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Abstract We discuss a new formulation for transient
scalar wave simulations in heterogeneous semi-infinite
domains. To deal with the semi-infinite extent of the
physical domains, we introduce truncation boundaries
and adopt perfectly matched layers (PMLs) as the
boundary wave absorbers. Within this framework, we
develop a new mixed displacement-stress (or stress
memory) finite element formulation based on unsplit-
field PMLs. We use, as typically done, complex-
coordinate stretching transformations in the frequency
domain, and recover the governing partial differen-
tial equations in the time-domain through the inverse
Fourier transform. Upon spatial discretization, the re-
sulting equations lead to a mixed semi-discrete form,
where both displacements and stresses (or stress histo-
ries/memories) are treated as independent unknowns.
We propose approximant pairs, which, numerically, are
shown to be stable. The resulting mixed finite ele-
ment scheme is relatively simple and straightforward
to implement, when compared against split-field PML
techniques. It also bypasses the need for complicated
time integration schemes that arise when recent dis-
placement-based formulations are used. We report nu-
merical results for 1D and 2D scalar wave propagation
in semi-infinite domains truncated by PMLs. We also
conduct parametric studies and report on the effect the
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various PML parameter choices have on the simulation
error.
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1 Introduction

The numerical simulation of wave motion is of impor-
tance in a variety of fields in science and engineering
with, amongst others, significant applications in seis-
mology, medicine, and geophysical probing. In such ap-
plications, it is often required to model the propagation
of waves within domains that are mathematically ideal-
ized as unbounded, whether of infinite or semi-infinite
extent. When domain discretization methods are used
as the means to numerical solutions, especially in the
presence of material heterogeneity, it is necessary that
the unbounded domain be reduced to a finite one. This
domain reduction is typically accomplished through a
geometric truncation of the physical domain, accom-
panied by the prescription of appropriate boundary
conditions on the truncation surface. Once the domain
is truncated, there are two possible paths for dealing
with propagating waves originating from the interior
of the finite domain and impinging upon the artificial
boundary: either allow their safe passage through the
truncation surface with, ideally, no reflections from the
artificial boundary, or enforce their vanishing while,
again, ensuring that, at best, the wave motion in the
interior domain is not adversely polluted. The for-
mer approach gives rise, mathematically, to transparent
conditions, rightly termed for the sought benefit of
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unimpeded wave propagation through the truncation
surface. By contrast, the latter approach gives rise to
absorbing conditions,1 for waves are absorbed, usually
within a buffer zone adjacent to the truncation surface.

There is a rich literature devoted to the development
of transparent and absorbing boundary conditions, with
early work dating back to the 1950s [1]. Whereas much
has been done since, the problem in its most gen-
eral form remains, by and large, open, whether one
adopts transparent or absorbing conditions. Transpar-
ent conditions can be roughly classified into local and
non-local, where the non-locality refers to the need
for simultaneous spatial and temporal coupling at the
truncation surface. That is, the response at every point
on the artificial boundary is coupled with the time
histories of the response at all other points along the
boundary. Typically, such non-local conditions are ex-
act and, thus, without reflections (in their continuous
form), or truly transparent but difficult to construct and
computationally onerous; they are only constructible
for canonical geometries of the truncation surface (cir-
cular, spherical, ellipsoidal, rectangular, etc). However,
when devising such non-local conditions, one typically
assumes that the exterior domain, which is excluded
from subsequent computations, is homogeneous [5, 6].
Such an assumption is quite restrictive since, in order to
maintain consistency with the physical setting, it forces
placement of the artificial boundary far from the region
of interest, thus further exacerbating the computational
cost. To date, there is no non-local condition devised
that could account for arbitrary heterogeneity, nor is
it presently conceivable that such a condition is pos-
sible to construct. It should be emphasized that, by
construction, the perfectly matched layer (PML) allows
for arbitrary heterogeneity within the computational
domain but cannot, also by construction, account for
exterior heterogeneity (information does not travel be-
yond the PML, nor is any information from the exterior
brought to bare on the PML’s construction). A notable
exception to the need for exterior homogeneity is the so
called pole condition, introduced by Schmidt [2–4]. The
pole condition is used to construct transparent condi-
tions valid for exterior heterogeneous domains, which,
however, have to be piecewise homogeneous, charac-
terized by constant wavenumbers on a per-segment
basis. Though there is some built-in flexibility, the ap-
proach has thus far been implemented in the frequency

1In the literature, the terms absorbing, artificial, silent, trans-
parent, truncating, etc., have often been used interchangeably
to describe the boundary conditions imposed on the artificial
boundary. Here, we try to adhere to a terminology consistent
with the physical implications of the mathematical conditions.

domain only, and it is difficult to see how it can be
generalized to arbitrarily heterogeneous domains.

By contrast to non-local transparent conditions, lo-
cal conditions aim at relaxing either the temporal or
the spatial non-locality or both, in an attempt to ease
the computational cost, but also to lend much needed
generality [7–11]. Relaxations of the non-locality, how-
ever, come at the expense of transparency, since they
introduce non-physical reflections that typically pollute
the solution in the interior domain. They are capable of
better addressing structured heterogeneity (e.g., mod-
uli with a simple functional dependence on space) than
non-local conditions, but proper treatment of arbitrary
heterogeneity remains elusive.

Alternatively, the wave motion could be dampened
or, even better, artificially killed, once it reaches (or
passes) the truncation surface, and, ideally, without
generating any reflections from it. The concept was
central to the so-called sponge layers, first proposed
by Israeli and Orszag in 1981 [19], but the resulting
scheme introduced reflections at the interface. Since
then, much of the development focused on trans-
parency conditions, until 1994, when the absorption
concept re-emerged following Bérenger’s introduction
of the PMLs in the context of electromagnetics [12].
The PMLs are designed to attenuate the waves within
a relatively small buffer zone (the layers) surrounding
the regular (physical) domain, while at the same time
perfectly matching the impedances between the regu-
lar and PML domains at the truncation surface. The
impedance matching implies that reflections are elim-
inated for all incidence angles and frequencies. While
the construction of the PMLs depends on the geometry
of the truncation surface, the dependence is not as
onerous as it is in the case of transparent conditions,
for which the spatial non-locality drives complexity.
More importantly though, the PMLs are capable of
accommodating heterogeneity—a key shortcoming of
the majority of other developments.

Since Bérenger’s introduction of the PMLs, much
has been done, and the concept was used not only in
electromagnetics, but in acoustics and elastodynamics
as well. For example, Hu [14] and Hesthaven [15] ex-
plored the application of the split-field PMLs for lin-
earized Euler equations, while Harari et al. [16, 17] and
Turkel [18] formulated the PMLs for the Helmholtz
equation. Qi and Geers [20] also used the PMLs for
acoustics, and Zeng et al. [21] formulated the PMLs for
poroelasticity.

Early on, implementations of the PML generally
followed either of two paths: split-field or unsplit-field
formulations, where the former refers to the partition-
ing of the motion in components, and the latter simply
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juxtaposes the former. For example, in two dimensions,
and for straight truncation boundaries, the split-field
formulation partitions the total wavefield into a compo-
nent parallel and a component vertical to the truncation
boundary. In 1994, Chew and Weedon re-interpreted
Bérenger’s initial idea in terms of a complex-coordinate
stretching procedure [13]. The authors first split the
wavefield and then enforced the coordinate stretching
only to the wavefield component perpendicular to the
regular domain–PML interface, thus giving rise to a
split-field formulation.

In elastodynamics, Chew and Liu [22] also used
complex-coordinate stretching ideas. They formulated
a velocity-stress split-field PML, and used a finite dif-
ference time domain (FDTD) scheme for the numer-
ical implementation. Following their work, Hastings
et al. developed a PML scheme for elastic waves in
terms of the P- and S-wave potentials [23]. Collino
and Monk [25] formulated PMLs for general curvi-
linear coordinates, and in 1999, Liu [24] discussed
PMLs for elastodynamics in cylindrical and spherical
coordinates.

In [26], Collino and Tsogka discussed a velocity-
stress split-field PML using mixed finite elements in
anisotropic heterogeneous media in the context of an
FDTD formulation. Later, anisotropic PMLs for elastic
waves were systematically explored in cartesian and
curvilinear coordinates by Zheng and Huang [27] using
an unsplit-field scheme. Despite the otherwise excel-
lent performance of PMLs even in the presence of
anisotropy and heterogeneity, there still remain open
issues, with the chief amongst them the stability of the
PMLs in transient applications (e.g., see [28] for the
split-field PMLs, and [29, 30] for anisotropic cases).
From an implementation point of view, the finite dif-
ference method (FDM) has been dominant, owing to
the origins of the method in electromagnetics where
FDM remains the numerical method of choice, but
finite elements, and, more recently, spectral element
implementations, have also appeared [31].

We remark that most of the aforementioned devel-
opments are based on split-field formulations, which
typically require additional variables and are harder
to implement directly using classic Galerkin-type finite
element approaches. On the other hand, unsplit-field
PMLs, for which no additional variables need to be
introduced, have mostly appeared in frequency-domain
implementations. This is so for good reason, as inver-
sion back in the time-domain of the frequency-domain
PML equations gives rise to higher-order time deriva-
tives, which, in turn, lead to formulations that depart
from the second-order forms typical (and familiar) of
displacement-based elastodynamics.

