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Abstract

A description of a 3D estuary and lake computer model (ELCOM) is provided. The model
solves the unsteady Reynolds-averaged Navier-Stokes (RANS) equations using a semi-implicit
method with quadratic Euler-Lagrange discretization of momentum advection and a conservative
ULTIMATE QUICKEST approach for scalar transport. A one-dimensional mixed-layer model
is extended to 3D for turbulence closure of vertical Reynolds stress terms.
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Chapter 1

Introduction

While the terms “simulation” and “model” are sometimes used interchangeably in the literature,
we would like to distinguish between the two concepts applied to numerical solution of temporal
evolution equations. The former is taken to be the solution to a set of equations based on first
principles, while the latter is the solution of a set of equations that combines first principles with
empirical observations and/or scaling laws. While the distinction may seem only of pedagogical
importance, it does play a role in how a numerical scheme is developed, tested and applied.
The Centre for Water Research Estuary and Lake Computer Model (ELCOM) described in this
report is designed as a model of physical processes rather than a simulation of fluid flow.

Simulation methods might be considered to encompass Direct Navier-Stokes (DNS) and
Large-Eddy Simulations (LES) techniques and a subset of the Reynolds-Averaged Navier-Stokes
(RANS) methods presented in the literature. A simulation method will solve the evolution
equations to the designed degree of accuracy given a sufficiently fine grid. The accepted test
of “sufficient” resolution requires a grid resolution study with at least one numerical simulation
performed with twice the resolution as the base grid scale (i.e. the grid used for analysis of
simulation results). This typically requires an increase in computational time and memory of
at least one order of magnitude. If the simulation results change dramatically with the grid
resolution, then the base grid is considered to be under-resolved. Since maximum practical
resolution is a function of computational power, the accepted procedure in numerical simulation
is to reduce the Reynolds and/or Froude numbers of the flow under consideration until a well-
resolved flow can be simulated with the available computer. In effect, simulation methods require
re-scaling the problem to fit the computer. The fundamental tenet of flow simulation is that a
well-resolved solution to the evolution equations is invariant to further refinement of the grid or
change of numerical method.

In contrast, three-dimensional (3D) models of geophysical flows with topographic effects
are often not suitable for rescaling without distorting the physics that are under investigation.
If the flows cannot be rescaled, the attainable resolution is strictly a function of the available
computational power. It is rare to see a numerical model of a geophysical flow over complex
topography with a grid resolution study – most models are run with all available computa-
tional power at the maximum possible grid resolution. Grid refinement studies are simply not
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practical for most investigators. One might suspect that many of these models are, strictly
speaking, “under-resolved” in the solution of the evolution equations. It might be somewhat
less derogatory to label this practice “coarse-grid” modeling. Solutions obtained with 3D coarse-
grid models may be highly dependent on the grid resolution and the numerical method. The
purist might argue that such solutions are simply nonsense and should be ignored. However,
carefully conducted coarse-grid 3D models are a necessary bridge between highly-resolved three-
dimensional simulation of idealized flows (presently obtainable through DNS, LES and RANS
for limited Reynolds and Froude numbers), and 1D models of lake dynamics and 2D models of
estuaries. Indeed, it is our contention that 3D modeling over complex topography will remain
the province of coarse-grid numerical models for the forseeable future.

The challenge of coarse-grid modeling is to develop numerical methods that are suffi-
ciently accurate and robust for attainable grid resolutions while providing reasonable represen-
tations of the physics. That better results might be attained with finer grids or a higher-order
numerical method cannot be allowed to deter the use of methods that are sufficiently accurate
methods for the purposes at hand. It must be held in mind that a geophysical numerical model
is often forced with field data of an uncertain quality. In particular, available wind data for lakes
and estuaries is often limited to a single value of wind speed and direction that may be located
some distance from the water. Thus, an extremely accurate solution of the flow physics on a fine
grid may not provide a more accurate model of the physics of a system given the uncertainty
in the forcing data. Our objective is to produce a numerical model that can reproduce the
first-order 3D physical response of a lake to environmental forcing on a coarse grid with low
CPU time requirements so that the method can be used to develop greater understanding of the
variables which drive mixing dynamics and scalar transport in geophysical systems.

For coarse-grid modeling, the evolution equations derived from first principles (as used
in simulations) must be carefully reconsidered in conjunction with the behaviour of the numerical
methods applied. The a priori decision to use coarse-grid methods for a model of a geophysical
flow might seem to imply that using numerical schemes higher than 1st order in accuracy would
be, in the words of J. Koseff, “measuring with a micrometer after cutting with an axe”. However,
for coarse-grid modeling, the character of the truncation error of the numerical methods is may
be more important than the magnitude of the error or the formal order of the scheme. As a
result, suitable methods may be required to be higher order than one might first expect. In
ELCOM, the advancement in time for free-surface evolution is a first-order backwards-Euler
method with second-order discretization used for most spatial derivatives. Scalar transport,
however, uses a conservative third-order scheme to minimize unphysical oscillations, numerical
diffusion, and non-monotonicity in the scalar fields that are a feature of lower-order schemes.



Chapter 2

Governing Equations

2.1 Introduction

The governing equations and fundamental models used for three-dimensional transport and
surface thermodynamics in ELCOM are summarized in figures 2.1 through 2.4. The transport
equations are the unsteady Reynolds-averaged Navier-Stokes (RANS) and scalar transport equa-
tions using the Boussinesq approximation and neglecting the non-hydrostatic pressure terms.
The free surface evolution is governed by and evolution equation developed by a vertical integra-
tion of the continuity equation applied to the Reynolds-averaged kinematic boundary condition.
Surface thermodynamics are governed by bulk transfer models.

2.2 Hydrodynamic equations and models

The unsteady RANS equations are developed by filtering the unsteady Navier-Stokes equations
over a time period that is long relative to sub-grid scale processes, but small relative to the
unsteady grid-scale processes that are of interest. In an unsteady RANS numerical method the
time scale of the averaging is the time step used in advancement of the evolution equations.
Thus, the maximum time step for a given grid resolution is fundamentally limited by the grid
scale physics, regardless of the numerical method. This is an important point that is lost
when “unconditionally stable” numerical methods are discussed: the stability of the method at
a large time step is irrelevant if the size of the time step implies a temporal averaging scale that
encompasses grid-scale motions.

In most numerical approaches, the sub-time scale nonlinear terms (u′
iu

′
j)are represented

by an eddy viscosity (νjk) defined in a tensor form as:

νjk
∂ui

∂xk
≡ δjkν

∂ui

∂xk
− u′

iu
′
j (2.19)

where ν is the molecular viscosity, u′
k are the sub-time-scale velocity fluctuations, and the overbar

indicates the Reynolds-averaging filter. The off-diagonal eddy-viscosity terms are generally set
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Hydrodynamic equations

Transport of momentum:

∂Uα

∂t
+ Uj

∂Uα

∂xj
= − g

{
∂η

∂xα
+

1
ρ0

∂

∂xα

∫ η

z′
ρ′dz

}
(2.1)

+
∂

∂x1

{
ν1

∂Uα

∂x1

}
+

∂

∂x2

{
ν2

∂Uα

∂x2

}
+

∂

∂x3

{
ν3

∂Uα

∂x3

}
− εαβfUβ

Continuity
∂Uj

∂xj
= 0 (2.2)

Boundary conditions on momentum
free surface:

∂Uα

∂x3
= 0 (2.3)

bottom and sides:
Ui = 0 (2.4)

Transport of scalars:

∂C

∂t
+

∂

∂xj
(C Uj) =

∂

∂x1

{
κ1

∂C

∂x1

}
+

∂

∂x2

{
κ2

∂C

∂x2

}
=

∂

∂x3

{
κ3

∂C

∂x3

}
+ S (2.5)

Boundary conditions on scalars

∂C

∂xj
= 0 (2.6)

Free-surface evolution
∂η

∂t
= − ∂

∂xα

∫ η

b

Uαdz (2.7)

Free-surface wind shear
(u∗)

2
α = C10

ρ(air)

ρ(water)
(WβWβ)

1
2 Wα (2.8)

Momentum input by wind
dUα

dt
=

(u∗)
2
α

h
(2.9)

Figure 2.1:
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Nomeclature in hydrodynamic equations

i, j, k,m three component space (e.g. i = 1, 2, 3)

α, β horizontal two component space (e.g. α = 1, 2)

U Reynolds-averaged velocity

η Reynolds-averaged free surface height

ρ0 reference density

ρ′ density anomaly (i.e. the difference between the in situ density and the reference
density)

g gravitational constant

f Coriolis constant

h height of wind-mixed layer

δij Kronecker delta (0 for i �= j, 1 for i = j)

εαβ two-component permutation tensor

ν molecular viscosity

νkm eddy-viscosity tensor

Q scalar source term

Sc turbulent Schmidt number (or Prandtl number for temperature)

c scalar concentration

b x3 value at bottom of domain

Wβ vector wind speed in β direction

C10 bulk wind stress coefficient for wind values at 10 meters

(u∗)α wind shear velocity in α direction

Figure 2.2:



Numerical Techniques in CWR-ELCOM, March 2000 6

Surface thermodynamics equations

Temperature/internal energy relation

∆T =
∆Q

ρ(water)V cp
(2.10)

Longwave radiation
emitted:

QR(emitted) = −ε(water)σ
(
273.2 + T(water)

