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ABSTRACT 

 

This paper formulates and estimates an econometric model, referred to as the latent segmentation 

based generalized ordered logit (LSGOL) model, for examining driver injury severity. The 

proposed model probabilistically allocates drivers (involved in a crash) into different injury 

severity segments based on crash characteristics to recognize that the impacts of exogenous 

variables on driver injury severity level can vary across drivers based on both observed and 

unobserved crash characteristics. The proposed model is estimated using Victorian Crash 

Database from Australia for the years 2006 through 2010. The model estimation incorporates the 

influence of a comprehensive set of exogenous variables grouped into six broad categories: crash 

characteristics, driver characteristics, vehicle characteristics, roadway design attributes, 

environmental factors and situational factors. The results clearly highlight the need for 

segmentation based on crash characteristics. The crash characteristics that affect the allocation of 

drivers into segments include: collision object, trajectory of vehicle’s motion and manner of 

collision. Further, the key factors resulting in severe driver injury severity are driver age 65 and 

above, driver ejection, not wearing seat belts and collision in a high speed zone. The factors 

reducing driver injury severity include presence of pedestrian control, presence of roundabout, 

driving a panel van, unpaved road condition and presence of passengers.  

 

Keywords: Latent segmentation, Generalized Ordered Logit, Driver injury severity, Crash 

characteristics, Elasticities 
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1. INTRODUCTION 

 

Road traffic crashes continue to be a leading cause of death burdening the society with heavy 

economic losses (WHO, 2013). Most developed countries, through co-ordinated multi-sectoral 

responses to road safety issues, have been able to achieve a reduction in the crash related 

fatalities. For example, between 1975 and 2008, the annual road fatality rate of Australia 

declined from 8 deaths per 10,000 registered vehicles to 1 death per 10,000 registered vehicles 

(Ministry of Infrastructure and Transport, 2010; Australia Transport Council, 2011). In spite of 

these strides in improving road safety, traffic crashes still lead to substantial economic and 

emotional losses to the society. While improving road infrastructure design to reduce traffic 

crash occurrence is essential, it is also important to provide solutions to reduce the consequences 

in the unfortunate event of a traffic crash. A critical component of identifying and gaining a 

comprehensive understanding of the factors that contribute to the negative consequences 

(property damage and injuries) of crash outcomes is the estimation and application of 

disaggregate level crash severity models.  

In traffic crash reporting, injury severity is typically characterized as an ordered variable 

(such as no injury, minor injury, serious injury, and fatal injury). Thus, it is no surprise that the 

most commonly employed statistical formulation to model driver injury severity is the ordered 

response formulation.  But the traditional ordered response formulation imposes a restrictive and 

monotonic impact of the exogenous variables on the injury severity alternatives. More recent 

research efforts using the ordered response formulation, following Eluru et al., (2008), have 

addressed the limitation of the traditional ordered response formulation by allowing for the 

exogenous variable impacts to vary across the alternatives in a Generalized Ordered Logit (GOL) 

(or proportional odds logit) formulation (see Yasmin and Eluru, 2013; Eluru, 2013; and 

Mooradian et al., 2013).  

The current research effort contributes to the safety literature methodologically and 

empirically by building on the GOL formulation.  In terms of methodology, we formulate and 

estimate a latent segmentation based generalized ordered logit (LSGOL) model. The LSGOL 

model relaxes the traditional GOL formulation assumption that the effects of exogenous 

variables on the injury risk propensity, and on the thresholds that map the risk propensity to 

injury severity outcomes, are fixed across all drivers involved in collisions. Empirically, the 

LSGOL model is estimated using driver injury severity data from the state of Victoria, Australia, 

employing a comprehensive set of exogenous variables.  

The rest of the paper is organized as follows. A discussion of earlier research on crash 

injury severity is presented in Section 2, while also positioning the current study. Section 3 

provides details of the econometric model framework used in the analysis. In Section 4, the data 

source and sample formation procedures are described. The model comparison results, elasticity 

effects and validation measures are presented in Section 5, 6 and 7, respectively. Section 8 

concludes the paper and presents directions for future research. 