A notable exception is the work of Basu and Chopra
[32, 33], who adopted a displacement-based finite ele-
ment scheme to implement unsplit-field PML equations
directly in the time-domain. However, their formula-
tion results in a complicated scheme for the temporal
integration of the semi-discrete forms. To overcome
these difficulties, we discuss here a new formulation
that hinges on a mixed method, where both displace-
ments and stresses are treated as unknowns. Our moti-
vation does not stem from a desire to fill an apparent
gap in the array of PML-based formulations devel-
oped to date, but rather from a need to provide a
methodology that leads to a scheme that could be easily
implemented whether one uses it for forward or for
inverse problems, where adjoint-type approaches stand
to benefit from a simple formulation. In fact, this work
was initiated because of the lack of forward schemes
that can readily be used in adjoint formulations arising
in inverse problems.

We remark that most PML developments to date,
including the one we discuss herein, lead to mixed for-
mulations. In addition, most developments rely on split-
field mixed formulations, where all the components of
the displacement (or velocity) field and the stress field
are treated as unknowns. In most cases, the numerical
scheme of choice has been finite differences. Thus, im-
plementations of the resulting mixed strong forms using
finite elements have received little attention. There are
a handful of exceptions, and in order to place our
development in context, we next briefly discuss devel-
opments related to mixed methods; a comprehensive
review is well outside the scope of this article, but an
outstanding discussion has been provided by Arnold
in [39].

In a survey of mixed finite element methods by
Brezzi in [40], the author pointed out that there exist
two possible variational forms for treating a mixed
problem such as the one arising in elasticity (the author
discussed the formulations in the context of a Poisson-
type problem, but the conclusions are more general).
The two forms result in decidedly different regularity re-
quirements for the approximants. In the first form, the
regularity required for the stress approximants is higher
than that of the displacement approximants; this is the
classic mixed method, which requires highly specialized
elements. A first family of mixed finite elements related
to this variational form was introduced by Raviart and
Thomas for second-order elliptic problems (RT ele-
ments) [41], followed later on by several others (see,
e.g., [42–45], etc). Other related developments can be
found in [34–36, 46–61]. It should be noted that: (a)
these specialized elements typically require a high num-
ber of degrees of freedom, which are associated not
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only with nodal quantities, but also with edge quanti-
ties (normal derivatives), and (b) the stability of the
elements that are consistent with this first variational
form is still an open problem in elasticity.

On the other hand, in a second variational form,
which differs from the first simply by an integration
by parts, the regularity requirements are somewhat
reversed: the regularity for the displacement approxi-
mants should be higher than that of the stress approx-
imants. The latter requirements are less onerous for
implementation purposes and do not require any spe-
cial element types. In this work, we favor this second,
and largely unexplored, variational form.

To date, there are four developments that are closely
related to ours, but they all differ in substantial ways:
Bécache et al. in [55] used a classic mixed method, but
split fields; Cohen and Fauqueux [63] used a unique
mixed method, unlike any other in the literature, where
they use the displacement vector, the displacement
gradients (not the strain tensor), and the components of
a stress-like tensor as unknowns; Festa and Vilotte [62]
use the same non-classic mixed method as ours, but end
up using split-fields; and finally, Basu and Chopra [32]
came close to casting the problem in a mixed form using
unsplit fields in a manner similar to ours, but ended
up with a discrete implementation that destroyed the
mixed form, in favor of a complicated time-marching
scheme.

Thus, by contrast to other prior developments, in this
article, we discuss a new displacement-stress, or more
precisely, stress-memory or stress-history, mixed finite
element formulation that allows the direct temporal
integration of the semi-discrete forms resulting from
unsplit-field PML equations. This is accomplished at
the expense of symmetry of the resulting semi-discrete
forms, but is shown to retain the second-order temporal
character, with its associated implementational ease.

We discuss numerical experiments in one and two
dimensions using scalar waves involving both homo-
geneous and heterogeneous domains, and numerically
study the effect various PML parameters have on the
simulation error.

2 One-dimensional unsplit-field PML

2.1 Complex coordinate stretching

To fix ideas and be able to place the formulation we
propose in context, we repeat here the basic steps
leading to the PML-augmented equations, cast directly
in the time-domain: the origins can be traced to the
works we referred to in the preceding section. In

Regular domain PML

L

x

LPML

0 L Lt

Fig. 1 A PML-truncated semi-infinite domain in one dimension

one dimension, the time-harmonic, viscously damped
wave motion is governed by the following equation of
equilibrium, constitutive law, and kinematic condition,
respectively:

dσ̂

dx
= −ω2ρû + iωβû, (1a)

σ̂ = Eε̂, (1b)

ε̂ = dû
dx

, (1c)

where ρ is mass density, E is Young’s modulus, u de-
notes displacement, σ denotes stress, ε denotes strain,
ω is circular frequency, and i is the imaginary unit. The
functions û, σ̂ , and ε̂ depend on x and the frequency
ω, and a caret (ˆ) denotes the Fourier transform of the
subtended function. The viscous damping parameter β

is included here in order to account for simple material
damping; the physical setting of the applicability of
Eq. 1 includes layered soils, cables, and rods.

Following classical lines, to solve the system of equa-
tions in Eq. 1 within a semi-infinite domain, where
0 ≤ x < ∞, we truncate the semi-infinite extent of the
domain at x = L, attach a PML of finite length LPML

to the now finite computational domain of interest, and
force the attenuation of the outgoing waves within this
relatively small buffer zone LPML. Figure 1 depicts the
(truncated) computational or regular domain, which is
extended by the PML.

To enforce wave attenuation within the PML, we
recast Eq. 1 by “stretching” the real coordinate x to x̃,
using the map [13]:

x̃ =
∫ x

0
λ(s)ds =

∫ x

0

(
1 − i

f (s)
a0

)
ds = x− i

a0

∫ x

0
f (s)ds,

(2)

in which a0(= kb) is a dimensionless frequency, with b
being a characteristic length of the domain of interest.2

2The characteristic length b will eventually cancel out of the
subsequently developed equations.
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In Eq. 2, f (x) is an attenuation function defined over
the entire domain (Lt = L + LPML), such that f (x) ≡ 0
within the regular domain (0 ≤ x ≤ L), and f (x) > 0
within the PML (L < x ≤ Lt) ( f (x) satisfies continuity
at the regular domain–PML interface). With this in
mind, x̃ ≡ x within the regular domain (0 ≤ x ≤ L), and
Eq. 2 can be rewritten as:

x̃ = x − i
F(x)

a0
, where F(x) :=

∫ x

0
f (s)ds. (3)

Provided that F(x) > 0, it can be easily seen that an
outgoing wave satisfying the system of equations in
Eq. 1 decays exponentially within the PML domain
since3

u(x̃) = exp
[−ikx̃

] = exp
[
− F(x)

b

]
exp

[−ikx
]
. (4)

The exponential decay does not depend on frequency,
as suggested by the frequency-independent ampli-
tude in Eq. 4. Furthermore, the interface “perfectly
matches” the outgoing motion, i.e., it does not reflect
propagating waves for all frequencies [12, 22, 26].

2.2 Determination of the wave attenuation
function f (x)

From Eq. 4, it is clear that f (x) plays a central role
in imposing wave attenuation within the PML. There
is no absolute criterion, nor has one been suggested,
in determining the precise form of the attenuation
function; here, we try to derive it based on physical
grounds. Specifically, a time-harmonic wave motion in
the PML can be represented as the summation of a
propagating wave and the reflected wave from the fixed
boundary at x = Lt; assuming unity for the amplitude
of the propagating wave, there results

û(x) = exp (−ikx̃) + R exp (ikx̃) , L ≤ x ≤ Lt, (5)

where R is a (complex) reflection coefficient. Substi-
tuting Eq. 3 into Eq. 5, and imposing the boundary
condition u(Lt) = 0, there results

|R| = exp
[
−2F(Lt)

b

]
. (6)

3Here, for simplicity, we consider β = 0. A harmonic factor eiωt

has been considered throughout.

In order to obtain F(Lt), we assume a polynomial form
for f (x):

f (x) =
{

0, 0 ≤ x ≤ L,

f0

(
x−L
LPML

)m
, L ≤ x ≤ Lt,

(7)

where f0 is a parameter to be determined, and m is the
polynomial order of the attenuation function. Then, use
of the definition Eq. 3 results in:

F(Lt) =
∫ Lt

0
f (s)ds =

∫ Lt

L
f0

(
s − L
LPML

)m

ds = f0LPML

m + 1
.

(8)

Therefore, using Eqs. 6 and 8, |R| can be written as:

|R| = exp
[
− 2 f0LPML

b(m + 1)

]
. (9)

As also discussed by Basu and Chopra in [33], the
reflection coefficient |R| is inversely proportional to
f0 or LPML. That is, |R| decreases when f0 or LPML

increases. f0 in Eq. 7 remains to be determined. Instead
of choosing an arbitrary large number for f0, we express
it in terms of |R|, LPML, m, and b from Eq. 9 as follows:

f0 = (m + 1)b
2LPML

log
(

1
|R|

)
. (10)

For example, if the attenuation function f (x) is chosen
to be of second order (m = 2), then:

f (x) = 3b
2LPML

log
(

1
|R|

)(
x − L
LPML

)2

, (11)

where |R| is now a user-tunable parameter that controls
the amount of reflection from the fixed boundary at
x = Lt, as well as the strength of the attenuation within
the PML (by virtue of Eq. 11). In applications, we favor
the quadratic form of f (x) over other orders due to the
gradual and smooth wave decay that it enforces within
the PML; the form has been widely used [26, 27, 31].