)4 (2.11)

absorbed:

QR(absorbed) = ε(air)σ
(
1 + 0.17C2

(cloud)

) (
273.2 + T(air 2)

)4 (1 − Rlw) (2.12)

Evaporative heat loss

QW = L
0.622
P(atm)

CW u(wind)ρ(air)e(sat) (Rh − 1) (2.13)

Sensible heat flux
QH = CHcp(air)ρ(air)

(
T(air 10) − T(water)

)
(2.14)

Short wave radiation
penetrating free surface (d = 0):

QS (0) = Q(surface)

(
1 − 0.65C2

(cloud)

)
(1 − Rsw) (2.15)

distribution with depth (η − z):

QS (d) = QS (0) exp {−Γed} (2.16)

Emissivity of air
ε(air) = CE

(
273.2 + T(air 2)

)2 (2.17)

Saturation vapor pressure

log10

{
e(sat)

}
=

(
0.7859 + 0.03477T

1 + 0.00412T
− 3

)
(2.18)

Figure 2.3:
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Nomenclature for surface thermodynamics equations

T temperature

QR longwave radiant heat flux

QW evaporative heat flux

QH sensible heat flux

QS shortwave radiant heat flux

Q(surface) shortwave radiation reaching water surface

ε emissivity

d depth (i.e. η − z)

e(sat) saturated vapor pressure

ρ(air) air density

C(cloud) fractional cloud cover

L latent heat of evaporation

σ Stefan-Boltzmann constant

Rlw reflectivity of surface to incoming longwave radiation

Rsw reflectivity of surface to incoming shortwave radiation

Rh relative humidity

CH bulk transfer coefficient for sensible heat

CW bulk transfer coefficient for evaporative heat

u(wind) wind speed

cp specific heat at constant pressure

Figure 2.4:
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to zero and the molecular viscosity is ignored so that we obtain:

ν1
∂ui

∂x1
= u′

iu
′
1 ; ν2

∂ui

∂x2
= u′

iu
′
2 ; ν3

∂ui

∂x3
= u′

iu
′
3 (2.20)

In ELCOM, eddy-viscosity is used to represent the horizontal turbulence closure. In the vertical
direction, ELCOM can apply either a vertical eddy viscosity or a mixed-layer model discussed
in §4.8.

The free-surface evolution is governed by vertical integration of the continuity equation
for incompressible flow from the bottom (b) of the water column to the free surface (η) applied
to the kinematic boundary condition (e.g. Kowalik and Murty, 1993). To derive the Reynolds-
averaged free-surface evolution, equation (2.7) the Reynolds-averaging filter must be applied to
the kinematic boundary condition, resulting in

∂η

∂t
= U3 − Uα

∂η

∂xα
− ∂

∂xα

(
u′

αh′) (2.21)

Note that the sub-time scale correlation term (u′
αh′) has not been discussed in the literature

as the Reynolds-averaging filter has not been rigorously applied to boundary conditions; the
equivalent term in large-eddy simulation is discussed in Hodges and Street (1999). The modeling
of this term remains an unexplored area of free-surface flows; thus we are forced to assume that it
is either small or only of local importance. In the former case it is readily neglected. In the latter
case, the present use of implicit discretization of the free-surface solution is numerically diffusive
at high barotropic CFL conditions, so local barotropic effects are not well-resolved. Thus,
neglecting the subtime-scale nonlinear effects is justified by our focus on basin-scale baroclinic
motions. However, we can speculate that the nonlinear correlation uαh,α might be both large
and non-local where nonlinear sub-basin-scale surface waves enter shallow or restricted waters.
The neglect of this term is predicated on the assumption that sub-time scale nonlinear effects do
not significantly effect the local mean free-surface height. In general, this is a good assumption
for the resolution typically achieved in simulations of lakes and estuaries, and will be used herein.
The free surface boundary condition is an approximate form of the dynamic boundary condition
that neglects: dynamic pressure, local horizontal variation of the wind, updrafts, downdrafts and
surface tension. This is appropriate for lake simulations using the hydrostatic approximation.

2.3 Surface thermodynamics

Heat exchange through the water’s surface in ELCOM is governed by standard bulk transfer
models found in the literature (e.g. Amorocho and DeVries, 1980; Imberger and Patterson, 1981;
Jacquet, 1983) and provided in Figures 2.3 and 2.4. The energy transfer across the free surface
is separated into non-penetrative components of longwave radiation, sensible heat transfer and
evaporative heat loss, complemented by penetrative shortwave radiation. Non-penetrative effects
are introduced as sources of temperature in the surface-mixed layer, while penetrative effects
are introduced as source terms in one or more grid layers based on and exponential decay and
an extinction coefficient (Beer’s law).



Numerical Techniques in CWR-ELCOM, March 2000 9

The simplest approach to introducing non-penetrative effects is to assume that all the
surface heat transfer is absorbed in the uppermost grid cell in the domain. However, this
approach results in the effective model of the surface heat transfer changing as a function of the
grid resolution at the surface. In ELCOM, an approach that is grid-independent for vertical grid
resolution of one meter or less is employed. The surface heat transfer is modeled as occurring
over the first one meter below the free surace with an exponential decay such that 98% of the
surface heat transfer is absorbed in this region. Naturally, if the vertical grid resolution near
the free surface is coarser than 1 m, then the entire surface heat transfer occurs into the upper
grid cell.

In shallow or very clear waters, shortwave radiation may penetrate to the bottom of
the lake or estuary. There is an open question as to how best to model the radiant energy that
reaches the bottom. A comprehensive heat budget model would require: (1) absorption and
reflection of the short wave radiation by the sediments, (2) long wave radiation emission from
the sediments, and (3) conduction and convection models at the bottom boundary. Data to
develop and validate a comprehensive model is presently not available. As a simpler approach,
we will consider that any short wave radiation that reaches the bottom boundary is treated by
a model similar to that used for the surface heat transfer near the free surface. We assume the
shortwave radiation is converted into longwave radiation and/or sensible heat transfer that is
absorbed in the first meter above the bottom using exponential decay.

Further details on the ELCOM thermodynamic modeling can be found in a CWR tech-
nical report (Hodges, 2000).



Chapter 3

Computational constraints

3.1 Introduction

The ELCOM numerical method takes its basic structure from the TRIM scheme of Casulli
and Cheng (1992) with adaptations for accuracy, scalar conservation, numerical diffusion and
implementation of a mixed-layer model. Other adaptations of TRIM can be found in Casulli
and Cattani (1994); Casulli (1997); Gross et al. (1998, 1999). Hereinafter these are collectively
referred to as the TRIM method, with distinctions made between adaptations only where rele-
vant. The methods in ELCOM are extended beyond TRIM by including: (1) a hybrid advection
scheme for momentum; (2) an energy-based mixing model for vertical diffusion; and (3) con-
servative advection of scalars using an third-order explicit method, in contrast to the implicit
scheme in the adaptation of TRIM by Gross et al. (1998).

The solution grid uses rectangular Cartesian cells with fixed ∆x and ∆y (horizontal)
grid spacing while the vertical ∆z spacing may vary as a function of z but is horizontally uniform.
The uniform horizontal spacing and rectangular cells enables application of a simple, efficient
finite-difference/finite-volume scheme on a staggered grid. Vertically varying layer thickness
allows grid layers to be concentrated where the greatest resolution is required. The free surface
height in each column of grid cells is computed from the free surface evolution equation and
is allowed to move up and down through the grid layers as required. The grid stencil is the
Arakawa C-grid: velocities are defined on cell faces with the free-surface height and scalar con-
centrations on cell centers. The free-surface height in each column of grid cells moves vertically
through grid layers as required by the free-surface evolution equation. The numerical scheme
for computing the temporal evolution of velocity is a semi-implicit solution of the hydrostatic
Navier-Stokes equations using a hybrid discretization of advection terms. The hybrid scheme
locally alters the numerical discretization method used for the advective terms as a function
of the local CFL condition. Semi-implict solution of the hydrostatic Navier-Stokes equations
involves discretizing the free surface evolution in an implicit manner while retaining explicit
source terms for advection, horizontal diffusion, and baroclinic terms (e.g. Casulli and Cheng,
1992; Kowalik and Murty, 1993).

10
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3.2 Flooding and drying of grid cells

In solving the Navier-Stokes and transport equations with a free surface on a fixed grid, the dis-
cretization of cells that may be “wet” at one time step and “dry” at another presents problems
for semi-implicit methods (i.e. any method that solves the free surface evolution in an implicit
formulation with a mix of explicit and implicit discretizations for advective, diffusive and baro-
clinic terms). With fully-explicit methods, all terms are discretized in a consistent manner for
the time ‘n’ solution space. Similarly, a consistent fully-implicit method can be written (al-
though its solution is more complicated) using all terms discretized in the time ‘n + 1’ solution
space. However, for a semi-implicit technique on a fixed-grid with a moving free-surface, there
is a fundamental inconsistency between the time ‘n’ and time ‘n + 1’ solution spaces; i.e. they
may not be exactly equal, so some free-surface cells may have only time ‘n’ values while other
cells may have only time ‘n + 1’ values. The distribution of these cells is unknown a priori. It
follows that the entire solution space of the governing equations for a free-surface flow cannot
be formally discretized in a consistent manner using a semi-implicit technique and a fixed grid.
The inconsistency can be eliminated by ensuring there is a sufficiently thick upper grid cell that
encapsulates all possible free surface motion. Unfortunately, many lakes undergo changes in
surface level that make it impractical to specify limits on the surface position.