 

2. EARLIER RESEARCH AND CURRENT STUDY IN CONTEXT 

 

Road safety researchers have employed several statistical formulations for analyzing the 

relationship between injury severity and crash related factors. Savolainen et al., (2011) provide a 

detailed review of the different modeling formulations employed in crash injury severity 

analysis. But, as indicated earlier, the most prevalent formulation to study injury severity is the 
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ordered response formulation (for example see Yasmin and Eluru, 2013). The traditional ordered 

response formulation imposes a restrictive monotonic assumption regarding the impact of 

exogenous variables on the injury severity levels (Eluru et al., 2008). To address this limitation, 

researchers have employed the unordered response formulation that allows the impact of 

exogenous variables to vary across injury severity levels. The most common model used under 

the unordered response formulation is the multinomial logit model (Khorashadi et al., 2005; 

Islam and Mannering, 2006; Awadzi et al., 2008; Schneider et al., 2009; Ulfarsson and 

Mannering, 2004). However, the unordered response model does not recognize the inherent 

ordering of the crash severity outcome and, therefore, neglects vital information present in the 

data. To recognize the ordinality of the injury severity levels, as well as provide as much 

flexibility as the unordered response formulation, Eluru et al., (2008) proposed the generalized 

ordered response formulation that bridges the divide between the traditional ordered-response 

and the traditional unordered-response formulations (Eluru, 2013; Yasmin and Eluru, 2013).  

The widely employed discrete outcome formulations (ordered, generalized ordered, or 

unordered) typically restrict the impact of exogenous variables to be the same across the entire 

population of crashes (Eluru et al., 2012; Xie et al., 2012; Yasmin et al., 2013). One approach to 

extend these formulations to allow heterogeneity effects (variations in the effects of variables 

across the driver population) is to specify random coefficients (rather than impose fixed 

coefficients) (for example, see Eluru and Bhat, 2007; Paleti et al., 2010; Srinivasan, 2002; 

Morgan and Mannering, 2011; Kim et al., 2013). But, while the mean of the random coefficients 

can be allowed to vary across drivers based on observed crash-specific variables, the random 

coefficients approach usually restricts the variance and the distributional form of a random 

coefficient to be the same across all drivers. Thus, in a crash context, the impact of a rear-end 

crash (relative to an angular crash) may lead to a certain distribution of injury risk propensity due 

to unobserved factors. This distribution may be tight for low speed crashes (that is, the injury risk 

may be negative in the mean and tightly distributed about this mean), but more variant for high 

speed crashes (that is, the injury risk may be quite volatile in high-speed situations, with rear-end 

collisions leading to high injury severity in some cases and low injury severity in some other 

cases). This is a case of the distribution on the rear-end crash variable being dependent on 

another variable (low speed or high speed crashes). Such possibilities cannot be easily 

accommodated in random coefficients models. Besides, an a priori distribution form has to be 

imposed on the random coefficients, and the normal distribution assumption is usually imposed 

even though there is no reason why other distribution forms may not be more appropriate.  

A second approach to allow heterogeneity effects is to consider segmenting the 

population based on exogenous variables (such as collision type, initial impact point of collision, 

speed, and location of impact) and estimate separate models for each segment (see Aziz et al., 

2013 for segmentation based on location; Islam and Mannering, 2006 for segmentation based on 

driver demographics). However, because there may be many variables to consider in the 

segmentation scheme, the number of segments (formed by the combination of the potential 

segmentation variables) can explode rapidly. This causes problems in estimation because of very 

small sample sizes in some of the segments, and thus analysts tend to fall back to segmenting 

along 2-3 variable utmost (see Bhat, 1997 for a good discussion of these issues). To address this 

limitation, more advanced approaches such as clustering techniques that allow to segment based 

on a multivariate set of factors have been employed (Mohamed et al., 2013; Depaire et al., 2008). 

However, the approach still requires allocating data records exclusively to a particular segment, 
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and does not consider the possible effects of unobserved factors that may moderate the impact of 

observed exogenous variables.   

A third approach to accommodate heterogeneity is to undertake an endogenous (or 

sometimes also referred to as a latent) segmentation approach (see Bhat, 1997). The approach 

has been employed recently in the safety literature (Eluru et al., 2012; Xie et al., 2012; Xiong 

and Mannering, 2013; Yasmin et al., 2013). In this approach, the drivers involved in collisions 

are allocated probabilistically to different segments, and segment-specific injury severity models 

are estimated for each segment. At the same time, each segment is identified based on a 

multivariate set of exogenous variables. Such an endogenous segmentation scheme is appealing 

in many respects: (a) each segment is allowed to be identified with a multivariate set of 

exogenous variables, while also limiting the total number of segments to a number that is much 

lower than what would be implied by a full combinatorial scheme of the multivariate set of 

exogenous variables, (b) the probabilistic assignment of drivers to segments explicitly 

acknowledges the role played by unobserved factors in moderating the impact of observed 

exogenous variables, and (c) there is no need to specify a distributional assumption for the 

coefficients (Greene and Hensher, 2003). This third approach may be viewed as a combination of 

the two earlier approaches, in that it considers a multivariate set of exogenous variables in the 

segmentation and also allows unobserved variable effects to moderate the impact of exogenous 

variables. In fact, the third approach is equivalent to specifying a (discrete) non-parametric 

distribution on the coefficients (rather than the continuous parametric distribution assumption of 

the first approach), while also allowing the non-parametric distribution shape to be a function of 

a multivariate set of exogenous variables
1
. 