2.3 Mixed form of the transient PML equations

In Eq. 2, the complex coordinate stretching function
λ(x) was introduced as:

λ(x) = 1 − i
f (x)

a0
= 1 − i

g(x)

k
, (12)

where

g(x) = 1
b

f (x), (13)
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is the normalized attenuation function. Differentiating
Eq. 2 with respect to x yields the following differential
operator:

d
dx̃

= 1
λ(x)

d
dx

. (14)

Next, we rewrite the system of equations in Eq. 1 using
the stretched coordinate x̃, i.e., we replace x with x̃ in
Eq. 1, while also using Eq. 14. There results:

1
λ(x)

dσ̂

dx
= −ω2ρû + iωβû, (15a)

σ̂ = Eε̂, (15b)

ε̂ = 1
λ(x)

dû
dx

. (15c)

Multiplying by λ(x) both sides of Eq. 15a, while consid-
ering Eq. 12, results in:

dσ̂

dx
= −ω2ρ

(
1 − i

g(x)

k

)
û + iωβ

(
1 − i

g(x)

k

)
û

= −ω2ρû + iω (ρcg + β) û + βcgû. (16)

Next, multiplying with iωλ(x) both sides of Eq. 15c
yields:

iω
(

1 − i
g(x)

k

)
ε̂ = iω

dû
dx

, or

iωε̂ + cgε̂ = iω
dû
dx

. (17)

Equations 16, 15b, and 17 are next inverted back to the
time-domain to yield:

∂σ

∂x
= ρ

∂2u
∂t2 + (ρcg + β)

∂u
∂t

+ βcgu, (18a)

σ = Eε, (18b)

∂ε

∂t
+ cgε = ∂2u

∂x∂t
, (18c)

in which c = √
(E/ρ) is the wave velocity. The modified

constitutive and compatibility equations (Eqs. 18b and
18c) can be combined together to yield:

∂σ

∂t
+ cgσ = ρc2 ∂2u

∂x∂t
. (19)

Next, we normalize the displacement and viscous
damping with respect to the density, i.e., we set v = ρu
and ζ = β/ρ and recast Eqs. 18a and 19 as:

∂2v

∂t2 + (cg + ζ )
∂v

∂t
+ ζcgv − ∂σ

∂x
= 0, (20a)

∂σ

∂t
+ cgσ − c2 ∂2v

∂x∂t
= 0. (20b)

Equation 20 is the displacement(v)-stress(σ ) mixed
equation governing transient wave propagation in a
PML-truncated one-dimensional domain. Notice that
the PML-enhanced equations (Eq. 20) are still second-
order in time.

3 Unsplit-field PML for SH waves

The above procedure can be similarly applied to obtain
the unsplit-field mixed PML equations for scalar waves
(SH) in two dimensions. The development is based on
cartesian coordinates.

3.1 Two-dimensional complex coordinate stretching

The equations governing anti-plane motion in the fre-
quency domain are:

∇ · σ̂ = −ω2ρû, (21a)

σ̂ = 2με̂, (21b)

ε̂ = 1
2
∇û, (21c)

where

σ = [σ31 σ32]T , (22a)

ε = [ε31 ε32]T , (22b)

∇u =
[

∂u
∂x1

∂u
∂x2

]T
, (22c)

in which μ denotes the shear modulus of the medium;
x1 and x2 are cartesian planar coordinates (Fig. 2); and
indices 1, 2, and 3 indicate components along the x1, x2,
and x3 axes, respectively, with x3 denoting the antiplane
axis.

We introduce complex coordinate stretching in each
of x1 and x2 in order to rewrite the governing equa-
tions for the combined regular domain–PML region as
shown in Fig. 2. The corresponding coordinate stretch-
ing functions λ1(x1) and λ2(x2) are defined as:

λ j(x j) =
{

1 + f e
j (x j)

}
− i

f p
j (x j)

a0
, j = 1, 2, (23)

where f e
j ( j = 1, 2) are attenuation functions for

evanescent waves, and f p
j ( j = 1, 2) are attenuation

functions for propagating waves in each j direction.
a0(= kb) denotes again dimensionless frequency, and
b is a characteristic length of the system. Notice that
λ1(x1) and λ2(x2) depend on x1 and x2, respectively.
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x2

x1

Regular domain

PMLs
L

L L
fixed

fixed

fixed

L
free

Fig. 2 A PML-truncated semi-infinite domain in two dimensions

Next, we introduce the stretched coordinates x̃1 and x̃2,
defined as:

x̃ j =
∫ x j

0
λ j(s)ds =

∫ x j

0

[{
1 + f e

j (s)
}

− i
f p

j (s)

a0

]
ds,

j = 1, 2. (24)

Then, plane propagating waves
(
ûp

)
and evanescent

waves
(
ûe

)
that satisfy Eq. 21 can be written using the

stretched coordinates x̃ as:

ûp
(
x̃
) = exp

[−ikx̃ · d
]

= exp
[
− 1

b

(
F p

1 d1 + F p
2 d2

)]

× exp
[−ik

(
Fe

1d1 + Fe
2d2

)]
× exp

[−ikx · d
]
, (25)

ûe
(
x̃
) = −exp

[−kx̃ · d
]

= −exp
[−k

(
Fe

1d1 + Fe
2d2

)]

× exp
[

i
1
b

(
F p

1 d1 + F p
2 d2

)]

× exp
[−kx · d

]
, (26)

where Fe
j and F p

j are obtained by integrating f e
j and

f p
j from 0 to x j ( j = 1, 2), respectively. d = [

d1 d2
]T

denotes the direction of wave propagation. Equation 25
suggests that a plane scalar wave propagating in a direc-
tion d decays exponentially within the PML, provided
that F p

1 d1 + F p
2 d2 > 0. Similarly, an evanescent wave

experiences attenuation within the PML, provided that

Fe
1d1 + Fe

2d2 > 0. Whereas the attenuation of evanes-
cent waves depends on frequency, the attenuation of
propagating waves does not. Since the stretched coor-
dinate x̃ and the original coordinate x match at the
interface between the regular domain and the PML,
the interface does not reflect outgoing waves for any
frequency and any angle of incidence (in the continuous
form).

3.2 Mixed form of the transient PML equations
for SH waves

We modify the equation of motion Eq. 21a by writing it
again in the stretched coordinates x̃ defined by Eq. 24.
That is, we replace x j with x̃ j and rewrite Eq. 21a as:

1
λ1

∂σ̂31

∂x1
+ 1

λ2

∂σ̂32

∂x2
= −ω2ρû, (27)

where we used the following differential operators:

∂

∂ x̃ j
= 1

λ j

∂

∂x j
, j = 1, 2, (28)

which, in turn, are derived by differentiating Eq. 24
with respect to x j, just as we did in the one-dimensional
case. Next, multiplying by λ1λ2 both sides of Eq. 27 and
recalling that λ1 is a function of x1, and λ2 is a function
of x2, Eq. 27 is modified to read:

∇ ·
(

̃σ̂

)
= −ω2ρλ1λ2û. (29)

In [32], Basu and Chopra defined the stretch tensor

̃ as:


̃ =
[

λ2 0
0 λ1

]
= F̃e + 1

iω
F̃p, (30)

where

F̃e =
[

1 + f e
2 0

0 1 + f e
1

]
, F̃p =

[
csg

p
2 0

0 csg
p
1

]
, (31)

and cs denotes shear wave velocity, i.e., cs = √
μ/ρ; and

gp
i = f p

i /b are normalized attenuation functions with
respect to b . We apply the inverse Fourier transform to
Eq. 29 to obtain the corresponding equation in the time
domain, replacing λ1 and λ2 with the right-hand terms
of Eq. 23. There results:

∇ ·
(

F̃eσ + F̃p
∫ t

0
σ (x, τ )dτ

)
= ρ fmü + ρcsgcu̇ + μgku,

(32)
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where

fm = (
1 + f e

1

) (
1 + f e

2

)
, (33a)

gc = gp
2

(
1 + f e

1

) + gp
1

(
1 + f e

2

)
, (33b)

gk = gp
1 gp

2 . (33c)

Equation 21c is similarly inverted back to the time-
domain using the same procedure as above. Specifi-
cally, introduction of the stretched coordinates in the
kinematic conditions results in:

ε̂ = 1
2

∇û, (34)

in which, by borrowing the notation from [32], the
stretch tensor 
 is defined as:


 =
[

1
λ1

0
0 1

λ2

]
=

[
Fe + 1

iω
Fp

]−1

, (35)

where

Fe =
[

1 + f e
1 0

0 1 + f e
2

]
, Fp =

[
csg

p
1 0

0 csg
p
2

]
. (36)

Pre-multiplying both sides of Eq. 34 by iω
−1, and
inverting it back to the time-domain, results in:

Feε̇ + Fpε = 1
2
∇u̇. (37)

Now, Eq. 21 has its counterpart in the time domain as:

∇ ·
(

F̃eσ + F̃p
∫ t

0
σ (x, τ )dτ

)
= ρ fmü + ρcsgcu̇ + μgku,

(38a)