The TRIM method side-steps this conundrum by discretizing the momentum equations
against the background of the time ‘n’ free surface. Using this approach, numerical solution
of the semi-implicit equations is not attempted in a cell that exists only in time ‘n + 1’ space.
Thus, newly wet cells must be initialized with velocity and scalar data from surrounding cells
that were previously wet. Newly dry cells must be cleared of data since the solution in these
cells (while calculated) is meaningless. The approach in TRIM has been adopted in the present
work as it provides a simple framework around which to build an efficient semi-implicit method.
We find it convenient to define our solution space for the advance from time ‘n’ to time ‘n+1’ as
the intersection of the set of (i, j, k) cells at time ‘n’ with the set of (i, j, k) cells at time ‘n + 1’.
Hereafter this will be referred to as the ‘n∗’ set of cells.

3.3 Time step limitations

Both TRIM and ELCOM are unconditionally stable for purely barotropic flows; that is, they
will produce stable numerical results for any size of time step. However, for stratified flows,
both methods use explicit discretization of the baroclinic terms in Equation 2.1 leading to a
time step constraint based on the internal wave Courant-Friedrichs-Lewy condition (CFLb) such
that CFLb <

√
2 is required, or

(g′D)
1
2

∆t

∆x
<

√
2 (3.1)

The left-hand side is defined as the baroclinic CFL number (CFLb), where g′ is the reduced
gravity due to stratification (g∆ρρ−1

0 ), the effective depth is D, and
√

g′D is an approximation
of the wave speed of an internal wave. This baroclinic stability condition is generally the most
restrictive condition in a density-stratified flow. The importance of the internal wave speed can
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be seen in a simple scaling analysis: Typical lake stratifications provide a modified gravity of
g′ ≈ O

(
10−2

)
ms−2 while lake depths (D) are O (10) m to O

(
102

)
m. Internal waves propagate

at C ≈ (g′D)1/2, giving wave speeds of O (1) ms−1. Maximum horizontal water velocities in
a lake are typically O

(
10−1

)
ms−1, and the desired horizontal grid size is O

(
102

)
m. The

maximum allowable time step for a limiting CFL condition is:

∆t <
CFL ∆x

U
(3.2)

If U is taken as the horizontal water velocity, the maximum allowable time step for a limiting
CFL of one is O

(
103

)
s. If U is taken as the internal wave speed, the maximum allowable

time step for a limiting CFL of one is O
(
102

)
s. Thus, in the horizontal direction, the internal

wave speed rather than the flow velocity controls the maximum allowable time step and high
CFL capability in the horizontal direction is generally unnecessary. However, in the vertical
direction, there is a definite advantage to a numerical scheme that is stable for CFL > 1.
Practical vertical grid resolutions are typically O

(
10−1

)
m to O (10) m depending on the lake

morphology and available computational power. Internal wave motions can produce vertical
velocities of O

(
10−2

)
ms−1, so fine grid resolutions with a CFL limit of one can result in an

unacceptable time step limitations of O (10) s.

Scalar transport in ELCOM uses an explicit approach has an advective Courant-Friedrichs-
Lewy condition (CFLa) such that u δt∆x−1 < 1 is required. This condition does not effect the
time step of the momentum solution (∆t), but instead is used to compute sub-time steps (δt)
for the scalar transport solution. The implicit scheme of Gross et al. (1998) does not have CFL
limitation for vertical velocity and is therefore preferable where fine grid resolution is used in
the vertical direction and high vertical CFL values are expected. At coarse vertical grid resolu-
tions (low vertical CFL values) the present explicit approach should prove more computationally
efficient.

A final stability constraint for semi-implicit schemes with explicit horizontal diffusion
(e.g. TRIM and ELCOM) is the viscous stability condition (derived for homogenous flows in
Casulli and Cattani, 1994);

∆t ≤ ∆x2 ∆y2

2ν (∆x2 + ∆y2)
(3.3)

This is typically at least an order of magnitude less restrictive than the baroclinic stability
condition.

A constraint that becomes important when using large time steps in a geophysical model
is whether the velocity field can be considered Lipschitz at the grid and time scales applied: i.e.
is the field sufficiently smooth for a numerical approximation (Iserles, 1996). In Smolarkiewicz
and Pudykiewicz (1992) the numerical Lipschitz constant B is defined with the condition that
it must be less than unity:

B =
∣∣∣∣
∣∣∣∣∂v
∂x

∣∣∣∣
∣∣∣∣ ∆t < 1 (3.4)

This was demonstrated to be a necessary condition in a multi-time-level semi-Lagrangian method
to prevent trajectories from intersecting as they are traced back in time and space. While
the present Euler-Lagrange method tracks trajectories back only in space, the above Lipschitz
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condition heuristically applies as a fundamental statement of the necessary behavior of the
velocity field to allow reasonable approximation by a numerical model. As demonstrated in
Smolarkiewicz and Pudykiewicz (1992), a numerical method may remain stable at a high B,
but the results will not be accurate. This places a fundamental limit on the allowable time step
that may be reasonably used in a model. The importance of this point is that the maximum
time step that can be used may be a function of the physics, rather than the stability of the
numerical method.



Chapter 4

Numerical method

4.1 Introduction

The governing equations are discretized on a Cartesian solution grid in a staggered formulation
where single velocity components are defined on each face and scalars are defined at the cell
centers. In discrete equations, the cell faces are represented by subscripts such as i + 1/2, while
the centers are represented with integer (i, j, k) values. The notation of Casulli and Cheng is
used in the following description. For the discrete form of equations, we will use subscripts to
represent the position in discrete (i, j, k) space. Let Un+1

i,j represent the water column vector of
time ‘n + 1’ velocity values at position (i, j), that exist in the time n∗ solution space for all k

that satisfy

bi,j ≤
kmax∑
m=1

∆zn
i,j,m ≤ ηi,j (4.1)

where bi,j is the height of the bottom of the domain at point (i, j), ηi,j is the height of the
free surface, and kmax is the maximum number of grid cells in the vertical direction. Similar
definitions are applied for other vector quantities in this report.

4.2 Semi-implicit formulation for momentum

ELCOM is designed to operate with various solution options in the momentum discretization.
The fundamental semi-implicit evolution of the velocity field can be discretized on the n∗ solution
space in a manner similar to the TRIM approach as:

Un+1
i+ 1

2 ,j
= A−1

i+ 1
2 ,j

Gn
i+ 1

2 ,j − g
∆t

∆x

[
θ1

(
ηn+1

i+1,j − ηn+1
i,j

)
+ (1 − θ1)

(
ηn

i+1,j − ηn
i,j

)]
(4.2)

Vn+1
i,j+ 1

2
= A−1

i,j+ 1
2
Gn

i,j+ 1
2

− g
∆t

∆y

[
θ1

(
ηn+1

i,j+1 − ηn+1
i,j

)
+ (1 − θ1)

(
ηn

i,j+1 − ηn
i,j

)]
(4.3)

14
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where G is an explicit source term vector, θ1 is the “implicitness” of the free surface discretiza-
tion1. The default semi-implicit scheme in ELCOM is a backwards-Euler discretization (i.e.
θ = 1) of the free surface evolution that is formally 1st order accurate in time.

It has been demonstrated (Casulli and Cattani, 1994) that the backwards Euler method
for solution of the hydrostatic momentum equations can be extended to the general two-level
scheme of Equations (4.2) and (4.3) that is formally second-order accurate (when θ = 0.5).
However, in coarse grid modeling, this increase in numerical accuracy does not always result in
an increase in model skill. In general, many lake an estuary simulations are conducted where
the barotropic mode will be solved with CFL conditions that may range from 5 to 10 or greater.
Under these conditions, semi-implicit discretizations may be stable, but the “fidelity” of the
representation of the flow physics is a function of the type of flow under consideration The
character of the truncation error is critical to understanding the performance of the method.
With the 1st order method, the lead error term is 2nd order and results in damping of waves
on the free surface. With the 2nd order method, the leading error term is dispersive and results
in numerical waves on the free surface which propagate accross the domain; typically causing
a linear barotropic wave to evolve into a steep-fronted bore, causing high velocities in localized
areas as the surface wave is affected by topography. Thus, the first order method results in good
representation of the shape of the free surface and the local barotropic velocities, but shows
excessive damping of the inertial response of the free surface. In contrast, the second order
method maintains the energy in the surface wave form with minimal numerical dissipation, but
has a poor representation of the wave form. In a hydrostatic solution, the dispersive waves cause
spurious local forcing of throughout the water column and are detrimental to the skill of the
solution. In contrast, the excessive damping of the surface wave causes a decrease in the large
scale motions associated with the barotropic response when the wind relaxes, i.e. the “ringing”
of the barotropic mode is damped. In general, a strongly forced system is better modeled with
the backwards Euler scheme as the wave energy beyond two or three periods is often irrelevant
to the first-order physics.

Using an any two-level implicit discretization (e.g. Casulli and Cheng, 1992), or any
explicit discretization technique, the A matrix can be represented as:

A =




bn + γk cn 0 0 0
an−1 bn−1 cn−1 0 0

0 an−2 bn−2 cn−2 0
...

...
...

...
...

