) TT

22	(x)

]
,

λS =
[

	(x)T λ̃S11(t) 	(x)T λ̃S12(t)

	(x)T λ̃S21(t) 	(x)T λ̃S22(t)

]
. (35b)

We define

λ = [̃λua1
λ̃ua2

| λ̃
reg
ub1

λ̃
reg
ub2

| λ̃
PML
ub1

λ̃
PML
ub2

λ̃S11 λ̃S22 λ̃S12 ]T , (36)

Fadj = [Fua1
Fua2

| 0 0 | 0 0 0 0 0]T , (37)

Fuai
(t) = −

∫

�a

Eρa��T ¨̃uai (t) d�. (38)

Now, Eqs. 34a and 34b can be written in their semi-discrete
form, using (35), as

Madjλ̈ + Cadjλ̇ + Kadjλ = Fadj. (39)

Comparison of Eqs. 8a and 8b with Eqs. 34a and 34b
reveals that the system matrices for the forward and adjoint
problems are related, as per:

Madj = M, Cadj = −C, Kadj = K. (40)

4.1.5 Adjoint problem - time integration

The adjoint problem is a final BVP, and it requires travers-
ing the time line backwards. To this end, we introduce the
following approximations:

λi = λi+1 − λ̇i+1
t + (
t)2
[
λ̈i (0.5 − β) + λ̈i+1β

]
, (41)

λ̇i+1 = λ̇i+1 − 
t
[
λ̈i (1 − γ ) + λ̈i+1γ

]
(
t), (42)

where the subscripts denote timestep. Equations 41 and 42
are used in the following system of equations:

Madjλ̈i+1 + Cadjλ̇i+1 + Kadjλi+1 = Fadj
i+1. (43)

Inserting Eqs. 41 and 42 into Eq. 43, after some simplifica-
tions, yields,
[
Madj − 
t(1 − γ )Cadj + (
t)2(0.5 − β)Kadj

]
λ̈i

= Fadj
i − Cadj [λ̇i+1 − 
tγ λ̈i+1

]

−Kadj
[
λi+1 − 
t λ̇i+1 + (
t)2βλ̈i+1

]
. (44)

Similarly to the forward problem, we solve the adjoint
problem using the step-by-step time integration procedure
outlined by Eqs. 41–44.

4.1.6 Control problem(s)

Formulation of the control problem depends on the type
of optimization to be performed. The inverse problem can
be cast to obtain either the optimal time signal or the
optimal position of the surface tractions, or both of the
aforementioned load descriptors.

Time signal optimization: In this case, the goal of the
inverse problem is to find the optimal set of parameters
ξij , as defined in Eq. 22. The control variable is given
by:

ξ = [ξ11 ξ12 · · · ξ1nf
· · · ξ(ns)(nf −1) ξnsnf

]. (45)

For a load applied in the xk direction, the gradient of the
Lagrangian with respect to the control parameter ξmn is
given by

∇(ξmn)A =
∫

�load

θmk(x)�T

{∫ T

0
λ̃ubk(t)τn(t)dt

}
d�.

(46)

Load-location optimization: Here, we seek the optimal load
locations for maximizing the motion metric in the inclusion.
The vector of control parameters, used in Eqs. 23 and 24, is
given by η = [

η1 η2 · · · ηns

]
.

∇(ηm)A =
∫

�load

∂θmk(x)
∂ηm

�T

⎧⎨
⎩
∫ T

0
λ̃ubk(t)

nf∑
j=1

ξmj τj (t)dt

⎫⎬
⎭ d�.

(47)

Detailed derivations of the control problems are given in
Appendix B.

The summary of the inversion procedure is discussed
next. We solve the forward problem using an initial guess of
the source characteristics to obtain the state variables. We
use the state variables to form the body forces that drive the
adjoint problem. Upon solution, the adjoint problem yields
the values of the adjoint variable on the loaded boundary
�load. These values are used to compute the reduced gradi-
ent(s) in Eqs. 46 and/or 47. The procedure used for updating
the vector of location parameters (η) is discussed next; the
identical procedure is used for updating the vector of time
parameters (ξ ). Let glk be the discretized reduced gradient
for the load location vector obtained at the end of the k-th
inversion iteration. Thus,

glk = (∇(η)A)k. (48)

glk is used to compute a search direction slk in the space
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of source characteristics. Here, we use the search direction
given by the conjugate gradient method.

slk = −glk, if k = 0,

slk = −glk + glk · glk

gl(k−1) · gl(k−1)
, otherwise. (49)

We, then, update the source characteristics by taking a step
towards the search direction. The magnitude of the step is
decided by the step length αlk , i.e., we set ηk+1 = ηk +
αlkslk . The iteration counter is updated (k ← k+1), and the
procedure is repeated until convergence is reached.

4.1.7 Discrete objective functional

To complete the discrete problem, the objective functional
(25) must also be discretized. Let L̂ denote the discrete L;
then

L̂ = 1
∫ T

0
˙̃uT

a Ma ˙̃uadt
, (50)

whereMa is the mass matrix of the inclusion (Appendix A).