σ = 2με, (38b)

Feε̇ + Fpε = 1
2
∇u̇. (38c)

Equations 38b and 38c can be combined together to
yield:

Feσ̇ + Fpσ = μ∇u̇. (39)

Up to this point, the development parallels that of
others, most notably [32]. Our point of departure
is the treatment of Eq. 38a, which includes a term
that requires the temporal integration of stress, i.e.,∫ t

0 σ (x, τ )dτ , which, in turn, requires the storage of the
stress history. We introduce:

s(x, t) =
∫ t

0
σ (x, τ )dτ , s = [s1 s2]T , (40)

such that

ṡ(x, t) = σ (x, t), (41a)

s̈(x, t) = σ̇ (x, t). (41b)

By substituting Eqs. 40 and 41 into Eqs. 38a and 39,
while setting again v = ρu, we obtain a displacement
(v)–stress memory4 mixed form of the equations gov-
erning the propagation of SH waves:

fmv̈ + csgcv̇ + c2
s gkv − ∇ ·

(
F̃eṡ + F̃ps

)
= 0, (42a)

Fes̈ + Fpṡ − c2
s ∇v̇ = 0. (42b)

4 Mixed finite element implementation

4.1 One-dimensional mixed FE-formulation

Equations 20 include both displacements (v) and
stresses (σ ). To obtain approximate solutions, we em-
ploy a mixed finite element scheme [37, 38, 40]. The
associated initial-boundary-value problem (IBVP) in
the PML-truncated semi-infinite domain becomes:

∂2v

∂t2 + (cg + ζ )
∂v

∂t
+ ζcgv − ∂σ

∂x
= 0, (43a)

∂σ

∂t
+ cgσ − c2 ∂2v

∂x∂t
= 0, (43b)

for x ∈ (0, Lt) , t ∈ (0, T] ,

v(Lt, t) = 0, (44a)

σ(0, t) = p(t), (44b)

v(x, 0) = 0, (44c)

v̇(x, 0) = 0, (44d)

σ(x, 0) = 0. (44e)

For the mixed finite element implementation of the
IBVP given by Eqs. 43 and 44, both v and σ are treated
as independent variables that need to be approximated
separately. We remark that there are two possible vari-
ational forms derivable from the IBVP Eq. 43: in the
first variational form only the last term in Eq. 43a is
integrated by parts. In a second possible variational
form, it is only the last term in Eq. 43b that is integrated
by parts. The resulting two forms differ decidedly in
the smoothness requirements they impose on the test
and trial functions, with the former requiring less reg-
ularity on the stresses than the latter. For this reason
alone, in this work we opt for the first variational form:
accordingly, we seek v � vh ∈ Hh ⊂ H1

0(�) and σ �

4We use the term “stress memory” for s to differentiate from its
right-hand side, which includes the explicit computation of the
stress history; they are otherwise equivalent.
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σh ∈ Qh ⊂ L2(�) such that Eq. 43 is satisfied. Next, we
multiply Eqs. 43a and 43b by appropriate test func-
tions w(x) and q(x), and then integrate over the entire
domain (0, Lt) in order to arrive at the corresponding
weak forms:∫ Lt

0
w

{
∂2v

∂t2 + (cg + ζ )
∂v

∂t
+ ζcgv

}
dx

+
∫ Lt

0

dw

dx
σdx = −w(0)p(t), (45a)

−
∫ Lt

0
c2q

∂2v

∂x∂t
dx

+
∫ Lt

0
q

∂σ

∂t
dx +

∫ Lt

0
cgqσdx = 0. (45b)

In Eq. 45, v and σ are approximated as:

v(x, t) � φ(x)Tv(t), σ (x, t) � ψ(x)Tσ (t), (46)

where φ and ψ are vectors of approximants associated
with nodal displacements v(= ρu) and nodal stresses
σ , respectively. The two test functions w(x) and q(x)

are similarly approximated by the same approximants
φ and ψ , respectively, i.e.,

w(x) � wTφ(x), q(x) � qTψ(x). (47)

To ensure solution stability, the choice of the approx-
imants φ and ψ cannot be arbitrary [37, 38]; here, we
opted for piecewise linear basis functions φ and piece-
wise constant basis functions ψ , which numerically have
been seen to satisfy the LBB condition. Introducing the
approximants in Eq. 45 results in the following semi-
discrete form:⎡
⎣

∫ Lt

0
φφTdx 0

0 0

⎤
⎦

[
v̈

σ̈

]

+

⎡
⎢⎢⎣

∫ Lt

0
(cg + ζ ) φφTdx 0

−
∫ Lt

0
c2ψφ′Tdx

∫ Lt

0
ψψTdx

⎤
⎥⎥⎦

[
v̇

σ̇

]

+

⎡
⎢⎢⎣

∫ Lt

0
ζcgφφTdx

∫ Lt

0
φ′ψTdx

0
∫ Lt

0
cgψψTdx

⎤
⎥⎥⎦

[
v

σ

]

=
[

(wσ)
∣∣Lt

0

0

]
. (48)

4.2 Two-dimensional mixed FE-formulation

We adopt again a mixed finite element method instead
of a displacement-based finite element approach, by

considering v, s1, and s2 as independent unknowns. The
associated IBVP for SH waves in the two-dimensional
PML-truncated semi-infinite domain can be stated as
follows:

fmv̈ + csgcv̇ + c2
s gkv − ∇ ·

(
F̃eṡ + F̃ps

)
= 0, (49a)

Fes̈ + Fpṡ − c2
s ∇v̇ = 0, (49b)

in � × (0, T] ,

v(x, t) = 0 on fixed × (0, T], (50a)

ṡ2(x, t) = p(x, t) on free × (0, T], (50b)

v(x, 0) = 0 on �, (50c)

v̇(x, 0) = 0 on �, (50d)

s(x, 0) = 0 on �, (50e)

ṡ(x, 0) = 0 on �. (50f)

The three equations Eqs. 49a–49b are multiplied by
appropriate test functions w(x), p(x), and q(x), respec-
tively, and then integrated over the entire domain �

(regular and PML domain) to arrive at the correspond-
ing weak forms. Again, we remark that we opted for the
variational form resulting from the integration by parts
of the last term in Eq. 49a; there results:

∫
�

w
(

fmv̈ + cs gcv̇ + c2
s gkv

)
d�

+
∫

�

∇w ·
(

F̃eṡ + F̃ps
)

d� =
∫



w
(

F̃eṡ + F̃ps
)

· n d,

(51a)
∫

�

p
{(

1 + f e
1

) ∂2s1

∂t2 − c2
s

∂2v

∂x1∂t
+ csg

p
1
∂s1

∂t

}
d� = 0,

(51b)
∫

�

q
{(

1 + f e
2

) ∂2s2

∂t2 − c2
s

∂2v

∂x2∂t
+ csg

p
2
∂s2

∂t

}
d� = 0,

(51c)

where  denotes the boundary of �, and v ∈ H1 and s ∈
L2. We remark that the term (F̃eṡ + F̃ps) · n vanishes
on the free surface part of the PML. The trial functions
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v(x, t), s1(x, t), s2(x, t) and the test functions w(x), p(x),
q(x) are spatially discretized as:

v(x, t) � φ(x)Tv(t), (52a)

s1(x, t) � ψ(x)Ts1(t), (52b)

s2(x, t) � ψ(x)Ts2(t), (52c)

w(x) � wTφ(x), (53a)

p(x) � pTψ(x), (53b)

q(x) � qTψ(x). (53c)

By contrast to the one-dimensional case, here, stable
solutions are obtained when both φ and ψ are bilin-
ear (this is the lowest-order pair). Linear-constant and
quadratic-linear pairs of approximants have resulted
in instabilities.5 Introduction of Eqs. 52c and 53 into
Eq. 51 results in the following semi-discrete form:

5Dispersion when using low-order approximations is exacer-
bated: it is an open issue, as is the case in any wave propagation
simulation, and is not addressed herein.

⎡
⎢⎢⎣

∫
�

fmφφTd� 0 0

0
∫
�

(
1 + f e

1

)
ψψTd� 0

0 0
∫
�

(
1 + f e

2

)
ψψTd�

⎤
⎥⎥⎦

⎡
⎢⎣

v̈

s̈1

s̈2

⎤
⎥⎦

+

⎡
⎢⎢⎢⎢⎣

∫
�

csgcφφTd�
∫
�

(
1 + f e

2

) ∂φ
∂x1

ψTd�
∫
�

(
1 + f e

1

) ∂φ
∂x2

ψTd�

∫
�

−c2
s ψ

∂φ
T

∂x1
d�

∫
�

csg
p
1 ψψTd� 0

∫
�

−c2
s ψ

∂φ
T

∂x2
d� 0

∫
�

csg
p
2 ψψTd�

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

v̇

ṡ1

ṡ2

⎤
⎥⎦

+

⎡
⎢⎢⎣

∫
�

c2
s gkφφTd�

∫
�

csg
p
2

∂φ
∂x1

ψTd�
∫
�

csg
p
1

∂φ
∂x2

ψTd�

0 0 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎣

v

s1

s2

⎤
⎥⎦ =

⎡
⎢⎣

∫
free

φ p dfree

0

0

⎤
⎥⎦ . (54)

We use a standard Newmark-β scheme for inte-
grating in time the semi-discrete forms Eqs. 48 and
54. We remark that the damping-like and stiffness-like
matrices in Eqs. 48 and 54 are non-symmetric, and that
the choice of a mixed formulation has naturally resulted
in additional unknowns over standard displacement-
based unsplit-field PML formulations. However, our
mixed unsplit-field PML formulation has advantages
over the split-field PML that entail yet more unknowns
(the split fields), or other unsplit-field PML schemes
that require convoluted temporal integration schemes
[32], as already mentioned.