0 0 a2 b2 c2

0 0 0 a1 b1 + γ1




The γ terms in A are set by boundary conditions (see §4.10), while the a, b, and c terms are:

bk = −ak + ∆zk − ck (4.4)

ak = −θ2
ν3∆t

∆z

∣∣∣∣
k+ 1

2

(4.5)

1The generalized implicitness option for 0.5 ≤ θ1 ≤ 1.0 is coded in ELCOM version 1, but has not been fully
tested.
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ck = −θ2
ν3∆t

∆z

∣∣∣∣
k− 1

2

(4.6)

The θ2 coefficient is determined by the choice of numerical discretization techniques. For θ2 = 1
the vertical viscous term is discretized using a backwards Euler technique. For θ2 = 0, the
discretization is explicit and A is zero for all terms off the main diagonal. ELCOM selects
θ2 = 1 when the user chooses to model vertical turbulent diffusion with an eddy-viscosity. For
the mixed-layer model, ELCOM sets θ2 = 0.

The source terms G in Equations (4.2) and (4.3) can be represented as:

Gn
i+ 1

2 ,j = L
(
Ũi+ 1

2 ,j

)
− ∆t

{
Bn

i+ 1
2 ,j + Dx

(
Ũ

)
i+ 1

2 ,j
+ Dy

(
Ũ

)
i+ 1

2 ,j
− fṼi+ 1

2 ,j

}
(4.7)

Gn
i,j+ 1

2
= L

(
Ũi,j+ 1

2

)
− ∆t

{
Bn

i,j+ 1
2

+ Dx

(
Ṽ

)
i,j+ 1

2

+ Dy

(
Ṽ

)
i,j+ 1

2

+ fŨi,j+ 1
2

}
(4.8)

The L ( ) operator represents advective discretization (see §4.6) , B() represents baroclinic dis-
cretization (§4.4), D() represents horizontal turbulent diffusion discretization (§4.3). ELCOM
allows vertical diffusion to be computed either using the eddy viscosity terms or a vertical mixing
model. When the eddy-viscosity form is used, Ũ = Un, while the mixing model is represented
as an operator such that:

Ũi,j,k = M
(
Un

i,j,k

)
(4.9)

The mixing operator M() is described in detail in §4.8.

4.3 Horizontal diffusion discretization

While the original TRIM approach (Casulli and Cheng, 1992) applied the discretization of
the horizontal diffusive terms at the pathline origin, the additional complexity was not found
to provide any significant advantage in the accuracy of the present method. Therefore, the
horizontal diffusion terms (Dx, Dy) from Equations 4.7 and 4.8 are discretized using a second-
order stencil such that:

Dx

(
φn

i,j,k

)
=

ν

∆x2

(
φn

i+1,j,k − 2φn
i,j,k + φn

i−1,j,k

)
(4.10)

4.4 Baroclinic discretization

The baroclinic term B in the x direction is discretized as:

Bn
i+ 1

2 ,j,k =
g

ρ0∆x

{
F∑

m=k

ρ′i+1,j,m −
F∑

m=k

ρ′i,j,m

}n

(4.11)

where k = F is the cell containing the free surface. Similar expressions for diffusion and
baroclinic terms are obtained for the y direction. The elimination of the vertical diffusion terms
in Equations 2.1 and 2.5 allows the present scheme to dispense with the tridiagonal matrix
inversion for each horizontal velocity component and transported scalar required for each (i, j)
water column in the TRIM scheme.



Numerical Techniques in CWR-ELCOM, March 2000 17

4.5 Free surface discretization

The free surface evolution is governed by the solution of Equation 2.7, which can be discretized
as:

ηn+1
i,j = ηn

i,j − θ1

[
∆t

∆x
δx

{
(∆Zn)T Un+1

}
− ∆t

∆y
δy

{
(∆Zn)T Vn+1

}]

− (1 − θ1)
[

∆t

∆x
δx

{
(∆Zn)T Un

}
− ∆t

∆y
δy

{
(∆Zn)T Vn

}]
(4.12)

where ∆Z is a vector of the vertical grid spacing, and the operators δx and δy indicate discrete
differences, e.g.

δx (φ) ≡ φi+ 1
2
− φi− 1

2
(4.13)

Substitution of equations (4.2) and (4.3) into equation (4.12) provides a pentadiagonal system
of equations for the time ‘n + 1’ free surface height that is readily solved using a conjugate
gradient method. The approach adopted for conjugate gradient solution in the present work is
similar to TRIM, as detailed in Casulli and Cheng (1992).

4.6 Advective discretization

ELCOM has several different advective discretization approaches available: quadratic or linear
Euler-Lagrange, upwind, QUICKEST, centered finite differences and a hybrid scheme2.

4.6.1 Hybrid momentum advection scheme

One of the difficulties of numerical modelling at geophysical scales is the wide range of flow
conditions that may be present. In particular, internal waves may intermittently produce strong
vertical motions over relatively small regions. Where resolution of internal waves is deemed
important, the choice of numerical method is driven by the need for accuracy and stability in
a small portion of the overall flow field. While many explicit spatial discretization methods are
stable for CFL < O (1), their accuracy in 3D computations for CFL > O (0.5) is generally poor
when the flow direction is not aligned with the grid.

The drawback of the quadratic method is that it is computationally expensive. How-
ever, for low CFL regions (CFL < 0.1), the solution of a quadratic semi-Lagrangian method is
dominated by terms in the same seven-point upwind stencil that is obtained by using quadratic
upwind discretization. This similarity can be exploited to reduce the computational require-
ment in regions of low CFL without significantly reducing the accuracy of the overall solution
method. The concept of applying different schemes in different regions can be generalized into
the concept of a “hybrid” numerical method. A general hybrid method is one where different

2Not all schemes have been thoroughly tested in ELCOM version 1. It is recommended that users apply the
quadratic Euler-Lagrange or the hybrid scheme.
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solution schemes are applied in different flow regions based upon a criteria measured in the flow
field. For our purposes, the criteria is the CFL, and we apply one discretization technique for
low CFL, and a different technique for high CFL.

The present hybrid method has been tested to two levels, using quadratic semi-Lagrangian
discretization for regions where (0 < CFL < 2). The upper limit cutoff is the maximum CFL
that can be computed using a quadratic SL method without requiring the additional computa-
tional expense of adjusting the stencil region. As a practical matter, the accuracy of computa-
tions for CFL > 2 is questionable, so the upper limit is not an unreasonable requirement. For
regions with CFL > 2, the default ELCOM method applies linear semi-Lagrangian discretiza-
tion (i.e. the approach used in TRIM) to minimize the computational effort of repositioning the
stencil. ELCOM has the capability3 to use a third discretization method (e.g. QUICK) for very
low CFL regions (i.e. CFL < 0.1).

4.6.2 Linear semi-Lagrangian methods

For a stratified flow, semi-Lagrangian methods are desirable in that they are both accurate
and stable in the regime where 0.1 < CFL < 1. As a further advantage, they retain their
stability in higher CFL regimes, although their accuracy suffers at high CFL values unless
the flow streamlines are well resolved by the grid. However, in stratified flows, the ability to
provide stable solutions for CFL > 1 in the horizontal direction is of secondary importance in
the selection of a numerical method. The maximum time step is generally limited by either by
(1) the baroclinic wave propagation speed in the region of strongest stratification, or (2) the
maximum acceptable numerical diffusion in scalar transport. The former requires wave CFL < 1
for stability, while the latter limitation is a matter of grid resolution and the length of time over
which model results are required.

The semi-Lagrangian form of advection is obtained by finding the approximate point in
continuous space (the “Lagrange” point) which would be advected to a discrete point (i, j, k)
by the velocity field (U, V,W ) over the time step ∆t. That is, the particle position (i, j, k) is
numerically marched back along the streamlines represented by the velocity field U, V,W . The
U, V,W field may be obtained from single or multiple time levels, depending upon the accuracy
and computational complexity desired. A detailed review of semi-Lagrangian techniques is
found in Staniforth and Côté (1991). In a linear, single-time level semi-Lagrangian method, the
Lagrange point is found using

δx = −U∆t (4.14)

δy = −V ∆t (4.15)

δz = −W∆t (4.16)

The value of a variable φ at the Lagrange point is found using a trilinear upwind interpolation:

φL =
δx

∆x

δy

∆y

δz

∆z
φi−1,j−1,k−1 +

(
1 − δx

∆x

)
δy

∆y

δz

∆z
φi,j−1,k−1

3Three-level hybridization is not fully tested in ELCOM version 1.
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+
δx

∆x

(
1 − δy

∆y

)
δz

∆z
φi−1,j,k−1 +

δx

∆x

δy

∆y

(
1 − δz

∆z

)
φi−1,j−1,k

+
δx

∆x

(
1 − δy

∆y

)(
1 − δz

∆z

)
φi−1,j,k +

(
1 − δx

∆x

)
δy

∆y

(
1 − δz

∆z

)

+
(

1 − δx

∆x

) (
1 − δy

∆y

)
δz

∆z
φi,j,k−1 +

(
1 − δx

∆x

)(
1 − δy

∆y

)(
1 − δz

∆z

)
φi,j,k

(4.17)

The above constitutes an eight-point stencil for a semi-Lagrangian methods with linear inter-
polation. As the flow field approaches a uniform 1D flow, the linear semi-Lagrangian technique
reduces to a linear upwind method for CFL < 1. Indeed, it is perhaps easier to think of the
semi-Lagrangian method as a 3D linear upwind stencil that is successively repositioned for high
CFL conditions. It follows that linear semi-Lagrange method exhibits the unacceptable levels of
numerical diffusion that are characteristic of linear upwind methods. This can be ameliorated
by using a quadratic method for interpolation of values at the Lagrange point (see §4.6.3) .