In summary, the current study contributes to the literature on driver injury severity in two 

ways. First, it examines the driver injury severity level using a comprehensive set of exogenous 

variables (empirical contribution). Second, it formulates and estimates a LSGOL model that 

accommodates observed and unobserved heterogeneity, and relaxes the constant threshold 

assumption of the traditional ordered response formulation (methodological contribution). 

 

3. MODEL FRAMEWORK 

 

The analysis in this paper is undertaken at the level of drivers involved in a crash. That is, we 

focus on driver-level injury severity in a crash. Thus, in the case of a crash involving a single 

vehicle with an object, there is one driver record with the corresponding injury severity level 

sustained by the driver. In the case of a crash involving multiple drivers, each driver contributes 

a record, along with the injury severity level sustained by the driver.  

The framework used for modeling driver-level injury severity assumes that drivers can be 

implicitly sorted into S relatively homogenous (but latent to the analyst) segments based on 

characteristics of the crash. Within each segment, the effects of exogenous variables are fixed 

across drivers in the segment. Let s be the index for segments (         ), i be the index for 

drivers (          , and   be the index for driver injury severity levels             ). 
                                                 
1
 The more recent work of Xiong and Mannering, (2013) proposes a latent segmentation model that further specifies 

unobserved heterogeneity in each segment-level injury severity model using a continuous multivariate normal 

distribution for the coefficients. This is tantamount to a discrete mixture-of-normals approach. Though, we do not 

account for unobserved heterogeneity in the segment level models in this paper, we propose to employ a GOL 

framework that can accommodate the more realistic case of injury reporting in more than two injury severity levels 

(the study by Xiong and Mannering, (2013) on the other hand, was a binary choice model of injury severity).  
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The crash outcomes are analyzed using a GOL model within each segment. Across segments, the 

parameters of the GOL model vary. In the GOL response model, conditional on driver i 

belonging to segment s, the discrete injury severity levels      are assumed to be a mapping (or 

partitioning) of an underlying continuous latent variable    
   as follows: 

  
                                         

         (1)  

where,  

   is a row vector of exogenous variables 

   is a corresponding column vector of unknown parameters specific to segment    

    is a segment-specific idiosyncratic random disturbance term assumed to be identically 

and independently standard logistic 

        (                      represents the segment-specific upper threshold 

associated with driver i and severity level j, with the following ordering conditions: (   

                           )            .    

To maintain the ordering conditions and allow the thresholds to vary across drivers 

within each segment, Eluru et al., (2008) propose the following non-linear parameterization of 

the thresholds as a function of exogenous variables:  

                          (2)  

where     is a segment-specific and injury level-specific row vector of parameters to be 

estimated and     is a corresponding column vector of segment-specific exogenous variables 

(    includes a constant as its first element, with the corresponding coefficient being      ; for 

identification, we need         to be a row vector of zero values, where        is a sub-vector of 

the vector     minus the first element). The traditional ordered logit (OL) model assumes that the 

thresholds        remain fixed across drivers (                  for each segment; that is, it assumes 

that         has all zero elements for all    values and all   values.  

Given the above set-up, the probability that driver   suffers an injury severity outcome  , 
conditional on driver   belonging to segment  , may be written as: 

         (                        )   (                           ) (3)  

where      represents the standard logistic cumulative distribution function.  

Of course, the analyst does not observe the segment to which driver   belongs. So, the 

analyst specifies this segment assignment to be a function of a column vector of observed crash 

factors   . To also acknowledge the presence of unobserved factors that may influence this 

assignment, the analyst develops an expression for the probability of driver   belonging to 

segment s. While many parametric expressions may be used for this probability expression (the 

only requirement is that the probabilities sum to one across the segments for each driver  ), the 

most commonly used form corresponds to the multinomial logit structure (see Bhat, 1997; 

Greene and Hensher, 2003; Eluru et al., 2012):  
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   [   

  ]

∑    [   
  ] 

 (4)  

where    is a row vector of parameters to be estimated. Then, the unconditional probability of 

driver   leading up to injury severity level   can be written as: 

      ∑               

 

   

 (5)  

The log-likelihood function for the entire dataset can be written as: 

  ∑   [∑               

 

   

]

 

   

 (6)  

The parameters to be estimated in the LSGOL model are the segment parameters 

(         , the class probability parameters      for each  , and the appropriate number of 

segments  . For identification reasons, we need to restrict one of the     vectors to zero. It is 

worthwhile to mention here that the estimation of latent segmentation based models using quasi-

Newton routines can be computationally unstable (see Bhat, 1997 for a discussion). The 

estimation of such models requires employing good starting values for the estimation procedure. 