Regular domain PML

100m 10m

f t( )
x

Fig. 3 A one-dimensional PML-truncated semi-infinite domain
under a tip stress load f (t)

5 Numerical results

To illustrate the validity of the proposed mixed unsplit-
field PML approach, we simulate the wave propaga-
tion in one- and two-dimensional semi-infinite domains
truncated through the introduction of a PML.

5.1 One-dimensional examples

We consider first a one-dimensional PML-truncated
semi-infinite domain subjected to a tip stress load f (t)
as shown in Fig. 3.

The regular domain and the PML are such that
L = 100 m and LPML = 10 m, respectively. The density
ρ is 2,000 kg/m3, and the modulus of elasticity E is
90 MPa, which results in a wave velocity of c = √

E/ρ �
212.132 m/s. A step stress pulse of 10 kPa is applied at
the left end for 1 s. Figure 4 shows the time history and
the frequency content of the applied stress f (t).
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Fig. 4 a Time history;
b frequency spectrum
of the step stress load f (t)
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Fig. 5 a u(0, t); exact and
PML solutions; b snapshot of
the displacement at t = 5 s
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Fig. 6 a u(0, t) for various
reflection coefficients R; b
u(0, t) for 60 s (=12,000�t)
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Fig. 7 a Heterogeneous wave
velocity profile c(x); b viscous
damping profile ζ(x) =
1 − 0.0025x
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Fig. 8 u(0, t) for an
heterogeneous wave velocity
profile: a ζ = 0;
b ζ = 1 − 0.0025x
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A reflection coefficient of R = 10−4 (see Eq. 11)
is imposed on the PML. The computed displacement
solution at x = 0 is indistinguishable from the exact
solution,6 as it can be seen in Fig. 5a. Figure 5b depicts
a snapshot of the displacement at t = 5 s, where we
observe that propagating waves are attenuated rapidly
within the PML without any reflection at the interface
between the regular domain and the PML.

In Fig. 6a, we study the performance of the PML for
several reflection coefficients R. As R gets smaller, the
solution gets closer to the exact solution. We recall that
R is an input parameter in the PML implementation, so
that the performance of the PML can be controlled by
setting the reflection coefficient appropriately. Solution
stability is studied numerically using a 60-s-long simula-
tion, which amounts to 12,000 time steps (�t = 0.005 s).
Figure 6b shows that the mixed unsplit-field PML has
stable performance.

We repeat the same experiment for a heterogeneous
domain with wave velocity and damping profiles as
shown in Fig. 7. Figure 8a and b depict the displacement
response at x = 0 in the layered medium without and
with damping, respectively. The PML solutions are
almost the same as the estimated exact solutions, which
are computed by using an extended computational do-
main that ensures that any reflected waves will not
arrive at the left end for the first 5 s, during which we
record the response.

5.2 Error studies

We are concerned with errors arising from the numeri-
cal implementation of the mixed PML scheme. We dis-
cuss two possible sources of error: firstly, discretization
error in light of our adoption of a mixed method, and

6Since the domain is homogeneous, the exact response can be
easily obtained by placing a dashpot at x = L.

secondly, reflection error from the fixed boundary at
the edge of the PML domain due to the user-defined re-
flection coefficient |R|. We are especially interested in

• Error behavior with respect to element length
variations

• Effect of PML parameters (LPML, |R|) on errors

5.2.1 Homogeneous domain case

We use the prototype problem illustrated in Fig. 1
to study errors. We set the domain length at L = 2,
the wave velocity at c = 5, and the density at ρ = 1
(we henceforth drop units for convenience). We use a
uniform mesh comprising elements of length h. A sine
stress load p(t) = sin(t) of unit amplitude is applied at
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Fig. 9 L2-norm error (Ea) versus h for t = 1, 3, 5 (LPML = 0.4,
R = 10−6); homogeneous domain case
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Fig. 10 L2-norm error (Ea) versus h for LPML = 0.2, 0.4, 1.0
(R = 10−6, t=5); homogeneous domain case

the left end (x = 0) of the domain. With these defin-
itions, the dominant wavelength corresponding to the
excitation is, by design, fairly large compared to the
domain length (∼31.4:2). We are interested in the be-
havior of the error e = uex − uh in the time-dependent
L2-norm:

Ea(t) =
[∫ L

0
{uex(x, t) − uh(x, t)}2 dx

] 1
2

, (55)

where uex is the exact solution and uh is the approx-
imate solution. uex is obtained by directly solving the
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Fig. 11 L2-norm error (Ea) versus h for |R| = 10−1, 10−2, 10−3,
10−4, 10−6, 10−8 (LPML = 0.4); homogeneous domain case

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

E
a

 

|R|=10−1, L
PML

=2.0

|R|=10−2, L
PML

=2.0

|R|=10−3, L
PML

=2.0

|R|=10−4, L
PML

=2.0

|R|=10−6, L
PML

=2.0

|R|=10−8, L
PML

=2.0

Fig. 12 L2-norm error (Ea) versus h for |R| = 10−1, 10−2, 10−3,
10−4, 10−6, 10−8 (LPML = 2.0); homogeneous domain case

wave equation utt = c2uxx, given the stress boundary
condition ρc2∂u/∂x(0, t) = p(t). Accordingly:

uex(x, t) = 1
5ρ

∫ ∞

0
sin(τ )H

(
t − τ − x

5

)
dτ, (56)

in which H(·) is the Heaviside step function.
Figure 9 depicts the L2-norm errors against h, sam-

pled at different times t = 1, 3, and 5, respectively. The
PML parameters for this experiment are LPML = 0.4
(20% of the regular domain size) and |R| = 10−6. As it
can be seen from the figure, the theoretically expected
convergence rate of O(h2) is attained. Notice also that,
as h becomes smaller, the total error is dominated by
the reflection error, which depends on the reflection
parameter R, with the discretization error having a
negligible effect (“flat” region).

To study the effect of the PML size LPML on the
error, we set again the regular domain size to L = 2

Regular domain PMLs

L=2 Lp

x=1 x=2 x=3

c(1)=1

c(2)=2 c(3)=2

c x( )

p t( )

Fig. 13 A one-dimensional heterogeneous semi-infinite domain
with PMLs as the wave absorbing boundary layers
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Fig. 14 a Time history of the
stress load p(t) applied at the
left end of a heterogeneous
domain; b frequency
spectrum of p(t)
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and test for LPML = 0.2, 0.4, 1.0. Figure 10 shows that
the L2-norm error (Ea) decreases as the PML length
(LPML) increases, for fixed |R| values (all curves are
plotted for t = 5, and are representative of other times
as well; |R| = 10−6). Thus, a longer PML results in
stronger attenuation and presents the fixed boundary at
Lt with smaller amplitudes, such that the overall error
becomes smaller.

Next, we let the reflection parameter |R| vary while
keeping the PML length fixed at LPML = 0.4. Figure 11
depicts the L2-norm for a fixed t = 5, and for six differ-
ent |R| values. Here, we reaffirm the earlier observation
we made based on the results shown in Fig. 9, which
is that, for smaller h, the total error is dominated by
the reflection error, as evidenced by the flat portion
of all curves. Moreover, for |R| smaller than 10−5 and
for all cases for which the discretization error is not
defeated by the reflection error, the convergence rate
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Fig. 15 L2-norm error (Ea) plotted against h for LPML =
0.2, 0.4, 1.0 (R = 10−6, t = 5 s); heterogeneous domain case

is optimal. Notice, that, for higher values of |R|, and for
specific mesh sizes (e.g., h = 0.1, 0.01), there seems to
exist an optimal reflection coefficient; at present, we do
not have an adequate explanation for this behavior.

Next, we fix the PML size at 2.0, i.e., me make the
PML buffer zone as large as the regular domain and ex-
periment with different values of R. Figure 12 suggests
that the error is now solely controlled by the effects of
the reflection coefficient, for any h. In practice, it is,
of course, prohibitive to use such a large PML due to
the radical increase in computational cost, especially for
two- or three-dimensional problems. Keeping in mind
the observations made herein, it is recommended that
one uses R values less than 10−3, while keeping as fine
a mesh in the PML zone as in the regular domain. We
remark that our observations are based on a relatively
low-frequency excitation: this is by design, since it is in
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Fig. 16 L2-norm error (Ea) plotted against h for |R| = 10−1,
10−2, 10−3, 10−4, 10−6, 10−8 (LPML is kept to be 0.4); hetero-
geneous domain case
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Fig. 17 A PML-truncated two-dimensional half-plane subjected
to a shear stress load (σ32) on its surface; the response is sampled
at MPi, with i = 1, . . . , 7

the low-frequency regime that most transparent, local
or non-local, or absorbing conditions fail or have diffi-
culty with. It also appears that a fraction (< 10%) of the
regular domain’s size is sufficient for attenuating waves.