4.6.3 Quadratic Euler-Lagrange

The quadratic semi-Lagrange method extends the 8-point upwind stencil with trilinear inter-
polation (used in TRIM) to a 27-point upwind stencil using quadratic Lagrange polynomial
interpolation. In the notation of Casulli and Cheng (1992), the operator interpolates the ve-
locity field (on the x face) to the position

(
i + 1

2 − a, j − b, k − d
)
, where a, b and d are real

numbers that represent displacements from the
(
i + 1

2 , j, k
)

position. This is an estimate of the
origination of the pathline of a particle moving through the time n velocity field that ends at
the position

(
i + 1

2 , j, k
)

after time ∆t. A similar notation is used for the y faces at j + 1
2 . It

is convenient to denote the pathline origination point by a superscript (p) so that the advective
operators L() in Equations (4.2) and (4.3):

L
(
Ũi+ 1

2 ,j

)
= Ũi+ 1

2−a, j−b, k−d = Ũ (p) (4.18)

The process of computing the pathline origin in 2D for bilinear interpolation is discussed in
Casulli (1990) and is illustrated in Figure 4.1 for 2D quadratic Lagrange interpolation. For
Lagrange interpolation on non-uniform grids it is convenient to consider the physical space co-
ordinates (x, y, z) that correspond to the (i, j, k) computational indices. Three-dimensional
quadratic Lagrange interpolation to find the value of U (p) at any point

(
x(p), y(p), z(p)

)
is com-

puted in three sweeps illustrated in Figure 4.2, requiring 9 vertical interpolations of the form

Ûi+γ, j+ψ = L0
i+γ, j+ψ Ui+γ, j+ψ, k + L1

i+γ, j+ψ Ui+γ, j+ψ, k±1 + L2
i+γ, j+ψ Ui+γ, j+ψ, k±2 (4.19)

where the (i, j) subscripts denote the position of the vertical line to be interpolated, while ψ and
γ are ±{0, 1, 2}, with the sign determined by the upwind direction of the stencil (as is the sign
for the k increment in the U position subscripts). The Lagrange polynomial coefficients, Lm for
each (i, j) line are computed from the standard Lagrange coefficient formula (e.g. Al-Khafaji
and Tooley, 1986)

Lm =
2∏

ψ=0
ψ �=m

z(p) − zk±ψ

zk±m − zk±ψ
: m = 0, 1, 2 (4.20)
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b

ax

y

 -UA dt

 A
 B

 C

 D

 -VA dt

Figure 4.1: Two-dimensional illustration of Euler-Lagrange streamline computation using quadratic
Lagrange interpolation. Velocity vector A, with components UA and VA, is used to track particle path
from position (i, j) back to the base of vector B using the momentum sub-time step dt. Velocity vector
B is computed from the nine grid nodes upwind of the velocity vector at position (i, j). Vector B is used
to track the particle path back to the base of velocity vector C, which is again interpolated from the
surrounding nine grid nodes. This is repeated n times where n dt = ∆t. If a vector base position is not
contained within the nine upwind grid nodes, the upwind stencil must be repositioned. In the present
code, linear interpolation is used for the rare instances when repositioning is necessary. The final vector
is the result of the Euler-Lagrange operator in Equations 4.7 and 4.8, i.e. L (Ui,j) = Ui−a, j−b. The
number of sub-time steps (n) may be set arbitrarily, with high values providing greater accuracy and
higher computational cost. Note that n = 1 everywhere corresponds to quadratic upwind discretization
and has poor accuracy characteristics unless the CFLa � 1. As a general rule, the minimum n is set as
a local function of the grid and flow field such that U dt ∆x−1 < 1
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(i,j,k)

 d

 b

 a

(i-2, j-2, k-2)

(i, j-2, k-2)

(i, j, k-2)

(i-2, j, k)

(i-2, j-2, k)

interpolation points in k (9 lines)

interpolation points in j (3 lines)

interpolation points in i (1 line)

pathline origin {x(p), y(p), z(p)}

 x

 y

 z

Figure 4.2: Figure 4.2. Schematic of three-dimensional quadratic Lagrange interpolation with successive
interpolations in the k, j, then i directions. For clarity, this illustration shows interpolation for a uniform
grid, however the method can be applied to non-uniform grids without any further adaptation.

where zp is the vertical coordinate of the interpolated point and the sign is determined to obtain
an upwind stencil. The vertical interpolations are followed by 3 horizontal interpolations in the
y direction of the form

Ūi+γ = L0
i+γ, j Ûi+γ, j + L1

i+γ, j±1 Ûi+γ, j±1 + L2
i+γ, j±2 Ûi+γ, j±2 (4.21)

Finally, a single interpolation in the x direction is applied as

U (p) = L1 Ūi + L2 Ūi±1 + L3 Ūi±2 (4.22)

The Lagrange coefficients in Equations 4.21 and 4.22 are computed using Equation 4.20 with
y or x substituted for z as appropriate. The quadratic stencil used for the Euler-Lagrange
interpolation is advantageous as it reduces artificial damping of internal waves that occurs with
an 8-node linear stencil; thus improving the ability of the method to resolve the free motions of a
stratified basin. While this improvement is necessary for modeling stratified lakes, it is probably
of lesser importance in estuarine modeling where forced motions dominate the flow physics. The
extra computational requirements of the quadratic stencil are somewhat ameliorated by the
ability to compute source terms for flows in the range 1 < CFL < 2 without repositioning the
stencil.
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4.7 Scalar transport

Scalar transport is (arguably) the most critical piece of the hydrodynamic numerical algorithm
for strongly stratified flows. If the scalar transport is not sufficiently accurate, we cannot obtain
correct evolution of the density field and internal wave motions. In ELCOM, a conservative
third-order scalar transport method is applied. Use of conservative methods has been found
critical to stratified lake and estuary models as the distribution of density feeds back into the
momentum equation through the baroclinic term. Non-conservation results in loss of momentum
in baroclinic forcing such that internal waves are dissipated too rapidly and strong gradients
that drive underflows may simply cease to exist. Using non-conservative methods, loss of mass
and deterioration of sharp gradients at salinity and temperature fronts degrades the skill of the
model.

A three-stage numerical algorithm for transport of a scalar concentration C can be
defined as:

C̃ = M (Cn) + S(c) (4.23)

C∗ = C̃ − ∆t
∂

∂xj

(
C̃ Uj

)
(4.24)

Cn+1 = C∗ +
∂

∂xα

{
κ

∂C∗

∂xα

}
+ O (∆t)2 (4.25)

As with the momentum mixing and source terms, the mixing operator in Equation 4.23 repre-
sents vertical mixing by the Reynolds stress term in Equation 2.5 and is discussed in detail in
a subsequent section on the vertical mixing model. The S(c) in Equation 4.23 represents scalar
sources (e.g. heat transfer across the free surface into the wind-mixed layer). Equation 4.24 is
advection of the scalar field by the resolved flow field, and Equation 4.25 is horizontal diffusion
by turbulent motions. For clarity in the above and the following, advection, i.e. Equation 4.24, is
defined over time step ∆t. However, when MAX (CFLa) > 1, the sub-time step δt is used, where
mδt = ∆t and Equation 4.24 is iterated m times. In the following derivations, substitution of
δt for ∆t and n + mδt for n + 1 makes the equations reflect the sub-time step iteration process.

In differential notation, a conservative form of the transport equation is:

∂

∂t

∫
Ω

C dΩ +
∫

Ax

C U dAx +
∫

Ay

C V dAy +
∫

Az

C W dAz = S(c) (4.26)

where Ω is a control volume, Ax, Ay, Az are surface areas of the control volume faces. For clarity
in the discrete form, it will be useful to omit the (i, j, k) subscript notation for any centered
variable so that Ci,j,k is written simply as C, and Ci,j+ 1

2 ,k is written as Cj+ 1
2
. The discrete

advected scalar concentration field (C∗) written as a flux-conservative advection over the n∗ set
of cells is:

C∗ = C̃
∆zn

∆zn+1
− ∆t

∆x∆y ∆zn+1

{
δx (Q) + δy (Q) + δz (Q)

}
(4.27)

where operators of the form δx are defined in Equation 4.13. Q is the scalar flux through the
cell faces, defined on the n∗ cell set for the i + 1/2 face as:

Qi+ 1
2

=
(
∆y ∆zn+1 Un+1C̃

)
i+ 1

2

(4.28)
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Similar definitions apply on the j+1/2 and k+1/2 faces. There is no flux through the uppermost
face of cell containing the free surface, so Qi,j,F+1/2 = 0, where k = F is the cell containing the
free surface. It follows that ∆zn+1

i,j,F −∆zn
i,j,F = ∆tWn+1

i,j,F+1/2 and Ci,j,F+ 1
2

= Ci,j,F . For any
cell (i, j, F ) in the n∗ set:

Ci,j,F

∆zn
i,j,F

∆zn+1
i,j,F

= Ci,j,F − ∆t

∆zn+1
i,j,F

Wn+1
i,j,F+ 1

2
Ci,j,F+ 1

2
(4.29)

Thus, for all cells in the n∗ set (including free surface cells):

C∗ = C̃ − ∆t

∆x
δx

(
Un+1C̃

)
− ∆t

∆y
δy

(
V n+1C̃

)
− ∆t

∆zn+1
δz

(
Wn+1C̃

)
(4.30)

Since the scalar concentrations are updated at the cell centers, it is necessary to define a method
of interpolation for cell face values such as δx (UC). The ULTIMATE flux-limiting filter applied
with third-order QUICKEST interpolation (Leonard, 1991) performs particularly well in main-
taining monotonic scalar fields while limiting numerical diffusion. Implementation in 2D and
demonstration of its effectiveness estuarine flows has been documented by Lin and Falconer
(1997). The conservative ULTIMATE QUICKEST method is limited to CFLa < 1 in all coor-
dinate directions. The present semi-implicit scheme remains stable at higher CFL (providing
CFLb does not exceed unity), so the ULTIMATE QUICKEST algorithm must be computed
successively over sub-time steps such that the maximum CFLa is less than one in each sub-time
step. In practice, coarse resolution models of strongly stratified basins will have the defining
time step limitation based on the baroclinic mode in the momentum solution and CFLa > 1
may never occur.