4.2 Discretize-then-optimize (DTO) approach

Following the procedure outlined in [11, 15], we begin
with the spatio-temporally discretized forward problem.
The objective functional is cast in a discrete form and aug-
mented by weighing the governing equations by discrete
Lagrange multipliers. The resulting discrete Lagrangian is
then subjected to the first-order optimality conditions to
arrive at the KKT system. Specifically, the time-marching
scheme outlined in Eqs. 14 to 19 can be represented as a
linear system of equations given by,

Qu = f , (51)

where

u = [d̈0 ḋ0 d0 d̈1 ḋ1 d1 · · · d̈N ḋN dN ]T , (52)

f = [F0 ḋ0 d0 F1 0 0 · · · FN 0 0]T , (53)

Q =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M C K 0 0 0 · · · 0 0 0 0 0 0
0 I 0 0 0 0 · · · 0 0 0 0 0 0
0 0 I 0 0 0 · · · 0 0 0 0 0 0
L2 L1 L0 Meff 0 0 · · · 0 0 0 0 0 0

−b3I −I 0 −b4I I 0 · · · 0 0 0 0 0 0
−b1I−b0I−I−b2I 0 I · · · 0 0 0 0 0 0

...
...

...
...

...
...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · L2 L1 L0 Meff 0 0
0 0 0 0 0 0 · · · −b3I −I 0 −b4I I 0
0 0 0 0 0 0 · · · −b1I−b0I−I−b2I 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(54)

Equation 51, which is tantamount to the discretized forward
problem, will be used to formulate the inverse problem.
Recall that the objective functional was given by Eq. 25
in its continuous form. The corresponding discrete form,
modulo the mass matrix for compactness, is given by (com-
pare with (50)):

Ld = 1
∫ T

0 ρa ˙̃uT

a
˙̃uadt

� 1

ρa 
t [ 12 ˙̃uT

a0
˙̃ua0 + 1

2
˙̃uT

aN
˙̃uaN +

N−1∑
i=1

˙̃uT

ai
˙̃uai ]

= 1

ρauT Buau
, (55)

where Bua is a block diagonal matrix with 
tB i on its
diagonals; B i are square matrices that are zero everywhere
except on diagonals that correspond to the u̇a degrees of
freedom. As before, we superimpose the governing equa-
tions (51), weighted by the discrete Lagrange multipli-
ers p, on the objective functional to obtain the discrete
Lagrangian, which is to be minimized. Thus, the constrained
minimization problem can now be stated as,

min
f

Ad(u, p, f ) = Ld − pT (Qu − f ), (56)

where

p = [λ̈0 λ̇0 λ0 λ̈1 λ̇1 λ1 · · · λ̈N λ̇N λN ]T , (57)

λ = [̃λua1
λ̃ua2

| λ̃
reg
ub1

λ̃
reg
ub2

| λ̃
PML
ub1

λ̃
PML
ub2

λ̃S11 λ̃S22 λ̃S12]T , (58)

λi = λ, at t = i
t. (59)

The first-order optimality conditions can now be obtained
by taking derivatives of Ad with respect to u, λ and the
force-parameters ξ , η.

4.2.1 State problem

∂Ad

∂p
= 0 =⇒ Qu = f , (60)

which is the forward problem, given by Eq. 51.

4.2.2 Adjoint problem

∂Ad

∂u
= 0 =⇒ QT p = −2Buau

ρa (uT Buau)2
. (61)

Equation 61 represents the adjoint problem associated with
the inverse problem of interest. Since the adjoint problem
involves transpose ofQ, we solve it by marching backwards
in time. That is, from the last three rows of the matrix (61),
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we get, (for i = N),

(update) λN = λu
N, (62a)

(update) λ̇N = λv
N, (62b)

(solve) MT
effλ̈N = λa

N + b4λ̇N + b2λN. (62c)

For (N − 1) ≤ i ≤ 1, we update λ̇i , λi and solve for λ̈i

using the following,

(update) λi = λu
i + λi+1 − LT

0 λ̈i+1, (63a)

(update) λ̇i = λv
i + b0λi+1 + λ̇i+1 − LT

1 λ̈i+1, (63b)

(solve) MT
effλ̈i = λa

i + b1λi+1 + b3λ̇i+1

−LT
2 λ̈i+1 + b2λi + b4λ̇i . (63c)

For i = 0, we get

(solve)MT λ̈0 = λa
0 + b1λ1 + b3λ̇1 − LT

2 λ̈1, (64a)

(update)λ0 = λu
0 + λ1 − LT

0 λ̈1 − KT λ̈0, (64b)

(update)λ̇0 = λv
0 + b0λ1 + λ̇1 − LT

1 λ̈1 − CT λ̈0. (64c)

In Eqs. 62–64,

λu
i = λa

i = 0, 0 ≤ i ≤ N, (65a)

λv
i = −ρa 
t L2

d [ ˙̃ua1i
˙̃ua2i | 0 0 | 0 0 0 0 0]T , i = 0, N, (65b)

λv
i = −2ρa 
t L2

d [ ˙̃ua1i
˙̃ua2i | 0 0 | 0 0 0 0 0]T , 0 < i < N. (65c)

It can be seen from the above equations that the adjoint
problem of the DTO approach is driven by the prescription
of velocity-like adjoint variables (λv

i ) at each time step. The
value of λv

i depends on the value of the objective functional
as well as the value of the velocity vector for the target (u̇ai ).

