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ABSTRACT 

A key difficulty in applying numerical models for 
engineering hydraulics is coping with subgrid-scale 
heterogeneity in both benthic structure and fluid flow.   This 
difficulty is exemplified by the effects of Large Woody Debris 
(LWD) on stream and river hydrodynamics.  In the past, LWD 
effects have typically been modeled by calibrating eddy 
viscosities or Manning’s ‘n’ to approximate the increased drag.  
However, the spatial structure of flow near LWD contributes to 
viability of aquatic habitat, so the prior methods are unsuitable 
for hydraulic models used for instream-flow habitat analysis.  
Furthermore, resolving the flow field around LWD with Large 
Eddy Simulation (LES) techniques would require an 
impractical amount of computer power, and coarse-grid 
Reynolds-averaged Navier Stokes (RANS) models lead to grid-
dependency of the drag effects for subgrid-scale structure.  To 
address these problems, a new conceptual model is developed. 
The new approach applies a spatial filter to the Reynolds-
averaged Navier-Stokes equation, effectively creating a 
combination of RANS and LES.  The advantage of this 
approach is the heterogeneity in subgrid-scale turbulence 
structure can be directly modeled without a grid-scale 
dependency.  
 
INTRODUCTION 

The complexities boundary structure in natural 
environments provides a wide set of unsolved problems for 
numerical modeling.  At the largest scales of environmental 
flow modeling (e.g. atmospheric boundary layer, global or 
regional ocean circulation [1]), the subgrid-scale boundary 
structure can be parameterized as a simple roughness and 
considered homogenous over a model grid cell.  For such cases, 

the spatial variation in the surface roughness is lost in the 
uncertainties and inaccuracies of the turbulence models.  On the 
other hand, at smaller modeling scales (e.g. flow around one or 
a few buildings or around a boulder in a river), attempts are 
made to model the flow patterns around an individual structural 
element, so the grid is designed to follow the structure 
boundary [2].  While the grid for such a model is several orders 
of magnitude finer than those in the large-scale circulation 
modeling, it shares an important characteristic: the roughness of 
the subgrid-scale boundary is reasonably considered 
homogeneous.  However, between these two extremes are a 
large class of problems having both engineering and scientific 
interest, where it is impractical to model at a fine-enough scale 
to capture the flow patterns around individual boundary 
structures, and yet the structures are significantly 
heterogeneous in scale and/or distribution so as to invalidate the 
presumption of subgrid-scale boundary homogeneity.   While it 
may be possible to carefully calibrate a model to reflect the 
heterogeneity in a turbulence model, such calibration will be 
inherently sensitive to the model grid.  

As an example, consider a river laden with large woody 
debris (LWD) as shown at low flow conditions in Fig. 1. It is 
impractical model at the centimeter scale that would be 
necessary to capture the flow around each piece of debris.  At 
more practical scales of O (1 m) – O (10 m), grid cells may 
have zero, one, or several pieces of LWD.  As the model grid is 
coarsened or refined, the number of LWD pieces in an 
individual grid cell will be altered.  Thus, any subgrid-scale 
model must be able to a priori adjust for the relationship 
between the size of the flow field around the structure and the 
size of the grid cell. 
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Figure 1:  Sulphur River (Texas) large woody debris at low-
flow conditions. (Photo courtesy of Texas Water Development 
Board) 
 

In this paper, we use the steady two-dimensional flow 
around a circular cylinder as a simple basis for developing and 
demonstrating a new model concept for subgrid-scale 
heterogeneity.  In future work, we plan to alter parameters such 
as permeability, aspect ratio and orientation to provide more 
general results.  In the following we describe: 1) the existence 
of subgrid scale heterogeneity; 2) the grid dependence of 
subgrid scale heterogeneity using current numerical modeling 
techniques and 3) the conceptual model we proposed to address 
the problem. 