The recent evaluation of transport schemes by Gross et al. (1999) did not directly
examine the ULTIMATE limiter applied to a QUICKEST approach; however, their results did
show that effective results for a 2D model of South San Francisco Bay could be obtained with
either the QUICKEST approach or Roe’s superbee limiter applied to a Lax-Wendroff method.
As Lax-Wendroff is a second-order discretization, it is likely that the ULTIMATE limiter applied
to third-order QUICKEST would have been at least as effective as the schemes they tested. The
present use of an explicit discretization approach constrasts with the vertical-implicit approach
taken in the recent adaptation of TRIM by Gross et al. (1998). The advantage of the latter is
that it is stable for scalar transport solutions at CFL > 1, whereas the present method requires
sub-time step iterations of the scalar transport routines when high CFL’s are encountered. Thus
the approach of Gross et al. (1998) is preferable for a fine vertical grid resolution while the present
method should prove more computationally efficient at coarse grid resolution.

4.7.1 Scalar horizontal diffusion

The horizontal diffusion terms in Equation 4.25 are discretized to obtain the time ‘n + 1’ scalar
field over the solution space ‘n∗’:

Cn+1
i,j,k = C̃i,j,k + Dx

(
C̃i,j,k

)
+ Dy

(
C̃i,j,k

)
(4.31)

where Dx and Dy are finite-difference operators for the second derivative. As with the velocity
solution, any time n + 1 locations that are not in the time n∗ solution space are updated using



Numerical Techniques in CWR-ELCOM, March 2000 24

the concentration of neighbor cells.

4.8 Mixing and vertical diffusion

4.8.1 Introduction

Parameterization of the cumulative effect of small-scale mixing events as a function of large-
scale (i.e. resolvable) processes remains a challenge for modeling of stratified flows. In most
multi-dimensional numerical models, mixing across stable density gradients is parameterized by
an eddy diffusivity term in the vertical transport equations. The mixing by sub-grid scale and
sub-time scale fluctuations (i.e. turbulence) is characterized by the resolved scale strain rates
using relations such as:

−cu = κ1
∂c

∂x1
(4.32)

Turbulence closure modeling using this approach is the process of specifying the κj diffusivities,
and is one of the main sources of error in numerical modelling of stratified flows. However, the
eddy diffusivity approach is not the only possible approach to modelling the effect of mixing
events. In ELCOM, one option for vertical diffusion we take a different approach that is derived
from the mixing energy budgets used in 1D lake modelling. The methodology for 1D modeling
is presented in Imberger and Patterson (1990), Spigel et al. (1986) and Imberger and Patterson
(1981).

Mixing in a stratified fluid can be characterized as two types of events: (1) convective
mixing that decreases the potential energy of the fluid and releases turbulent kinetic energy
(TKE) through mixing of unstable density gradients, and (2) stable mixing that uses turbulent
kinetic energy to mix stable density gradients, thereby increasing the potential energy of the
fluid. Mixing is computed by comparing the available mixing energy (EA) from convective
overturns, shear production and wind stirring to the potential energy increase (ER) required to
mix a lower layer up into a well-mixed region. Where EA > ER, complete mixing between the
lower layer and the upper well-mixed region occurs and EA is decremented by ER. If mixing
occurs, the sweep downward through the water column continues with the shear between the
mixed region and the subsequent lower layer being added to EA prior to comparison with the
new ER. When the downward sweep reaches the end of a well-mixed region, the remaining
EA is reduced by dissipation (Eε) and is stored in the lowest layer of the well-mixed region
for later transport as scalar; thus mixing energy can accumulate with time. When the bottom
of the wind-mixed layer is found, i.e. EA (k) < ER (k − 1), the downward sweep through the
water column continues with EA computed only from the local velocity shear combined with
the transported mixing energy remaining from previous time steps.

The mixing algorithm proceeds in the following sequence:

1. mix scalars and momentum in regions with unstable density gradients

2. compute the TKE released by unstable mixing
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3. compute additional TKE available for mixing due to wind stirring

4. mix scalars and momentum from the free surface to depth of mixed layer (i.e.
continue mixing als long as Ea > Er)

5. compute additional TKE available due to shear production for any stable den-
sity gradient

6. mix scalars and momentum where (Ea > Er)

7. decrease available TKE through dissipation (Eε)

8. advect TKE using transport equation

In the discrete implementation, vertical mixing is modelled as a process by which cells
(i, j) on the discrete layer k with a volume-averaged concentration Ci,j,k are either mixed with
the volumes on the k − 1 layer below or remain unmixed. This approach to vertical mixing
substitutes episodic mixing “events” for the differential equation used in eddy-diffusivity models
to represent vertical gradient of c′u3. Where no mixing occurs, our model neglects molecular
diffusion in the vertical direction. This can be readily added either in an implicit or explicit
manner, but will generally have no effect on the resulting computations. Numerical diffusion
in the solution of the advective equation and horizontal diffusion across angled isotherms will
dominate the vertical molecular diffusion.

In discretizations of momentum and transport equations, vertical turbulent diffusion
terms in Equations 2.1 and 2.5 are replaced by a mixing operator M ( ) in Equations 4.9 and
4.23, using an approach derived from the mixing energy budgets developed for 1D lake modeling
(Imberger and Patterson, 1981; Spigel et al., 1986; Imberger and Patterson, 1990). In ELCOM,
the mixing process is modeled on a layer-by-layer basis through each (i, j) water column as
describe below. Further detail on the mixing model can be found in Hodges et al. (2000).

4.8.2 Mixing energy budgets

To determine the mixing energy budget, the vertical mixing model requires computation of the
energies available for mixing (EA), required for mixing (ER), and dissipated (Eε). Derivation
of the mixing energies is based upon the 3D turbulent kinetic energy transport equation:

∂E

∂t
+ Uj

∂E

∂xj
= −Rij

∂Ui

∂xj
− ∂

∂xj

{
Euj +

ujp′

ρo

}

+ ν

(
2

∂2E

∂xj∂xj
+

∂2Rij

∂xi∂xj

)
− ε − g

ρ0
u3ρ′ (4.33)

where E ≡ uiui/2 is the turbulent kinetic energy, Rij ≡ uiuj is the Reynolds stress tensor and
ε is the dissipation, defined as:

ε ≡ ν

2

(
∂ui

∂xj
+

∂uj

∂xi

)2

(4.34)
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If we neglect the viscous transport terms and horizontal gradients (appropriate simplifications
for modeling at coarse grid resolutions), we obtain:

∂E

∂t
+ Uj

∂E

∂xj
= −Ri3

∂Ui

∂x3
− ∂

∂x3

{
Eu3

2
+

u3p′

ρ0

}
− ε − g

ρ0
u3ρ′ (4.35)

which adds advective transport terms to the presentation of 1D TKE in Spigel et al. (1986).

A well-mixed region of a water column (e.g. the surface wind-mixed layer, the benthic
boundary layer, or a shear layer undergoing mixing) may defined in a general continuous form
as a ≤ z ≤ b for some x, y, or in discrete form as ka ≤ k ≤ kb for some i, j. In a 3D system with
interior shear mixing and benthic boundary mixing, there may be multiple well-mixed regions in
a water column and the distribution of the regions may vary horizontally. Thus ka = ka (i, j, k)
and kb = kb (i, j, k) and all k cells in a single well-mixed region of an (i, j) water column have
identical values of ka and kb. For unmixed cells we have ka = kb = k.

The vertical gradients in Equation 4.35 are negligible in the interior of a well-mixed
region, so the right-hand side can be written as the sum of the changes through dissipation
and buoyant production within the region and the production through shear, turbulent pressure
work and turbulent transport at the boundaries of the mixing region:

∂E

∂t
+ Uj

∂E

∂xj
= − Qb + Qa −

∫ b

a

ε dz − g

ρ0

∫ b

a

wρ′ dz (4.36)

Following Spigel et al. (1986), we neglect the turbulent “leakage” at the lower boundary(
Ew +

wp′

ρ0

)
a

≈ 0 (4.37)

Then Qa and Qb are the fluxes of turbulent kinetic energy through the lower and upper bound-
aries of a well-mixed region:

Qb =
{

uw∆U + vw∆V + Ew +
wp′

ρ0

}
b

(4.38)

Qa = {uw∆U + vw∆V }a (4.39)

where ∆U and ∆V are the velocity differences in the vertical direction between two unmixed
regions for the x and y components of velocity respectively. Thus, at the lower boundary of a
mixing region (ka), ∆U is defined as the difference between the velocity on the ka and ka − 1
layer:

∆U{k} = U{ka} − U{ka−1} (4.40)

A similar expression defines ∆V in the y direction.