4.2.3 Control problem(s)

Time signal optimization:
∂Ad

∂ξ
= pT ∂f

∂ξ
(66)

provides the gradient of the Lagrangian with respect to
the control parameter ξ . For any given nodal-excitation
parameter ξmn, we get

∂Ad

∂ξmn

=
N∑

i=0

λ̈
T

i

∂Fi

∂ξmn

. (67)

For a load acting in the xp direction, we update each
element, ξmn, of the control parameter vector ξ using:

∂Ad

∂ξmn

=
N∑

k=0

λ̈
T

k,load

∫

�load

θmp(x)� τn(k
t) d�,

=
N∑

k=0

τn(k
t) λ̈
T

k,load

∫

�load

θmp(x)� d�. (68)

Load location optimization:
∂Ad

∂η
= pT ∂f

∂η
(69)

provides the gradient of the Lagrangian with respect to the
control parameter η. For any given load-location parameter
ηm, we get

∂Ad

∂ηm

=
N∑

i=0

λ̈
T

i

∂Fi

∂ηm

. (70)

For a load acting in the xp direction, we update each
element, ηm, of the control parameter vector η using:

∂Ad

∂ηm

=
N∑

k=0

λ̈
T

k,load

∫

�load

∂θmp(x)
∂ηm

�

nf∑
j=1

ξmj τj (k
t) d�,

=
N∑

k=0

⎡
⎣
⎛
⎝

nf∑
j=1

ξmj τj (k
t)

⎞
⎠ ·

λ̈
T

k,load

∫

�load

∂θmp(x)
∂ηm

� d�

]
. (71)

Effectively, Eqs. 68 and 71 of the DTO approach are used in
lieu of Eqs. 46 and 47 of the OTD approach. Details of the
derivations are given in Appendix B.

As before, we start the inversion process with an initial
guess of source characteristics. We solve the forward prob-
lem, compute the objective functional (Ld ), and obtain the
velocity field in the target (u̇ai ). Ld and u̇ai are used to
compute the velocity-like adjoint variables (λv

i ) that drive
the adjoint problem. Solution of the adjoint problem yields
the values of the acceleration-like adjoint variables on the
loaded boundary (λ̈k,load). We, then, use Eqs. 68 and/or 71

Fig. 4 Geological formation model
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Table 1 Summary of numerical experiments

Numerical Loading Spatial Optimization Optimization KEinc

experiment direction description of algorithm variable (J/m)

number loads

1 Vertical Eq. 23 OTD Time-signal 1.63

2 Horizontal Eq. 24 DTO Time-signal 3.22

Time-signal

then load-location 3.85

(sequentially)

Time-signal

and load-location 4.75

(simultaneously)

3 Vertical Eq. 23 OTD Time-signal 1.63

3 Horizontal Eq. 23 OTD Time-signal 3.10

4 Horizontal Eq. 23 OTD Time-signal 3.09

4 Horizontal Eq. 23 DTO Time-signal 3.10

to compute the discrete reduced gradients. Equations 48
and 49 are then employed to update the source character-
istics, and we follow the iterative inversion procedure until
convergence is reached.

5 Numerical experiments

In this section, we test the inversion algorithm by con-
ducting numerical experiments. In our experiments, we use
either horizontally- or vertically-polarized surface loads.
The maximum amplitude is set at 50 kN/m2. Figure 4 shows
the geometry as well as the P- and S-wave speeds for the
geological formation model used to illustrate the capabili-
ties of the methodology. The mass densities (ρa and ρb) for

Fig. 5 Frequency sweep results for uniform vertical load

all materials in the profile shown in Fig. 4 are 2200 kg/m3.
The profile has an elliptical target inclusion whose center is
located at 260 m below the ground surface. The major axis
of the inclusion is 30 m long, while the minor axis length is
15 m. In all experiments, we use a timestep 
t = 0.001 s.

We define the following metrics to evaluate the perfor-
mance of the proposed inversion method: if u(t) denotes the
displacement at a computational node at time t , the time-
averaged kinetic energy (KETA) at that node is defined as

KETA =
∫ T

0

1

2
ρ [u̇(t) · u̇(t)] dt / T , (72)

where ρ is the mass density. Time-averaged kinetic energy,
further integrated over the target inclusion, is defined as

Fig. 6 Frequency sweep results for uniform horizontal load
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Fig. 7 Experiment 1—TS1 and TS2 signals

KEinc. Thus,

KEinc =
∫

�a

∫ T

0

1

2
ρa [u̇a(t) · u̇a(t)] dt d� / T

=
∫ T

0

1

2
˙̃ua(t)T Ma ˙̃ua(t)dt / T , (73)

where ˙̃ua(t) is the velocity vector corresponding to the com-
putational nodes in the inclusion, andMa is the mass matrix
of the inclusion, as defined in Appendix A. We remark that
the units of KETA are joule per cubic meter and those of
KEinc are joule per meter. In the experiments, we use plots
of KETA and values of KEinc to compare the degree of
energy focusing achieved by various techniques. We report
the results of four numerical experiments, which are used to
highlight the performance of the inverse source approach;
Table 1 shows a summary of the numerical experiments fea-
tures, and the kinetic energy KEinc density resulting from
each experiment.