 
NOMENCLATURE 

In this paper Einstein’s summation convention is used. For 
convenience, subscript c, b, a and o respectively indicate “cell”, 
“background”, “accelerated” and “obstructed” regions around a 
circular cylinder. The following are the variables and notations 
in this paper: 

ijC   Cross term 

ijL    Leonard term  

ijR   Reynolds term 
U   spatially-filtered time averaged velocity 
U   grid-scale mean velocity 
g   gravitational acceleration 
p   pressure 
 t    time  
u   actual velocity  
u   sub-filter-scale velocity  
u   local velocity  

'u    subgrid-scale velocity 
t∆    a certain time period 

ix    local coordinates 
, ,α β γ  empirical coefficients  

ρ   density 

ijτ    viscous stress 
∀    volume  

   time average operator 
  spatial filter 

DISCUSSION 
A commercial CFD code, Fluent (standard k-epsilon 

turbulence model) is used to model the two-dimensional fine-
scale steady flow field around a circular cylinder of diameter 
‘D’. The computational domain (Fig. 2) extends from –15D at 
the inflow to 25D at the outflow, and from –9D to 9D in the 
cross-flow direction. The Reynolds number is 3900 (based on 
cylinder diameter and free-stream velocity). This flow 
condition was selected as a starting point due to readily 
available experimental data [3]. 

 
Figure 2: Local Reynolds number contours around a circular 
cylinder (white circle) in the computational domain 
 

Normalized velocity is represented by the local Reynolds 
number as shown in Fig. 2. The flow field illustrated in Fig. 2 
can be considered the subgrid-scale velocity field for a 1-cell 
coarse grid model.  Typical LWD diameters are of order 10 cm, 
so the computational domain corresponds to a model grid scale 
of 1.8 x 4 m, and the selected Reynolds number corresponds to 
a velocity of approximately 4 cm/s (i.e. a relatively low 
velocity with respect to typical river conditions).  Thus, this can 
be considered a single model cell with with subgrid-scale 
inhomogeneity in the bottom boundary structure that affects 
both subgrid and resolved scales of motion. 

Our present models for tracking turbulent flow over complex 
boundary include large eddy simulation (LES) and Reynolds 
averaged Navier-Stokes equations (RANS). However, both 
LES and RANS cannot satisfactory account for the subgrid-
scale inhomogeneity in physical features. For LES method, the 
subgrid-scale velocity is presumed to arise from, and be 
satisfactorily modeled by, the energy-containing eddies that 
resolved on the grid. Nevertheless, for a coarse grid model like 
the example we showed in Fig. 1, eddies generated form the 
cylinder cannot be resolved at the 1-cell coarse grid because the 
cylinder is a subgrid-scale obstruction. Furthermore, the effects 
of those eddies cannot be predicted from the resolved flow. 
Thus, LES cannot resolve the effects of subgrid-scale 
obstruction physical feature.  

RANS methods assume that the subgrid scale is a 
homogeneous turbulence field characterized by the Reynolds 
stresses, which are defined using the unsteady fluctuations from 
the grid-scale (local) mean velocity.  At coarser grid resolutions 
(i.e. treating Fig. 2 as a single grid cell), there is clearly subgrid 
scale inhomogeneity in the local mean velocity that would 
contribute to the nonlinear terms in the Navier-Stokes 
equations.  Extending the RANS approach [4], we can consider 
the subgrid scale as a local difference between the grid-scale 
mean velocity and the local velocity such that: 

'u U u= +                        (1) 

 2  



where is the local velocity, U is the grid-scale mean velocity 
and is the subgrid-scale contribution.  By applying different 
grids to our model results of Fig. 2, we can compute the grid-
scale mean velocity and subgrid-scale velocity that would be 
associated with a “perfect” subgrid scale model (i.e. a model 
the reproduced U exactly at the grid scale).   Figure 3 shows 
the best possible representation of the velocity field around the 
circular cylinder for two different grid scales. The grid-scale 
mean velocities with finer and coarser grids differ in both 
magnitude and direction.  Thus, a perfectly designed subgrid 
model must account for the relationship between the subgrid 
scales of heterogeneity and the size of the grid. 

u
'u

 

 
Figure 3: Local and grid-scale mean velocity fields near a 
circular cylinder with finer and coarser grid cell, Local velocity 
( ), Grid-scale mean velocity for finer grid cells ( ) 
and Grid-scale mean velocity for coarser grid cells ( ). 
 