The last term in Equation 4.36 is a buoyancy term that can act either as a source or a
sink of TKE. Where there is an unstable density gradient, this term is a source of TKE produced
in convective overturns. Where there is a stable density gradient, this is term represents a sink of
TKE due to the energy required to mix heavier water upwards (i.e. increasing potential energy).
This term is modeled as the buoyancy scale w∗ based on the change in density from time t (i.e.
ρ) to time t + ∆t (i.e. ρ̃) due to mixing:

(w∗)
3 =

g

ρ

∫ b

a

wρ′ dz = − g

ρ̃∆t

{∫ b

a

ρ z dz − a + b

2

∫ b

a

ρ dz

}
(4.41)
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where the density after complete mixing is given as:

ρ̃ =
1

b − a

∫ b

a

ρ dz (4.42)

It will be convenient to define w∗u as the unstable buoyancy term (TKE source due to unstable
convection) such that

w∗u = w∗ for w∗ < 0

w∗u = 0 for w∗ ≥ 0

In a similar fashion, w∗s as the stable buoyancy term (TKE sink due to mixing)

w∗s = w∗ for w∗ > 0

w∗s = 0 for w∗ ≤ 0

This approach is taken as w∗u is always created by the presence of unstable density gradients,
while w∗s is only a sink of TKE if there is sufficient mixing energy available.

Equation 4.36 may be reformulated in terms of energy available for mixing, energy
required for mixing, and dissipation:

D

Dt

∫ b

a

E dz =
EA

∆t
− ER

∆t
− Eε

∆t
(4.43)

The sources of TKE are

EA

∆t
= −

{
uw∆U + vw∆V + Ew +

wp′

ρ0

}
b

+ {uw∆U + vw∆V }a − w3
∗u (4.44)

The production due to wind stirring at the free surface (−Qb) is parameterized as:

C 3
N u3

∗
2

= −
{

uw∆U + vw∆V + Ew +
wp′

ρ0

}
b

(4.45)

where CN is an empirically determined coefficient and u∗ is the wind shear velocity scale. The
shear production between two unmixed layers ka and ka−1 is parameterized with the coefficient
CS :

CS

2
{
∆U2 + ∆V 2

} ∆zka−1

∆t
= uw ∆U + vw ∆V (4.46)

so the energy available for mixing is obtained from:

EA =
C 3

N

2
u3
∗∆t +

CS

2
{
∆U2 + ∆V 2

}
∆zka−1 − w3

∗u∆t (4.47)

The energy required for mixing from layer k into a layer k − 1 with stable stratification is:

ER = (w∗s)
3 ∆t (4.48)

Finally, the dissipation of TKE is
Eε

∆t
=

∫ b

a

ε dz (4.49)

This is modeled with the coefficient CE and the available mixing energy (Spigel et al., 1986)
such that

Eε =
CE

2
E

3
2
A∆t (4.50)
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Using the above representations of EA, ER and Eε, the right-hand-side of the mixing energy
evolution Equation 4.43, is computed. After sweeping vertically through the domain to deter-
mine the mixing, the advection of available mixing energy is computed using scalar transport
Equation 4.26.

4.8.3 Discrete mixing operator

In summary, the mixing algorithm can be thought of as a process for determining the lower (ka)
and the upper (kb) grid cells that bound each well-mixed region in a water column. The mixing
operator M ( ) modifies both the velocity and scalar fields and can be written as operating on
some field Γ as

M
(
Γn

i,j,k

)
=

1
ρn+1

i,j,k δi,j,k

kb(i,j,k)∑
m=ka(i,j,k)

(ρΓ ∆z)n
i,j,m : kλ ≤ k ≤ kη (4.51)

where kη is the layer containing the free surface, kλ is the layer containing the lake bottom, and
δi,j,k is the total thickness of the well-mixed region that includes cell (i, j, k), computed from

δi,j,k =
kb∑

m=ka

∆zn
i,j,m : kλ ≤ k ≤ kη (4.52)

The new density, ρn+1, is determined by a discrete form of Equation 4.42:

ρn+1
i,j,k =

1
δi,j,k

kb∑
r=ka

ρn
i,j,r∆zn

r : kλ ≤ k ≤ kη (4.53)

Note that if ka = kb then δi,j,k = ∆zi,j,k and ρn+1 = ρn so that M (Γ) = Γn. The wind mixed
layer is a special case of a well-mixed region whose depth (h) can be defined as:

hi,j =
kb(i,j,kη)∑

m=ka(i,j,kη)

∆zi,j,m (4.54)

The mixing model requires three coefficients. These are set to empirical values available in the
literature that capture the efficiencies of the above processes. An extensive discussion is found
in Spigel et al. (1986), where we have taken the values: Cn = 1.33, Ce = 1.15 and Cs = 0.2.

4.8.4 Advantages and limitations of the mixing model

The mixing model outlined herein is a first attempt at a 3D mixing model for lakes and therefore
has some limitations in its derivation and implementation which will be subject to later improve-
ment. The primary advantage of the mixing model is its ability to capture the correct depth
of the wind-mixed layer at coarse vertical grid resolutions, and thereby obtain the first-order
dynamic forcing of the thermocline4. A secondary advantage of the present mixing model is that

4It is not uncommon for a lake model to be limited to five or ten grid cells in the wind-mixed layer and three
or four cells in the metalimnion, despite our a priori knowledge that strong gradients and curvature in profiles
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it eliminates the need for the solution of the vertical diffusion equation, thus forgoing multiple
tridiagonal inversions in each water column for momentum and scalar transport required by
implicit vertical diffusion methods (e.g. Casulli and Cheng, 1992).

Algorithm limitations of the present mixing model include the use of a simple downward
sweep through the water column to determine mixing layers. This leads to a bias in the direction
of mixing that may not be appropriate for shear layers or the benthic boundary layer. In
particular, this artificially limits the benthic boundary layer to a thickness of two grid cells; a
problem that can be addressed by inverting the mixing algorithm for an upward sweep from
the benthic boundary. Additionally the algorithm does not presently include the possibility for
partial mixing that may occur as a result of billows or slow entrainment rates. Limitations
of the model derivation include the neglect of the entrainment time and a characterization
of shear that is fundamentally grid-dependent. The former problem leads to the assumption
that the wind is capable of mixing the surface layer to the mixed-layer depth in a single time
step without explicit reference to the mixed-layer depth at the previous time step; thus, the
mixing dynamics are not invariant to the size of the model time step. These drawbacks do not
appear to significantly affect the ability of the method to capture the basin-scale internal waves
(Hodges et al., 2000). The downward bias of the mixing algorithm in shear regions and the grid-
dependence of the shear term can be considered small errors compared to the cumulative effect
of numerical diffusion that artificially thickens the metalimnion. Furthermore, the code appears
to excessively damp Kelvin wave propagation around the edges of a basin so the additional
frictional effects of an upward-sweeping mixing model in the benthic boundary would merely
exacerbate an existing problem. The lack of temporal dynamics in the entrainment means that
the code effectively sees a deeper wind-mixed layer than might be otherwise predicted during
the onset of the wind. However, given the uncertainties in the spatial variation of the wind field
and the numerical errors associated with coarse-grid solutions, it is difficult to argue that this is
of first-order importance in modeling summer stratifications. It appears that numerical diffusion
and damping are critical problems to address in this model, after which further refinements to
the mixing model can be considered.

4.9 Wind momentum model

The momentum input of the wind is typically modeled (e.g. Casulli and Cheng, 1992) using a
stress boundary condition at the free surface:

ν
∂u

∂x

∣∣∣∣
z=η

= u2
∗ (4.55)

where ν is an eddy viscosity and u2
∗ is the wind stress. In ELCOM, this form of wind stress can

be applied with eddy-viscosity formulation for the vertical diffusion by adding ∆tu2
∗ to the source

of density and velocity will occur in these regions. Given the comparative scales of the physics and the grid, it
is questionable as to whether one can adequately discretize partial differential equations for turbulent diffusion
and transport. Thus, we should not be surprised if k − ε or eddy-viscosity closure schemes that prove competent
in idealized test cases (with high resolution) perform poorly when used in real systems where the system size
requires coarse grid resolution.
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term Gi, j,M , where k = M is the grid cell containing the free surface. As demonstrated by
Glorioso and Davies (1995), the formulation chosen for computing eddy viscosity has a dramatic
influence on the development of pressure-driven upwind flows in a wind-forced homogenous
system. Using an eddy-viscosity/diffusivity approach in a stratified system, the depth, downwind
velocity and velocity shear in the wind-mixed layer are functions of the values used for eddy
viscosity and diffusivity above the thermocline. The resulting prediction of mixed-layer depth
using a coarse vertical grid resolution is generally unsatisfactory. Even at fine resolutions, the
capability of k− ε and algebraic stress models may be suspect based on the 1D results of Martin
(1985).