As discussed earlier, a frequency sweep is one possibil-
ity for deciding suitable temporal characteristics of the wave
sources. In our experiments, we compare the performance

of the inversion technique with that of the frequency sweep
approach. To this end, we conduct a frequency sweep for
the geological formation model (Fig. 4) by applying first a
uniform surface load, either horizontally or vertically polar-
ized. The load has an amplitude of 2 kN/m2 everywhere
along the line x2 = 0, and, temporally, it varies as a sine
function of the driving frequency. We calculate the objective
functionals (L̂ and Ld ) for frequencies ranging between 0.5
and 60 Hz.

Figure 5 shows that for the vertically-acting load, there
are many local minima at various driving frequencies. The
global minimum occurs at 30.5 Hz. Notice that the value
of the local minimum at 53 Hz is very close to that
of the global minimum. For the horizontal load (Fig. 6),
the objective functionals have a global minimum at 18.3
Hz. The figure also shows that both objective function-
als exhibit a second strong local minimum at a driving
frequency of 34.5 Hz.

5.1 Experiment 1—Source signal optimization

In this experiment, we compare the results of the time
signal optimization with those of the frequency sweep pro-
cedure. The performance is judged by comparing KEinc for
the two approaches. To this end, we apply three vertical
loads centered at (10,0)m, (−15, 0)m, and (0,0)m on the
surface (x2 = 0) of the geological formation model. We
use Eq. 23 to specify the spatial variability of the loads.
If one were to choose time signals based on the results
of the frequency sweep (Fig. 5), there are (at least) two
possibilities: (i) monochromatic signals having 30.5 Hz as
their dominant frequency and (ii) dichromatic signals hav-
ing 30.5 and 53 Hz as dominant frequencies. To measure the
energy delivery performance of these signals, we construct

Fig. 8 Frequency sweep results for three vertical loads located at
(10,0)m, (−15, 0)m, and (0,0)m
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Fig. 9 Experiment 1–Initial guess

signals TS1 and TS2 using piecewise quadratic Lagrange
polynomials (22), corresponding to the monochromatic and
dichromatic signal, respectively. The time signals (TS1
and TS2) and their frequency spectra are shown in Fig. 7
measure KEinc for these two cases.

Sources operating with TS1 as their driving signals are
able to achieve KEinc = 1.06 J/m, whereas those with TS2
as the driving signals deliver KEinc of 1.39 J/m. In other
words, operating three vertical loads at the combination of
two sine functions, each operating at the two “best” fre-
quencies obtained by the frequency sweep will result in
an increase of the energy delivery of about 36 % over the
energy delivered when operating the same three loads at the
single best frequency resulting from the sweep. We remark
that loading the entire width of the computational domain
generates waves having, initially, plane wavefronts in the
domain of interest. The waves emitted by the finite-width
sources are near-cylindrical in nature. This difference alone
will not alter in any significant way the sweep’s results. For
example, if three 2-m-wide vertically-acting loads operate

at the same three locations as before, the same (approxi-
mately) minima would be recovered, as the plot in Fig. 8
depicts.

Of interest is how the inversion procedure will perform.
Thus, next, we conduct the time signal optimization using
the OTD approach (without changing the load locations).
The initial guess for the time signals of the loads is shown in
Fig. 9. It can be seen in Fig. 9b that the initial guesses have
broad frequency support. The time signals obtained follow-
ing the optimization are shown in Fig. 10, and as it can be
seen in Fig. 10b for all three loads there are clearly two dom-
inant frequencies at, approximately, 30 and 53.5 Hz. That
is, the optimizer converged nicely to signals that, at a min-
imum, contain dominant contributions from the two “best”
frequencies revealed by the frequency sweep, without any
prior biasing of the inversion process. Notice also that the
converged time signals have a rich content, with contribu-
tions from many frequencies other than those corresponding
to the strongest minima seen in the frequency sweep. It can
also be observed in Fig. 10b that the frequency spectra for
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Fig. 10 Experiment 1— Converged time signals
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Fig. 11 Experiment
1—Time-averaged kinetic
energy

the converged signals of the three loads are not identical.
The difference can be attributed to the complex interact-
ing wave patterns. Simply put, the inverse source problem
is aware of these patterns by virtue of the forward (state)
problem solution, and uses the information to steer the time
signals to maximize energy focusing. Figure 11 depicts the
distribution of time-averaged kinetic energy (KETA) in the
computational domain before and after optimization; the
KEinc delivered to the target due to the optimized time
signals is 1.63 J/m.