We remark that, within the PML, the required mesh
density greatly depends on the sharpness of the im-
posed attenuation profile. That is, even if the element
size is sufficiently small to resolve the propagating
waves (i.e., have a sufficient number of points per
wavelength), a sharply varying attenuation profile may
impose more onerous requirements on the element
size in order for the mesh to adequately capture the
amplitude decay. The sharpness of the profile depends
on the polynomial order of the attenuation function,
on the PML length, and on the reflection coefficient R
Eq. 7. For example, smaller values of R create profiles
that result in rapid attenuation close to the interface,
having a smoother transition closer to the fixed bound-
ary, whereas, by contrast, higher R values result in
smoother transition close to the PML interface, and
decay sharply as the fixed boundary is approached.
Therefore, using elements of variable size within the
PML that adequately resolve the decaying profiles, ir-
respective of where the profile sharpness may manifest,
has merit (a one-sided such refinement was suggested in

Fig. 18 Excitation time
signals and their Fourier
spectrum
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Fig. 19 Snapshots of u, σ31,
and σ32 using a Gaussian
pulse excitation with
maximum frequency
fmax = 40 Hz

(b) u at t = 0.46 sec

(d) 31 at t = 0.46 sec

(f) σ 32 at t = 0.46 sec

(a) u at t = 0.35 sec

(c) σ σ31 at t = 0.35 sec

(e) σ 32 at t = 0.35 sec

[64]), since it stands to impact the computational cost.
In this work, we have only experimented with uniform
meshes, as the impact of the PML mesh density on the
computational cost is minimal.

5.2.2 Heterogeneous domain case

Next, we turn to heterogeneous domains: Fig. 13 de-
picts the regular domain exhibiting a two-part modulus
profile, linear at the beginning and constant beyond the
half point. A stress load p(t) is applied at the left end
of the domain.7 The time signal p(t) and its frequency

7See Appendix A for the specific form of p(t).

spectrum are shown in Fig. 14. Due to the simplicity of
the modulus profile, an exact solution is recoverable,8

and is used to drive the error analysis.
Figure 15 depicts the L2 error against h for various

PML lengths, whereas Fig. 16 shows the effect of the
reflection coefficient |R| on the error when LPML is kept
fixed. The observations made earlier in the homoge-
neous case are re-affirmed in the heterogeneous case:
that is, when h is small, the simulation error is con-
trolled by R, and the performance is optimal (O(h2))
when R is small enough.

8Also in Appendix A.
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Fig. 20 Various domain
point time histories for the
Gaussian pulse excitation
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5.3 Two-dimensional examples

To demonstrate the applicability and performance of
the mixed PML scheme in the two-dimensional SH
wave propagation case, we treat both homogeneous
and heterogeneous problems.

5.3.1 Homogeneous half-plane

Consider first a 30 × 30-m truncated half-plane, where
PMLs (3 m wide) have been introduced on the sides

and bottom of the truncated domain, as shown in
Fig. 17. The domain is homogeneous with density ρ =
2,000 kg/m3 and shear wave velocity cs = 100 m/s. The
combined regular and PML domains are discretized
using bilinear or biquadratic elements with an element
size of 0.25m.9 There result 12 elements within each
PML region. A reflection coefficient |R| = 10−4 is used,
and a stress load σ32 = p(t) is applied over a small

9We used bilinear elements for the Gaussian pulse cases, and
biquadratic for the Ricker pulse cases.
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Fig. 21 Snapshots of u, σ31,
and σ32 using a Ricker pulse
excitation with central
frequency fr = 5 Hz

(a) u at t = 0.47 sec (b) u at t = 0.55 sec

(c) σ 31 at t = 0.47 sec (d) σ31 at t = 0.55 sec

(e) σ 32 at t = 0.47 sec (f) σ 32 at t = 0.55 sec

Fig. 22 Numerically stable,
extended, displacement, and
stress time histories due to a
Ricker pulse excitation
( fr = 5 Hz)

(a) u sampled at point 1 (b) σ32 sampled at point 1
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Fig. 23 Energy and error metrics for the homogeneous domain
excited by a surface Ricker pulse ( fr = 5 Hz)

region (−0.5m ≤ x1 ≤ 0.5 m) on the top surface of the
domain. We use seven locations (MPi) to sample the
time histories of the anti-plane displacement (u), and
of the two shear stresses (σ31, σ32), respectively.

To illuminate the domain, we use both a Gaussian
pulse (Fig. 18a, b) with a broad frequency spectrum and
a Ricker pulse (Fig. 18c, d) with narrower frequency
support and a central frequency fr = 5 Hz.10 In all
numerical simulations, we used a time step of 0.002 s.
Figure 19 shows snapshots of the displacement u, σ31 =
ṡ1, and σ32 = ṡ2, respectively, at two distinct times. As
can be seen in the figures, there are no observable
reflections propagating back to the regular domain for
either the displacement or any of the two stress waves.

Figure 20 depicts displacement and stress time his-
tories for 5 s at various monitoring points throughout
the domain. All responses are seen to (a) obey causality
and (b) be clear of reflections (there are no discernible
spurious oscillations), including points on the regular-
PML domain interface (3, 5, 6, and 7). Notice that no
instabilities are observable after 2,500 time steps.

Snapshots of the displacement and two shear stresses
when using the Ricker pulse are shown in Fig. 21. For
this narrower band excitation, there are again no dis-
cernible reflections for either the displacement or the
stress waves, even in the neighborhood of the corner
layers.

Next, we provide numerical evidence of the stability
of the two-dimensional mixed PML scheme: Fig. 22
depicts the displacement and stress response under the
load (at MP1) due to a Ricker pulse with a central
frequency of fr = 5 Hz applied in a manner similar to
the preceding examples. This time, the simulation is
carried out for 120 s, effectively requiring 60,000 time
steps. As can be seen in the figure, the response is stable
(notice that the abscissa has been compressed for times
greater than 1 s to show the short-term response and
the long-term stability).

Lastly, we provide error and energy metrics to quan-
tify the performance. To assess errors for problems for
which exact solutions do not exist, we embed the regu-
lar domain �RD within an enlarged domain �LD, whose
outer boundaries are fixed. We use a displacement-
based formulation to compute the response within the
enlarged domain �LD (there are no PMLs for the
enlarged domain), while ascertaining that we record
the response up to times prior to the arrival of the
reflections from the fixed outer boundaries of the en-
larged domain. We compare the response only within
the regular domain �RD. To ease the comparisons, we

10See Appendix B for the Gaussian and Ricker pulse expressions.
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Fig. 24 A smooth profile
domain and associated
response

(a) A PML-truncated heterogeneous domain with
smoothly-varying shear wave velocity profile

(b) u sampled at t = 0.24 seconds (c) u sampled at t = 0.36 seconds

Fig. 25 A layered domain
and associated response

(a) PML-truncated layered domain

(b) u sampled at t = 0.24 seconds (c) u sampled at t = 0.27 seconds 
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Fig. 26 Energy and error
metrics for heterogeneous
domains; a and b pertain to
the smoothly varying
heterogeneous profile and are
due to a Ricker pulse with
fr = 15 Hz; c and d pertain to
the layered profile and are
due to a Ricker pulse with
fr = 5 Hz
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(d) Displacement field norm D (t; ΩRD )

introduce three metrics; we define first the L2 norm of
the displacement field over a domain � as:

D(t; �) =
[∫

�

u2(x, t)d�

] 1
2

. (57)

Next, we define the time-dependent relative error in
terms of L2 norms, normalized with respect to the peak
value of the L2 norm within the enlarged domain, as:

e(t) =
{∫

�RD
[u(x, t) − uLD(x, t)]2 d�RD

} 1
2

max
t

D�LD(t)
× 100. (58)

As a third metric, we use the total energy, defined as:

E(t) = 1
2

∫
�

ρ

(
∂u
∂t

)2

d� + 1
2

∫
�

σ Tσ

2ρc2
s

d�. (59)

We compute the total energy always only within the
regular domain �RD. Figure 23a shows, in a semilog
plot, the comparison between the energy computed
based on the mixed method and using only the PML-
truncated domain, against the energy computed based
on the displacement-based method for the enlarged
domain, respectively. The agreement is excellent.

Figure 23b shows a comparison of the time-dependent
displacement norms D(t), while Fig. 23c shows the
normalized time-dependent error e(t) in percent, which
is below 0.03% at all times.

5.3.2 Heterogeneous domain case

We consider next two distinct heterogeneous profiles,
one where the shear wave velocity varies smoothly, and
one where the profile is sharply varying, as is typically
the case with layered media. Specifically, for the former
case, we consider,

cs(x1, x2) = 100 + 100 exp
[
− (x2 + 15)2

6

] (m
s

)
, (60)

whereas, for the latter, we define:

cs = 100 m/s for − 10m ≤ x2 ≤ 0m,

cs = 200 m/s for − 20m ≤ x2 < −10m,

cs = 300 m/s for x2 < −20m. (61)

Within the PML regions, the shear wave velocity is con-
stant along lines perpendicular to the regular domain–
PML interface, and equal in value to the velocity at the
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Fig. 27 An inclined-layer heterogeneous domain and associated
response

interface. In other words, within, for example, the right-
side PML, there is heterogeneity along the depth (x2),
but homogeneity along each x1 abscissa, that is:

cs(x1, x2) = cs(xPML, x2), x1 ≥ xPML. (62)

The same approach to assigning properties within the
side PML regions applies to the bottom PML zone. At
the two corner regions, uniform properties are assigned
equal to the properties of the regular domain’s corner
point. Figure 24a shows the smooth velocity profile,
and Fig. 24b, c depicts snapshots of the displacement
response taken at two different times due to a Ricker
pulse excitation with a central frequency of fr = 15 Hz.
In Fig. 24b, the wave front is just passing through the
high-velocity region of the profile (peak of the bell
curve), whereas in Fig. 24c, one could see that reflec-
tions due to the material heterogeneity have reached
the top surface while the front is just reaching the
bottom PML zone. Similarly, Fig. 25 depicts the profile
and response of a layered system due to a Ricker pulse
with a central frequency of fr = 5 Hz. In both cases,
reflections from the PML interface are not discernible.