The grid dependency of grid-scale mean velocity leads to 
grid dependency for the subgrid scale velocity. In Fig. 4, is 
the subgrid scale velocity calculated from grid-scale mean 
velocity of the coarser grid cell in Fig. 3;  is the subgrid-
scale velocity calculated from grid scale mean velocity of the 
finer grid cell in Fig. 3.  As shown in Fig. 4, these two different 
subgrid-scale velocities are very different in both magnitude 
and direction. It suggests the subgrid scale flow field is not 
homogeneous, which invalidates the RANS assumption. 

1 'u

2 'u

Thus, if an eddy viscosity is used as a subgrid-scale 
closure, it follows that the eddy viscosity must a priori be a 
function of the grid scale. In effect, the eddy viscosity must be 
a calibration parameter that includes the relationship between 
the grid scale and subgrid-scale physical inhomogeneity. 
Therefore, in the presence of subgrid-scale inhomogeneity it 
appears that the closure term cannot be invariant with the grid 
scale. We believe the inability of present RANS models to 
explicitly account for the relationship between the grid scale 
and subgrid-scale inhomogeneity is a principle contributor to 
the calibration problems for models of the natural environment. 

Based on the insights above, we propose to employ a 
spatial filter to RANS method. This new model could be 
thought as an effective combination between LES and RANS.  
An advantage of this model is the explicit inclusion of the grid-
scale spatial filter of the Reynolds stress term, which provides 
the framework for considering the heterogeneity in the subgrid-
scale turbulence field implied by the existence of subgrid-scale 
physical boundary structure.  

 

 
Figure 4: Grid dependency of subgrid-scale velocity 

SPATIALLY-FILTERED REYNOLDS-AVERAGED 
NAVIER-STOKES EQUATIONS 

Let us consider the unsteady RANS equations without any 
turbulence modeling in a Cartesian coordinate system suitable 
for simple open channel flow (i.e. the ‘x’ direction is aligned 
with a constant sloping bottom): 

( ) (iji i
i j i j

j i j j

u 1 p x 1
u u g u u

t x x z x x

τ

ρ ρ

∂∂ ∂ ∂ ∂ ∂ )′ ′+ = − − + −
∂ ∂ ∂ ∂ ∂ ∂

     (2)

where u  is a time-averaged velocity and u′  is a velocity 
fluctuation defined respectively as:  

t

1
u u

t
∆

≡
∆

dt∫                       (3)            

u u u′ ≡ −                       (4) 
In the LES formalism with a finite-volume or finite-difference 
method, the model grid is considered a “top-hat” or “box” 
implicit filter that a priori limits the resolved motions on the 
grid.  Rather than directly discretizing the Navier-Stokes 
equations in LES, a spatial filter indicated by , is applied to 
obtain equations for the resolvable velocity.  The resulting set 
of equations are for the continuous velocity and pressure fields 
that can be represented at the spatial filter scale.  If we apply 
the LES filtering formalism to the unsteady RANS equations, 
we obtain: 

i
i i j

j i

ij

i j i j i j
j j j j

1 x
u u u p g

t x x z

1
u u u u u u

x x x x

ρ

τ

ρ

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂′ ′− + −
∂ ∂ ∂ ∂

+

              (5) 

In a model, the spatially-filtered time-averaged velocity is what 
we are attempting to resolve on the model grid, so for 
simplicity in notation let us define: 
U u≡                       (6) 
The sub-filter-scale velocity (i.e. what cannot be resolved on 
the model grid) can be defined from: 
u u U≡ −                       (7) 
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Note that an unconventional tilde is applied to indicate the sub-
filter scale velocity to remind us that this velocity is time-
averaged and therefore does not include turbulent (i.e. sub-time 
scale) fluctuations. A similar simplified notation can be made 
for the resolved pressure as P p= . Substituting and 
expanding, we can write the spatial-filter applied to the RANS 
equations as: 

iji i
i j

j i

ij ij ij
i j

j j j j

U 1 P x 1
U U g

t x x z x

R C L
u u

x x x x

j

τ

ρ ρ

∂∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ′ ′− − − −
∂ ∂ ∂ ∂

                  (8) 

where the RHS includes the classic terms derived by Leonard 
[5]: 

ij i j i j

ij i j i j

ij i j

L U U U U

C U u u U

R u u

= −

= +

=

                            (9) 