This experiment highlights the key differences between
the frequency sweep and time signal optimization proce-
dures. The time signal optimization procedure was able
to deliver about 17 % more kinetic energy (in the time-
averaged sense) than the best the frequency sweep infor-
mation could do based on the dichromatic signal. Note that
we conducted our experiment for a duration T = 1 s: in a
field implementation of the seismic EOR, where the stim-
ulation may be applied for days, 17 % improvement in
the efficiency is significant. For the model formation used
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Fig. 12 Experiment 2—Initial guess
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Fig. 13 Experiment 2—Time signals after optimization (time signal only)

in our experiment, the choice of time signals is not obvi-
ous from the frequency sweep results. A frequency sweep
procedure, which is based on loading the entire surface
of the (computational) domain, can become blind to the
complex interference patterns created by waves emitted by
a number of sources having finite widths. The degree of
blindness depends, to a certain extent, on the heterogene-
ity of the geostructure. A frequency sweep procedure that
involves using loads with smaller widths (e.g., 2 m) requires
a combined frequency-and-location sweep, which is compu-
tationally expensive. These observations indicate the utility

of the proposed inverse source approach in deciding the time
signals driving wave sources used for focusing vibrational
energy.

5.2 Experiment 2–Source location and signal optimization

In this experiment, we discuss the optimization of the wave
sources’ spatial and temporal characteristics. The time sig-
nal and load location optimization can be performed either
sequentially or simultaneously. In a sequential process, the
time signals are optimized first, without changing the load

Fig. 14 Experiment 2—Time-averaged kinetic energy (sequential optimization)



248 Comput Geosci (2015) 19:233–256

0 0.2 0.4 0.6 0.8 1

−50

0

50

Time [s]

f 1
(
t)

 [
k
N

/m
2
]

0 0.2 0.4 0.6 0.8 1

−50

0

50

Time [s]

f 2
(
t)

 [
k
N

/m
2
]

0 0.2 0.4 0.6 0.8 1

−50

0

50

Time [s]

f 3
(
t)

 [
k
N

/m
2
]

0 10 20 30 40 50

0

0.5

1

Frequency [Hz]

F
F

T
 o

f 
f 1

(
t)

0 10 20 30 40 50

0

0.5

1

Frequency [Hz]

F
F

T
 o

f 
f 2

(
t)

0 10 20 30 40 50

0

0.5

1

Frequency [Hz]

F
F

T
 o

f 
f 3

(
t)

Fig. 15 Experiment 2—Time signals after simultaneous optimization

locations. The converged (optimized) signals are then used,
while the source locations are optimized, until convergence
is reached. By contrast, the simultaneous optimization pro-
cess is initiated with guesses for both time signals and
load locations, and both the spatial and temporal charac-
teristics are updated during every inversion iteration until
convergence is reached. In this experiment, we compare the
performance of the optimization algorithm with that of the
frequency sweep.

Sequential optimization: To test the performance of the
sequential optimization procedure, we use three horizontal
loads on the surface (x2 = 0) of the geological forma-
tion model. We use Eq. 24 to describe the spatial variability
of the surface tractions. The loads are centered at (7,0)m,
(−5, 0)m, and (0,0)m, i.e., η1 = 7m, η2 = −5m, and η3 =
0m in Eq. 24. The temporal optimization process is initi-
ated with the time signals shown in Fig. 12. Their Fourier
transforms (Fig. 12b) show the presence of a wide range

Fig. 16 Experiment 2—
Time-averaged kinetic energy
(simultaneous optimization)
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Fig. 17 Experiment 3—Frequency sweep results for vertical and
horizontal loads

of frequencies. We, next, perform the time signal optimiza-
tion using the DTO procedure. The optimizer converges to
the time signals shown in Fig. 13. The plots for the time-
averaged kinetic energy (KETA) for the initially guessed and

for the converged time signals are compared in Fig. 14.
KEinc for the converged time signals is 3.22 J/m. A closer
look at the frequency spectra of the converged time signals
(Fig. 13b) reveals that the optimizer converged to signals
with dominant frequencies at 18.3 and 34.5 Hz. Recall that
these frequencies correspond to the minima revealed by the
frequency sweep (Fig. 6).

Next, we carry out the optimization for the load loca-
tions. We use the converged time signals (Fig. 13) as
fixed driving signals for the loads. We allow the opti-
mizer to change the locations of loads in order to improve
the energy delivery to the target inclusion. The loads
move to the left and the converged locations are given
by (−18.1, 0)m, (−26.5, 0)m, and (−25.2, 0)m. KEinc at
the end of sequential optimization is 3.85 J/m. The plot
of time-averaged kinetic energy is shown in Fig. 14c.
Note that the algorithm was able to deliver 20 % more
energy merely by changing the locations of loads, i.e., by
allowing the waves to constructively interfere in the target
inclusion.

In the sequential optimization process, fixing the fre-
quency content of time signals while searching for opti-
mal locations may hinder the desired focusing. We have

Fig. 18 Experiment 3—Time signals and frequency spectra
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Fig. 19 Experiment
3—Time-averaged kinetic
energy

observed that the optimal frequency content of the sources
depends on their location. To investigate this effect, we
perform simultaneous optimization, which retains the flex-
ibility of temporal and spatial characteristics during the
entire inversion process.