To provide error metrics associated with the hetero-
geneous cases, we repeat the calculations over enlarged
domains using a displacement-based formulation and
fixed outer boundaries. We embed the computational
domain of interest within the enlarged domain, as we
did for the homogeneous case reported earlier. Since, in
these cases, the domain is heterogeneous, we extend the
heterogeneity within the enlarged domain as follows:
for the smoothly varying profile case, we extend the
heterogeneity only laterally, keeping the profile homo-
geneous below the 30-m mark at cs = 100 m

s . For the
layered case, we again extend the heterogeneity lat-
erally, while keeping the profile homogeneous at cs =
200 m

s , below the third layer. Figure 26 shows energy
and error curves for the two cases. The differences in
the energy between the enlarged and PML-truncated
domains are negligible, while the normalized L2 error
is below 2.5%.

Lastly, we report results for the heterogeneous do-
main depicted in Fig. 27a comprising inclined layers
(possibly non-physical), and an inclusion with a ma-
terial contrast ratio of 3:1 when compared with the
softest layer.11 The excitation is again a Ricker pulse
with a central frequency fr = 4 Hz; the element length
is 0.5 m and the time step is �t = 0.002 s. The resulting
smallest wavelength is approximately 8 m, somewhat
large to generate strong reflections from the layers

11The inclined layer profile has been generated using a cubic
polynomial.
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and/or the inclusion, but still sufficient for discernible
manifestation of the heterogeneity. Figure 27c shows a
snapshot of the displacement wave at t = 0.386 s, where
the presence of the inclusion is clearly seen to affect the
propagation patterns.

Next, we report the displacement histories at the six
monitoring stations MPi depicted in Fig. 27a. More-
over, we enlarge the computational domain, as per
Fig. 27b, by simply extending the layers in a horizontal

manner, and collect anew the response at the same
monitoring stations. In the enlarged domain case, we
try to ensure that the records are not polluted by
any potential reflections from the PML structures, by
recording up to times for which such reflections, if
they exist at all, do not have sufficient time to travel
back to the monitoring stations. Figure 28 provides a
comparison between the histories at the same points
of the original and enlarged domains: the agreement

Fig. 28 Response time
histories at monitoring
stations—inclined-layer
domain
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(c) u sampled at MP3
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is remarkable, despite the fact that the PML has been
constructed without taking into account the stratifica-
tion of the exterior domain that was excluded from the
computations in the first case.

6 Conclusions

In this article, we attempted to fill a gap in the array
of methods available for the simulation of waves in
heterogeneous domains by discussing the development
of a new displacement-stress mixed finite element for-
mulation for PML-truncated infinite or semi-infinite
domains. The motivation, as discussed, stemmed from
needs arising in total wavefield-based inversion, where
existing split-field, or displacement-based unsplit-field
PML techniques are either unsuitable or too cumber-
some to implement, especially in the context of adjoint-
field formulations.

The formulation is simple and was shown to retain
the second-order temporal character of the original
problem. Both displacement and stress waves are atten-
uated within the PML zone, with excellent absorption
characteristics. Numerically, as the results demonstrate,
we have not observed either instabilities or non-causal
behavior. For stability, we proposed a linear–constant
pair in one dimension, and a linear–linear pair in two
dimensions: these were the lowest-order pairs that were
numerically shown to be stable. Higher-order pairs are
possible, and will assist in combating dispersion, which
has not been addressed here; the specific orders can be
found through formal analysis of the inf-sup condition.

The magnitude of the reflection coefficient imposed
at the fixed outer boundaries of the PML zones is of
importance in the numerical simulations: at fine dis-
cretizations, it dominates the simulation error: expe-
rientially, and supported by the discussed results, we
recommend values below 10−3. The size of the PML
zone does not appear to critically affect the quality of
the results: larger PML zones are beneficial, but a clear
trade-off point between computational cost and PML
size is highly problem-dependent.

Lastly, we remark that the computational cost of the
mixed method is comparable to split-field methods, and
costlier than unsplit-field displacement-based formula-
tions. However, our approach has an advantage over
the latter, given the implementational ease that avoids
complicated temporal integration schemes.
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Appendix A: One-dimensional heterogeneous domain
exact solution

For the following tip load,

p(t) = 1
4

{
cos

(
1
2

t
)

+ sin
(

1
2

t
)

+ J0

(
1
2

t
)}

+1
8

∫ ∞

0
J0
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1
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√
(t − τ)2 − (2 ln 2)2

)

×
{
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(
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2
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− J0

(
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2
τ
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×H(t − τ − 2 ln 2) dτ, (63)

the exact solution to the wave equation for the modulus
profile depicted in Fig. 13 and for a unit density, can be
shown to be:

uex(x, t) = 1
ρ

e− 1
2 ln x

×
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1
8

∫ ∞

0

∫ ∞

0
J0
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√
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]
(64)

Appendix B: Gaussian and Ricker pulse definitions

The Gaussian pulse load is defined as:

p(t) = −10 exp
[
− (t − 0.15)2

0.0004

]
, (65)



Comput Geosci (2010) 14:623–648 647

whereas the (modified) Ricker pulse is defined by:

p(t) =
(
0.25u2 − 0.5

)
e−0.25u2 − 13e−13.5

0.5 + 13e−13.5

with 0 ≤ t ≤ 6
√

6
ωr

, (66)

where

u = ωrt − 3
√

6, (67)

with ωr denoting the characteristic central circular fre-
quency of the Ricker pulse.

References

1. Mindlin, R.D., Bleich, H.H.: Response of an elastic cylindri-
cal shell to a transverse, step shock wave. ASME J. Appl.
Mech. 20, 189–195 (1953)

2. Schmidt, F.: A new approach to coupled interior-exterior
Helmholtz-type problems: theory and applications. Habil-
itation Thesis, Konrad-Zuse-Zentrum Berlin, Fachbereich
Mathematik und Informatik, FU Berlin (2001)

3. Schmidt, F., Hohage, T., Klose, R., Schadle, A., Zschiedrich,
L.: Pole condition: a numerical method for Helmholtz-type
scattering problem with inhomogeneous exterior domain. J.
Comput. Appl. Math. 218, 61–69 (2008)

4. Zschiedrich, L., Klose, R., Schadle, A., Schmidt, F.: A new
finite element realization of the perfectly matched layer
method for Helmholtz scattering problems on polygonal do-
mains in two dimensions. J. Comput. Appl. Math. 188, 12–32
(2006)

5. Givoli, D., Keller, J.B.: A finite element method for large do-
mains. Comput. Methods Appl. Mech. Eng. 76, 41–66 (1989)

6. Givoli, D., Keller, J.B.: Non-reflecting boundary conditions
for elastic waves. Wave Motion 12(3), 261–279 (1990)

7. Engquist, B., Majda, A.: Absorbing boundary conditions for
the numerical simulation of waves. Math. Comput. 31(139),
629–651 (1977)

8. Bayliss, A., Turkel, E.: Radiation boundary conditions for
wave-like equations. Commun. Pure Appl. Math. 33, 707–725
(1980)

9. Higdon, R.L.: Absorbing boundary conditions for elastic
waves. Geophysics 56(2), 231–241 (1991)

10. Givoli, D., Neta, B.: High-order non-reflecting boundary
scheme for time-dependent waves. J. Comput. Phys. 186(1),
24–46 (2003)

11. Kallivokas, L.F., Lee, S.: Local absorbing boundaries of ellip-
tical shape for scalar waves. Comput. Methods Appl. Mech.
Eng. 193, 4979–5015 (2004)

12. Bérenger, J.-P.: A perfectly matched layer for the absorption
of electromagnetic waves. J. Comput. Phys. 114(2), 185–200
(1994)

13. Chew, W.C., Weedon, W.H.: A 3D perfectly matched
medium from modified Maxwell’s equations with stretched
coordinates. Microw. Opt. Technol. Lett. 7(13), 599–604
(1994)

14. Hu, F.Q.: On absorbing boundary conditions for linearized
Euler equations by a perfectly matched layer. J. Comput.
Phys. 129, 201–219 (1996)

15. Hesthaven, J.S.: On the analysis and construction of perfectly
matched layers for the linearized Euler equations. J. Comput.
Phys. 142, 129–147 (1998)

16. Harari, I., Slavutin, M., Turkel, E.: Analytical and numerical
studies of a finite element PML for the helmholtz equation. J.
Comput. Acoust. 8(1), 121–137 (2000)

17. Harari, I., Albocher, U.: Studies of FE/PML for exterior
problems of time-harmonic elastic waves. Comput. Methods
Appl. Mech. Eng. 195, 3854–3879 (2006)