The principle difference between the above equation structure 
and prior LES work is the inclusion of the Reynolds-stress term 
that is spatially filtered.  Thus, one could arguably apply this 
formalism to add an anisotropic subgrid-scale turbulence 
closure to LES.  However, for the purposes of this work, we 
take the viewpoint that the large eddies are not resolved, so we 
will interpret the above as a RANS approach with additional 
closure terms for representing the relationships between the 
grid scale (resolved) flow and the subgrid-scale flow.  It is 
worthwhile to notice that this new mathematical formation 
explicitly includes a grid-scale spatial filtered Reynolds stress 
term i ju u′ ′ , which allows us to link the heterogeneity of 

subgrid-scale turbulence field and existence of subgrid-scale 
physical boundary. In the new formalism, the sub-filter scale 
velocity ( ) is already time-averaged, so it represents longer-
time-scale anisotropy in the unresolved velocity field that is 
caused by the subgrid-scale structure; i.e. this represents the 
divergence of the free-stream flow around an obstacle. Hence, 
one of the crucial points for this new model is to quantify how 
the free-stream flow diverges around the subgrid-scale 
structure. In the next section, we will explore the different flow 
regions around a circular cylinder as a possible prototype for a 
subgrid-scale structure model. 

u

FLOW REGIONS AROUND CIRCULAR CYLINDER 
Based on Prantl’s boundary layer theory [6, 7], the circular 

cylinder flow has four different regions as shown in Fig. 5. 
Corresponding to this theory, we consider a grid cell of volume                

that can be divided into 4 sub-volumes: 1) a background   
volume

       
c∀

b∀ that is unaffected by sub-grid scale inhomogeneity, 
2) an obstructed volume in which h the flow is slowed, 3) an 
accelerated volume∀ in which the obstruction leads to local 
flow acceleration, and 4) a wake volume where the 
turbulence is enhanced by the wake of the object.   

o∀

a

w∀

  

 
Figure 5: Flow regions around a circular cylinder 

 
The characteristic scales of the time-averaged velocity in 

each subregion are sub-filter scale velocities: b o au , u , u and .   
Let us consider the simplest possible model where the resolved 
flow is only in the U direction (V=0) such that the flow is 
decelerated through an obstruction and accelerated around the 
obstruction.  The characteristics velocities in the regions are 
modeled by an empirical parameter and the resolved velocity 
as: 

wu

b b

o o o

a a o

w w w

u U v 0 w 0

u U v 0 w

u U v U w 0

u U v 0 w 0

α

β γ

b

0

= = =

= = =

= = =

= = =

                                    (10) 

where, 1, 1, and 1 1α β γ< > − < < .  
Based on the new spatially-filtered Reynolds-averaged Navier-
Stokes equations and flow regions theory, we can analytically 
calculate the cross term in the equation below: 

11(b) 11(o)
b o

11

11(a ) 11( w )c
a w

C C
C 1 x x

C Cx
x x

∂ ∂
∀ +∀

∂ ∂ ∂=
∂ ∂∂ ∀

+∀ +∀
∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                              (11) 

where 
2

11( b ) b

2

11( o ) o

2

11( a ) a

2

11( w ) w

C Uu U

C Uu U

C Uu U

C Uu U

= =

= = α

= = β

= =

                                                 (12) 

which provides: 

[ ]
2

11
b o a w

c

C U
x

α β
∂

                                   (13) = ∀ + ∀ + ∀ +∀
∂ ∀

Thus, once we have the empirical coefficients for the 
relationships between the background (free-stream) flow and 
the flow in the object-affected regions, the cross terms is 
analytically calculable.  Similar approaches can be used for the 
other cross, Leonard and Reynolds terms.  The key insight is 
that the modeling relationships (i.e. , ,α β γ ) are determined 
empirically without regard to the model grid spacing, but their 
implementation implicitly includes the effect of the grid scale.  
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CONCLUSIONS  

Subgrid-scale heterogeneity is studied using flow around a 
circular cylinder. Existing practical coarse-grid models do not 
account for the scale relationship subgrid-scale obstruction and 
the grid, which leads to grid-scale dependency of subgrid scale 
features. A new spatial-filtered RANS method provides a 
framework to account for the subgrid-scale heterogeneity. This 
new approach includes the subgrid-scale heterogeneity and an 
explicit way of quantifying grid-scale dependency.  
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