Simultaneous optimization: We begin with an initial guess
of time signals (Fig. 12), and load locations, which are
the same as those used in the sequential optimization case,
i.e., (7,0)m, (−5, 0)m, and (0,0)m). During each optimiza-
tion iteration, we update the time signals, as well as the
load locations, using the search direction for the respective

control variable. The converged time signals are shown in
Fig. 15, and the time-averaged kinetic energy is plotted in
Fig. 16. Note that the converged frequency spectra for the
loads in their optimized location (Fig. 15b) are different
from those obtained based on time signal optimization for
fixed load locations (Fig. 13b). The loads move to the left
and the converged locations are (−19, 0)m, (−19.16, 0)m,
and (−20.04, 0)m. KEinc for the converged time signals and
locations is 4.75 J/m, which is about 50 % higher than that
achieved by performing time signal optimization with con-
stant load locations (Fig. 14b), and about 23 % higher than
that achieved by the sequential time signal and load location
optimization (Fig. 14c).

Fig. 20 Experiment 4—Initial
guess
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Fig. 21 Experiment 4—Growth of time-averaged kinetic energy for
the inversion iterations

This experiment further highlights the importance of load
location optimization: in the sequential optimization, we
observed that about 20 % more energy can be delivered

to the target formation by placing loads at advantageous
locations. In the sequential optimization, the time signals
are kept constant while performing load location opti-
mization. Since the optimal frequency content of a load
depends on its location, the sequential optimization can-
not adequately compensate. The simultaneous optimization,
on the other hand, is able to adjust both the temporal and
spatial characteristics of loads and achieves (about 50 %)
better energy delivery when compared to the time signal
optimization.

5.3 Experiment 3—Polarization effect

Experiment 3 is designed to determine the effect of
polarization of applied tractions on the wave energy
focusing. Fundamental solutions for point loads on a (homo-
geneous) elastic halfspace [17] indicate that, for example,
for a Poisson’s ratio of 0.2, a horizontal load radiates about
50 % of the energy via P- and S-body waves. On the other
hand, a vertical point load imparts about 70 % of its energy
in the form of Rayleigh surface waves. Thus, for a homo-
geneous, elastic halfspace, horizontal (point) loads are more

Fig. 22 Experiment 4—Time signals and frequency spectra
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Fig. 23 Experiment
4—Time-averaged kinetic
energy

efficient at delivering energy to deeply situated subterranean
formations. To capture the behavior for a heterogeneous
halfspace excited by loads having finite widths, we plot the
frequency sweep of KEinc for horizontal and vertical loads
(Fig. 17). Note that this is merely a different represen-
tation of the frequency sweeps reported earlier (Figs. 5
and 6). As seen in Fig. 17, the horizontally polar-
ized load is able to deliver more vibrational energy to
the target than the vertical load for a wide range of
frequencies.

To further illustrate the effects of loading direction, we
compare the results of time signal optimization performed
with three horizontal and three vertical loads. The locations
of the loads are kept constant. We use the OTD approach to
carry out the time signal optimization. The initial guess of
time signals for both the horizontally and vertically polar-
ized loads is shown in Fig. 9. The loads are centered at
(10,0)m, (−15, 0)m, and (0,0)m. We use Eq. 23 to spec-
ify the spatial variability of the loads. The converged time
signals and their frequency content are depicted in Fig. 18.
Figure 19 shows the plots of KETA. KEinc for the ver-
tical loads is 1.63 J/m (Fig. 19a), whereas that for the
horizontal loads is 3.09 J/m (Fig. 19b), an almost
twofold increase. Thus, our experiment indicates that

horizontally polarized loads are able to deliver more vibra-
tional energy.

Though, both theory and the numerical experi-
ment reported herein suggest that horizontal loads
are preferable for focusing, we note that our model
does not account for intrinsic and/or apparent attenua-
tion. A judicious choice about the preferred direction
of loading can be made after considering the Q-
factors for P and S waves in the geostructure of
interest.

Table 2 “True” material properties for the geological formation
model of Fig. 4

Cp Cv

(m/s) (m/s)

Target inclusion 762 466

M1 953 583

M2 1204 737

M3 1394 853

M4 1685 1032
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5.4 Experiment 4—OTD versus DTO

In this experiment, we use the same geological model to
compare the performance of the OTD and DTO procedures.
We carry out time signal optimization for three horizon-
tal loads using both methods. The initial guess for the time
signals is shown in Fig. 20.

Figure 21 shows that the DTO approach is able to
deliver slightly more kinetic energy to the target in the
time-averaged sense, but, in general, the differences are
small. Nevertheless, in view of its ease of formula-
tion and slightly better performance, we favor the DTO
approach.

In Fig. 22, we compare the converged time signals,
and Fig. 23 shows the time-averaged kinetic energy for
the two procedures. Both procedures successfully recover
the time signals, which exhibit a dominant frequency of,
approximately, 18.3 Hz.

5.5 Experiment 5—The effect of formation property
uncertainties on energy focusing

The working hypothesis of our theoretical development and
of the preceding numerical experiments is that the material

Fig. 24 Time-averaged kinetic energy for the geological formation
with “true” material properties

properties of the geological formation (Fig. 4) are known
with confidence. However, in practice, precise knowledge of
the properties of the geostructure is elusive. Though a sys-
tematic treatment of the effect property uncertainties may
have on energy focusing escapes the scope of this communi-
cation, in this section, we briefly outline methodologies that
would allow the formal treatment of uncertainties and could
lead to the quantification of their effects on focusing.