The vertical mixing model introduced in Hodges et al. (2000) eliminates the vertical
diffusion term from the discrete equations, thereby eliminating the vertical eddy-diffusivity. As
the purpose of the eddy-viscosity term is to model the introduction of momentum into the wind-
mixed layer of depth h, we can substitute a model for predicting h (i.e. the mixed-layer model
previously described) combined with a model for the distribution of momentum over the depth
h (Imberger and Patterson, 1990):

Si,j,k =
dU

dt

∣∣∣∣
i,j,k

=
u2
∗
∣∣∣
i,j,k

h
∣∣
i,j

: η − h <

k∑
m=1

∆zm < η (4.56)

where η is the free surface height in water column (i, j). Equation 4.56 is applied separately in
the x and y directions.

The mixing algorithm discussed above provides the depth of the wind-mixed layer in
each water column so that the velocity in each cell can be appropriately incremented to account
for the wind. Since the heat input at the surface plays an important role in the establishment
of the mixed-layer depth, we use the thermodynamic equations to compute the temperature
change for non-penetrative effects applied directly to the first layer of grid cells at the free
surface. Short wave effects change the temperature at depth in accordance with the rate of light
extinction. After the surface waters have been heated (or cooled) by the surface thermodynamics
routines, the mixing routine is invoked to determine the ability of unstable density profiles and
mixing energetics to mix down into the water column. Using this technique, we are ensured
that the heat flux computed by the thermodynamics algorithm will be exactly introduced into
the wind-mixed layer, regardless of the grid resolution.

4.10 Sidewall and bottom boundary conditions

The momentum introduced into a lake by wind forcing is dissipated in the boundary layers of the
lake and turbulent processes in the interior. In 2D depth-averaged models (e.g. Casulli, 1990)
the Chezy-Manning bottom stress formulation has been applied to account for the dissipation
in the entire water column. This is particularly useful in providing a method of calibrating
depth-averaged coastal/estuarine models to reproduce a given set of tidal data. In a 3D model
with stratification, detailed field data for calibrating a bottom friction coefficient is generally
not available. Furthermore, without the transfer of basin-scale internal-wave energy to subgrid-
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scales waves, it is questionable as to whether any boundary condition model in the literature can
capture actual boundary dynamics and predict the correct location and timing of dissipation and
vertical fluxes. Sidewall boundary conditions (i.e. vertical solid boundaries) are often modeled as
free-slip to effect simpler implementation in a numerical method (e.g. Casulli and Cheng, 1992).
However, the lack of sidewall drag prevents vertical vorticity from being produced at boundaries.
As lakes typically have regions of steep slopes and longshore currents (due to Kelvin waves), the
neglect of sidewall drag may not be a suitable simplificition in modeling basin-scale motions.

There remains much work to be done in developing appropriate bottom and sidewall
boundary conditions in coarse grid models. ELCOM provides three basic forms of boundary
conditions: (1) no-slip, (2) free-slip, and (3) specified stress5.

5In ELCOM version 1, the specified stress conditions are not available on sidewall boundaries
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Future work

The critical numerical modeling issues that remain unsolved are (1) the damping of the Kelvin
wave, (2) numerical diffusion of the metalimnion, and (3) subgrid-scale modeling of internal wave
effects. The first issue may be related to the use of no-slip lateral boundaries in the present work.
Davey et al. (1983) and Hsieh et al. (1983) showed decay of model Kelvin waves to be sensitive
to lateral viscosities when no-slip boundaries are used. The second issue arises due to the use of
a fixed grid to discretize the regime. As the internal wave field evolves, isopycnals pass through
the fixed grid and undergo numerical diffusion, resulting in vertical mixing (Griffies et al., 1999).
This problem can be ameliorated with a moving isopycnal coordinate system, which introduces
another set of non-trivial numerical problems (e.g. changes to grid topology due to isopycnal
compression, gravity currents or unstable stratifications). To some extent, numerical diffusion
of the density field can be minimized by careful choice of advective schemes and grid resolution;
however, it is fair to say that numerical diffusion will, for the near future, remain the single
most important issue in conducting long-term (seasonal or multi-year) prognostic or diagnostic
models of stratified lakes at coarse resolution on a fixed grid. The third issue, subgrid-scale
modeling of internal wave effects, is a fundamental flaw in all numerical models that do not
resolve the full range of internal waves from basin-scale to the small-scale dissipative motions
at the buoyancy frequency. The closure schemes adopted in the literature, whether simple
eddy-viscosity closure, k − ε, algebraic stress, LES, or mixed-layer models, do not take into
account the transfer of energy from resolved to subgrid-scale internal-wave motions. As basin-
scale waves degenerate into nonlinear solitary waves (Horn et al., 1998), energy is propagated
through the domain and may be dissipated by wave-breaking on the boundaries (Michallet and
Ivey, 1999). In a numerical model that does not resolve solitary waves, energy extracted from
the basin-scale waves is dissipated locally by a turbulence model (or numerical dissipation)
and generally results in local mixing (Horn et al., 1999), thus overestimating interior mixing
at the expense of boundary mixing. This is particularly troublesome in the use of coupled
biogeochemical/hydrodynamic models as the motivation for using 3D (vice 1D) techniques is
the desire to capture the heterogeneity of the ecology. If the mixing energetics at the boundary
are not captured, then the benthic boundary resuspension processes that play a key role in
nutrient dynamics will be in error.

32
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If the total energy extracted from the basin-scale waves (and dissipated locally) is a
reasonable approximation of the net boundary and interior dissipation in the real system, errors
in turbulence modeling should not significantly impact modeling of basin-scale motions. This
is one reason the present work obtains adequate results with a relatively crude representation
of boundary effects. Indeed, since basin-scale internal waves are the primary energy store for
mixing, it can be inferred that correct modeling of basin-scale energetics allows field data to be
applied to calibrated modeling of basin-wide mixing (a task not attempted in the present work);
however, the placement and timing of mixing events cannot be calibrated. This is particularly
troublesome in the use of coupled biogeochemical/hydrodynamic models as the motivation for
using 3D (vice 1D) techniques is the desire to capture the heterogeneity of the ecology. If the
mixing energetics at the boundary are modeled poorly, then the benthic boundary resuspension
processes that play a key role in nutrient dynamics will be in error. Thus, calibration of mixing
models is not a practical method for modeling 3D mass transport in a lake.



Appendix
Effect of hydrostatic
approximation

Neglecting the nonlinear and viscous terms, the z momentum equation for a non-hydrostatic
flow can be written as

∂W

∂t
= − 1

ρ0

∂pd

∂z
(5.1)

where pd is the dynamic pressure. Integrating over a layer from a < z < b we can write

∫ b

a

∂W

∂t
dz = −pd

ρ0
(5.2)

Modelling the vertical velocity as piecewise linear, over a small region (∆z) we can say

pd ≈ − ρ0

2

{
∂W

∂t

∣∣∣∣
k+ 1

2

+
∂W

∂t

∣∣∣∣
k− 1

2

}
∆z (5.3)

In the horizontal momentum equations, the neglected non-hydrostatic pressure term may be
approximated as (

1
ρ0

∂pd

∂x

)
≈ − ∆z

2
∂

∂x

{
∂W

∂t

∣∣∣∣
k+ 1

2

+
∂W

∂t

∣∣∣∣
k− 1

2

}
(5.4)

A measure of the “goodness” of the hydrostatic approximation is the relative size of the
non-hydrostatic pressure gradient to the change in momentum. Let γ be defined as the ratio:

γα ≡
(

1
ρ0

∂pd

∂xα

)
∂Uα

∂t

(5.5)

In discrete form, the non-hydrostatic pressure gradient term in the x direction can be approxi-
mated as:(

1
ρ0

∂pd

∂x

)
i+ 1

2 ,j,k

≈ − ∆z

2∆t∆x

{ (
Wn − Wn−1

)
i+1,j,k+ 1

2
− (

Wn − Wn−1
)
i,j,k+ 1

2

+
(
Wn − Wn−1

)
i+1,j,k− 1

2
− (

Wn − Wn−1
)
i,j,k− 1

2

}
(5.6)
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Thus, γ1 may be approximated by

γ1 ≈ −∆z

2∆x {Un − Un−1}i+ 1
2 ,j,k

{ (
Wn − Wn−1

)
i+1,j,k+ 1

2
− (

Wn − Wn−1
)
i,j,k+ 1

2

+
(
Wn − Wn−1

)
i+1,j,k− 1

2
− (

Wn − Wn−1
)
i,j,k− 1

2

}
(5.7)

In general, we can write that

γ ∼ ∆z

∆x

{
O (W )
O (U)

}
(5.8)

Even in an extreme case where O (W ) ∼ O (U) and the flow should be nonhydrostatic, equation
5.8 gives γ ∼ ∆z/∆x. This implies that we must have aspect ratios such that ∆z/∆x > O

(
10−2

)
for the nonhydrostatic term to make a significant contribution to the resolved flow field. Note
that this does not imply that the nonhydrostatic terms are unimportant, rather it implies that
we cannot resolve the nonhydrostatic term on a discrete grid of small aspect ratio. That is, the
relative contribution of the nonhydrostatic pressure to the evolution of the horizontal flow field
is a function of the aspect ratio of the discrete grid.
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