18. Turkel, E., Yefet, A.: Absorbing PML boundary layers
for wave-like equations. Appl. Numer. Math. 27, 533–557
(1998)

19. Israeli, M., Orszag, S.: Approximation of radiation boundary
conditions. J. Comput. Phys. 41, 115–135 (1981)

20. Qi, Q., Geers, T.L.: Evaluation of the perfectly matched layer
for computational acoustics. J. Comput. Phys. 139(1), 166–
183 (1998)

21. Zeng, Y.Q., He, J.Q., Liu, Q.H.: The application of the per-
fectly matched layer in numerical modeling of wave prop-
agation in poroelastic media. Geophysics 66(4), 1258–1266
(2001)

22. Chew, W.C., Liu, Q.H.: Perfectly matched layers for elasto-
dynamics: a new absorbing boundary condition. J. Comput.
Acoust. 4(4), 341–359 (1996)

23. Hastings, F.D., Schneider, J.B., Broschat, S.L.: Application
of the perfectly matched layer (PML) absorbing boundary
condition to elastic wave propagation. J. Acoust. Soc. Am.
100(5), 3061–3069 (1996)

24. Liu, Q.H.: Perfectly matched layers for elastic waves in cylin-
drical and spherical coordinates. J. Acoust. Soc. Am. 105(4),
2075–2084 (1999)

25. Collino, F., Monk, P.: The perfectly matched layer in curvi-
linear coordinates. SIAM J. Sci. Comput. 19(6), 2061–2090
(1998)

26. Collino, F., Tsogka, C.: Application of the perfectly matched
absorbing layer model to the linear elastodynamic problem in
anisotropic heterogeneous media. Geophysics 66(1), 294–307
(2001)

27. Zheng, Y., Huang, X.: Anisotropic perfectly matched layers
for elastic waves in cartesian and curvilinear coordinates.
Earth Research Laboratory Report, Massachusetts Institute
of Technology, Cambridge (2002)

28. Abarbanel, S., Gottlieb, D.: A mathematical analysis of the
PML method. J. Comput. Phys. 134, 357–363 (1997)

29. Becache, E., Fauqueux, S., Joly, P.: Stability of perfectly
matched layers, group velocities and anisotropic waves. J.
Comput. Phys. 188, 399–433 (2003)

30. Becache, E., Petropoulos, P.G., Gedney, S.D.: On the long-
time behavior of unsplit perfectly matched layers. IEEE
Trans. Antennas Propag. 52(5), 1335–1342 (2004)

31. Komatitsch, D., Tromp, J.: A perfectly matched layer absorb-
ing boundary condition for the second-order seismic wave
equation. Geophys. J. Int. 154, 146–153 (2003)

32. Basu, U., Chopra, A.K.: Perfectly matched layers for tran-
sient elastodynamics of unbounded domains. Int. J. Numer.
Methods Eng. 59, 1039–1074 (2004)

33. Basu, U., Chopra, A.K.: Perfectly matched layers for time-
harmonic elastodynamics of unbounded domains: theory
and finite-element implementation. Comput. Methods Appl.
Mech. Eng. 192, 1337–1375 (2003)

34. Oden, J.T., Reddy, J.N.: On mixed finite element ap-
proximations. SIAM J. Numer. Anal. 13(3), 393–404
(1976)

35. Sheu, M.-G.: On theories and applications of mixed finite ele-
ment methods for linear boundary-value problems. Comput.
Math. Appl. 4(4), 333–347 (1978)



648 Comput Geosci (2010) 14:623–648

36. Brezzi, F., Bathe, K.J.: A discourse on the stability condi-
tions for mixed finite element formulations. Comput. Meth-
ods Appl. Mech. Eng. 82, 27–57 (1990)

37. Carey, G.F., Oden, J.T.: Finite Elements—A Second Course,
vol. II. Prentice Hall, Englewood Cliffs (1983)

38. Brezzi, F., Fortin, M.: Mixed And Hybrid Finite Element
Methods. Springer, New York (1991)

39. Arnold, D. N.: Mixed finite element methods for elliptic prob-
lems. Comput. Methods Appl. Mech. Eng. 82, 281–300 (1990)

40. Brezzi, F.: A survey of mixed finite element method. In:
Dwoyer, D., Hussaini, M., Voigt, R. (eds.) Finite Elements
Theory and Application, pp. 34–49. Springer, New York
(1988)

41. Raviart, P.A., Thomas, J.M.: A mixed finite element
method for second order elliptic problems. In: Galligani, I.,
Magenes, E. (eds.) Mathematical Aspects of the Finite El-
ement Method. Lecture Notes in Mathematics, vol. 606,
pp. 292–315. Springer, New York (1977)

42. Johnson, C., Mercier, B.: Some equilibrium finite element
methods for two-dimensional elasticity problems. Numer.
Math. 30, 103–116 (1978)

43. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed
finite element methods for second order elliptic problems.
Numer. Math. 47, 217–235 (1985)

44. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite el-
ement for the Stokes equations. Calcolo 21, 337–344
(1984)

45. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed
finite element for plane elasticity. Jpn. J. Appl. Math. 1, 347–
367 (1984)

46. Nédélec, J.C.: Mixed finite elements in R3. Numer. Math. 35,
315–341 (1980)

47. Arnold, D.N., Douglas, J., Gupta, C.P.: A family of higher or-
der mixed finite element methods for plane elasticity. Numer.
Math. 45, 1–22 (1984)

48. Marini, L.D.: An inexpensive method for the evaluation
of the solution of the lowest order raviart-thomas mixed
method. SIAM J. Numer. Anal. 22(3), 493–496 (1985)

49. Nédélec, J.C.: A new family of mixed finite elements in R3.
Numer. Math. 50, 57–81 (1986)

50. Arnold, D.N., Falk, R.S.: A new mixed formulation for elas-
ticity. Numer. Math. 53, 13–30 (1988)

51. Stenberg, R.: A family of mixed finite elements for the elas-
ticity problem. Numer. Math. 53, 513–538 (1988)

52. Frasca, L.P., Hughes, T.J.R., Loula, A.F.D., Miranda, I.: A
new family of stable elements for nearly incompressible elas-
ticity based on a mixed Petrov-Galerkin finite element for-
mulation. Numer. Math. 53, 123–141 (1988)

53. Morley, M.E.: A family of mixed finite elements for linear
elasticity. Numer. Math. 55, 633–666 (1989)

54. Brezzi, F., Marini, D.: A survey on mixed finite element ap-
proximations. IEEE Trans. Magn. 30(5), 3547–3551 (1994)

55. Bécache, E., Joly, P., Tsogka, C.: An analysis of new mixed
finite elements for the approximation of wave propaga-
tion problems. SIAM J. Numer. Anal. 37(4), 1053–1084
(2000)

56. Arnold, D.N., Winther, R.: Mixed finite elements for elastic-
ity. Numer. Math. 92, 401–419 (2002)

57. Bécache, E., Joly, P., Tsogka, C.: A new family of mixed
finite elements for the linear elastodynamic problem. SIAM
J. Numer. Anal. 39(6), 2109–2132 (2002)

58. Arnold, D.N., Winther, R.: Mixed finite elements for elas-
ticity in the stress-displacement formulation. In: Chen, Z.,
Glowinski, R., Li, K. (eds.) Current Trends in Scientific
Computing, Contemporary Mathematics, vol. 329, pp. 33–42
(2003)

59. Arnold, D.N., Awanou, G.: Rectangular mixed finite ele-
ments for elasticity. Math. Models Methods Appl. Sci. 15(9),
1417–1429 (2005)

60. Chen, Z.: Finite Element Methods and Their Applications,
1st edn. Springer, New York (2005)

61. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element
methods for linear elasticity with weakly imposed symmetry.
Math. Comput. 76(260), 1699–1723 (2005)

62. Festa, G., Vilotte, J.-P.: The Newmark scheme as velocity-
stress time-staggering: an efficient PML implementation for
spectral element simulations of elastodynamics. Geophys. J.
Int. 161, 789–812 (2005)

63. Cohen, G., Fauqueux, S.: Mixed spectral finite elements for
the linear elasticity system in unbounded domains. SIAM J.
Sci. Comput. 26(3), 864–884 (2005)

64. Chen, J., Chen, Z.: An adaptive perfectly matched layer
technique for 3-D time-harmonic electromagnetic scattering
problems. Math. Comput. 77(262), 673–698 (2008)


	Mixed unsplit-field perfectly matched layers for transient simulations of scalar waves in heterogeneous domains
	Abstract
	Introduction
	One-dimensional unsplit-field PML
	Complex coordinate stretching
	Determination of the wave attenuation function f(x)
	Mixed form of the transient PML equations

	Unsplit-field PML for SH waves
	Two-dimensional complex coordinate stretching
	Mixed form of the transient PML equations for SH waves

	Mixed finite element implementation
	One-dimensional mixed FE-formulation
	Two-dimensional mixed FE-formulation

	Numerical results
	One-dimensional examples
	Error studies
	Homogeneous domain case
	Heterogeneous domain case

	Two-dimensional examples
	Homogeneous half-plane
	Heterogeneous domain case


	Conclusions
	One-dimensional heterogeneous domain exact solution
	Gaussian and Ricker pulse definitions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