The following simple numerical experiment highlights
the issues: we first assume that the properties of the geo-
logical formation model depicted in Fig. 4 are inaccurate,
and that the “true” properties are those given in Table 2,
reflecting a 5 to 11 % change in the velocities compared
to those in Fig. 4. Next, we are interested in quantifying
the energy focusing when the “true” properties are used,
while the formation is subjected to the optimal loads we
obtained using the inaccurate wave velocity values. We are
concerned with both the strength of the focusing, as well as
with a potential shift to the focusing area. To this end, we use
the spatio-temporally optimized loads obtained in Experi-
ment 2 (Figs. 15 and 16) to excite the geological formation
with the “true” properties as given in Table 2. The result-
ing distribution of KETA is shown in Fig. 24. The resulting
value of KEinc was reduced from 4.75 J/m (Experiment 2)
to 4.11 J/m, a reduction of about 13 %.

It is clear that, while the material interfaces remained
unaltered, a non-uniform increase in the properties of the
formation led to a reduction of the strength of the focused
energy, with no appreciable effects on the focusing area. The
result is rather expected and warrants a formal treatment.
We briefly outline two systematic approaches that could be
used to quantify the effect of property uncertainties on the
focusing.

– Sensitivity analysis: A sensitivity analysis of the elas-
todynamic system [19] can be carried out to quantify
the dependence of KEinc on the material parameters.
A first-order sensitivity analysis gives rise to a discrete
forward problem (13) cast in terms of the unknown
sensitivity variable z, where z = ∂u

∂q1
and q1 is the mate-

rial parameter of interest (for example, q1 = λb1–the
first Lamé parameter of the top layer). The force vector
for the sensitivity problem depends on the displace-
ment, velocity, and acceleration fields (u, u̇, ü), and the
derivatives of the global system matrices with respect
to q1 ( ∂M

∂q1
, ∂C

∂q1
, ∂K

∂q1
). Upon solution of the sensitivity

problem, one recovers the time histories of the sensitiv-
ity variable and its time derivatives. The time histories
can be used to calculate the derivative of KEinc with
respect to q1 (

∂KEinc
∂q1

). Thus, the analysis determines the



254 Comput Geosci (2015) 19:233–256

sensitivity of KEinc to material parameters of various
layers in the formation.

– Reliability analysis: In this approach, the material
properties are treated as random variables endowed with
suitable probability distribution functions (PDFs). The
deterministic inverse source problem can be solved for
the mean values of the material properties to arrive at
the spatio-temporally optimal loads (Fmean). The time-
averaged kinetic energy of the inclusion (KEinc) is also
a random variable, and its value for the mean material
properties and corresponding optimal loading (Fmean)
can be computed as KEmean

inc . The probability of attain-
ing a KEinc value less than or equal to a predefined
threshold δKEmean

inc (where 0 < δ < 1), i.e., P[KEinc −
δKEmean

inc ≤ 0], when Fmean is used as the surface
excitation, can be evaluated using first-order reliabil-
ity methods (FORM). The reliability analysis requires
computation of derivatives of KEinc with respect to
various material parameters ( ∂KEinc

∂qi
), similarly to the

sensitivity analysis. As explained above, it can be used
to calculate the probability of failure in achieving a cer-
tain threshold KEinc, given the PDFs for the material
parameters in the geostructure.

6 Conclusions

We presented an inverse source approach for focusing
energy in a target subterranean formation and discussed
two possible numerical implementations, DTO and OTD.
Through numerical experiments, we provided evidence of
the inverse source method’s superiority over frequency
sweeps for determining the optimal wave source loca-
tions and time signals. Moreover, the method’s ability
to resolve the optimal spatio-temporal characteristics of
the wave source was shown to result in the strongest
energy focusing among all studied alternatives. Our numer-
ical experiments also indicate that horizontally polarized
loads may be preferable over vertical loads. Lastly, we
observed no significant performance difference between the
two numerical implementations we discussed (DTO and
OTD).
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Appendix: A Element matrices

Here, we present concise definitions of element matri-
ces that form the global matrices in Eq. 10. A detailed

description and definitions of parameters αi (i = 1, 2),
βi (i = 1, 2), etc. can be found in [13].

DMloc =
∫

�loc

D��T d�, DQloc
ij =

∫

�loc

D
∂�

∂xi

∂�T

∂xj

d�

Aijk =
∫

�PML

ij
∂�

∂xk

	T d� Fi =
∫

�load

�T f id�

Nik =
∫

�PML

k
2μb + λb

4μb(μb + λb)
		T d�, if i = 1,

=
∫

�PML

k
λb

4μb(μb + λb)
		T d�, if i = 2,

=
∫

�PML

k
1

2μb
		T d�, if i = 3,

For a finite element within the target inclusion, the element
mass, damping, and stiffness matrices are given by:

Ma =
[

ρaMa 0
0 ρaMa

]
,C a =

[
0 0
0 0

]
,

K a=
[

(2μa+λa)Qa
11+μaQa

22 μaQa
21 + λaQa

12
μaQa

12+λaQa
21 (2μa + λa)Qa

22 + μaQa
11

]
.

Element matrices for the regular domain are:

Mreg =
[

ρbMreg 0
0 ρbMreg

]
,Creg =

[
0 0
0 0

]
,

Kreg =[
(2μb+λb)Q

reg
11 +μbQ

reg
22 μbQ

reg
21 + λbQ

reg
12

μbQ
reg
12 + λbQ

reg
21 (2μb+λb)Q

reg
22 + μbQ

reg
11

]
.

In the PML region, the element matrices can be computed
as:

MPML =

⎡
⎢⎢⎢⎢⎣

ρbaMPML 0 0 0 0
0 ρbaMPML 0 0 0
0 0 −N1a N2a 0
0 0 N2a −N1a 0
0 0 0 0 −N3a

⎤
⎥⎥⎥⎥⎦

,

CPML =

⎡
⎢⎢⎢⎢⎣

ρbbMPML 0 Aα21 0 Aα12

0 ρbbMPML 0 Aα12 Aα21

Aα21 0 −N1b N2b 0
0 Aα12 N2b −N1b 0

Aα12 Aα21 0 0 −N3b

⎤
⎥⎥⎥⎥⎦

,

KPML =

⎡
⎢⎢⎢⎢⎣

ρbcMPML 0 Aβ21 0 Aβ12

0 ρbcMPML 0 Aβ12 Aβ21

Aβ21 0 −N1c N2c 0
0 Aβ12 N2c −N1c 0

Aβ12 Aβ21 0 0 −N3c

⎤
⎥⎥⎥⎥⎦

.
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Appendix: B Control problem derivations

Optimize-then-discretize approach

Time-signal optimization

We take the variation of the Lagrangian with respect to
discrete scalar variables ξmn to obtain the gradient ofA, i.e.,

δ(ξij )A = ∇(ξij )A = −
∫

�load

∫ T

0
λF · ∂f

∂ξij

dt d�, or,

∇(ξij =ξmn)A

= − ∂

∂ξmn

[
ns∑

i=1

∫

�load

∫ T

0

[
λF1(x)
λF2(x)

]
·

[
θi1(x)
θi2(x)

] nf∑
j=1

ξij τj (t)dt d�

⎤
⎦

=
∫

�load

∫ T

0

[
λub1

(x)
λub2

(x)

]
·
[

θm1(x)
θm2(x)

]
τn(t)dt d�

=
∫

�load

[
θm1(x)�
θm2(x)�

]
·
(∫ T

0

[
λub1

(t)

λub2
(t)

]
τn(t)dt

)
d�.

Load-location optimization

Variation of A with respect to the control parameter η is
given by

δ(ηm)A = ∇(ηm)A

= −
∫

�load

∫ T

0
λF · ∂f

∂ηm

dt d�

=
∫

�load

∂θmk(x)
∂ηm

�T

∫ T

0
λubk(t)

nf∑
j=1

ξmj τj (t)dtd�.

Discretize-then-optimize approach

Time-signal optimization

For any given nodal-excitation parameter ξmn, we get

∂Ad

∂ξmn
=

N∑
i=0

λ̈
T

i
∂Fi

∂ξmn
.

We recall that for each element

Felem
k =

[
Felem

k,x1

Felem
k,x2

]
=

ns∑
i=1

∫

�load

[
θi1(x)�
θi2(x)�

] nf∑
j=1

ξij τj (k
t) d�,

∂Felem
k

∂ξmn

=
∫

�load

[
θm1(x)�
θm2(x)�

]
τn(k · 
t) d�,

N∑
k=0

λ̈
T

k

∂Felem
k

∂ξmn

=
N∑

k=0

λ̈
T

k,load

∫

�load

[
θm1(x)�
θm2(x)�

]
τn(k
t) d�,

where λ̈k,load contains the values of adjoint variable corre-
sponding to the degrees of freedom represented by rows of
vector � on �load.

Load-location optimization

For a given load-location parameter ηm, we get

∂Ad

∂ηm
=

N∑
i=0

λ̈
T

i
∂Fi

∂ηm
.

For each loaded element,

Felem
k =

[
Felem

k,x1

Felem
k,x2

]
=

ns∑
i=1

∫

�load

[
θi1(x, ηi)�

θi2(x, ηi)�

]
·

nf∑
j=1

ξij τj (k
t) d�,

∂Felemk

∂ηm
=
∫

�load

[
∂θm1(x,ηm)

∂ηm
�

∂θm2(x,ηm)
∂ηm

�

] nf∑
j=1

ξmj τj (k
t) d�,

N∑
k=0

λ̈
T

k

∂Felemk

∂ηm
=

N∑
k=0

λ̈
T

k,load

∫

�load

[
∂θm1(x,ηm)

∂ηm
�

∂θm2(x,ηm)
∂ηm

�

]
·

nf∑
j=1

ξmj τj (k
t) d�,

where λ̈k,load contains the values of adjoint variable corre-
sponding to the degrees of freedom represented by rows of
vector � on �load.
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