Hence, for our analysis, the log-likelihood function and its corresponding gradient function were 

coded in the Gauss Matrix programming language. The coding of the gradient function ensures 

the reduction in instability associated with such an estimation process. 

 

4. DATA  

 

4.1 Data Source 

 

Data for our empirical analysis is sourced from the Victoria crash database of Australia for the 

years 2006 through 2010. The data includes information reported by Victorian police officers for 

crashes involving at least one motor vehicle travelling on a roadway and resulting in property 

damage, injury or death, which are then compiled by VicRoads (a statutory body responsible for 

road transport in the state of Victoria). For the five years, the crash database has a record of 

67,809 crashes involving 118,842 motor vehicles and 166,040 individuals, resulting in 1,550 

fatalities and 87,855 injuries to the crash victims. A four point ordinal scale is used in the 

database to represent the injury severity of individuals involved in these crashes: 1) No injury; 2) 

Minor injury; 3) Serious injury and 4) Fatal injury.  
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4.2 Sample Formation and Description 

 

This study is focused on the injury severity outcome of drivers, who are involved in either a 

single or a two passenger vehicle collisions. The crashes that involve more than two passenger 

vehicles are excluded from the analysis (about 9.9% of the sample). The crashes that involve 

commercial vehicles are also excluded to avoid the potential systematic differences between the 

crashes involving commercial and non-commercial driver groups. The final dataset, after 

removing records with missing information for essential attributes, consisted of 42,812 driver 

records. The final sample had a very small percentage of records that involved a fatally injured 

driver (about 1% of total crashes). Therefore, both the fatal and serious injury category levels are 

merged together in the current analysis.  

From the dataset of 42,812 driver records, a sample of 5,132 records is randomly drawn 

for the purpose of estimating models and 37,680 records are set aside for the purpose of 

validation. In the final estimation sample, the distribution of driver injury severity levels is as 

follows: no injury 41.8%, minor injury 36.9% and serious/fatal injury 21.3%. Table 1 offers a 

summary of the sample characteristics of the exogenous factors in the estimation dataset. From 

the descriptive analysis, we observe that a large portion of crashes involve short-side angular 

collisions (22.1%), and at locations with no traffic control (60.1%), in a medium speed zone 

location (66.5%), during the off peak period (33%), in clear weather (84.4%), in daylight 

(69.3%) and in the presence of at least one passenger in the vehicle (88.4%). The majority of 

drivers are adult (63.9%), use seat-belts (96.5%) and drive a sedan (71.4%). The drivers are 

somewhat more likely to be male than female (male 52.8% versus female 47.1%). It is also quite 

interesting to note that the share of vehicles that are more than 10 years old is quite large 

(43.4%). 

 

5. EMPIRICAL ANALYSIS 

 

5.1 Variables Considered 

 

The collision attributes considered in the empirical study can be grouped into six broad 

categories: crash characteristics, driver characteristics, vehicle characteristics, roadway design 

attributes, environmental factors and situational factors.  

The crash characteristics examined were collision object (small object, large object, 

animal, and moving vehicle), trajectory of vehicle’s motion (going straight or other movement), 

and manner of collision. The database compiles the manner of collision at a high level of 

disaggregation, and as a combination of collision type (rear-end, sideswipe, angular, and head-

on) and the initial point of contact. A schematic diagram of the initial point of impact relative to 

the driver’s seat position is shown in Figure 1 (the collision type and the initial point of impact 

are computed relative to the position of driver in the vehicle). Based on the collision type and the 

point of impact, we identified seven categories for the “manner of collision”:  Rear-ender (the 

rear vehicle that is involved in a rear-end collision), Rear-ended (the front vehicle that is 

involved in the rear-end collision), Near-sideswipe (sideswipe/near-side), Near-angular 

(angular/near-side), Short-side angular (angular/front and rear side), Far-side (angular and 

sideswipe/far-side) and Head-on (head-on/front side). The reader would note that, in a two 

vehicle crash it is possible that the individual drivers might have different effects in the manner 

of collision variable for a same type of crash. For example, in a rear-end collision (collision 
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type), one of the vehicles will be classified as rear-ended and the other will be classified as a 

rear-ender.   

The driver characteristics included are driver gender, age and seat belt use information. 

Vehicle characteristics considered are vehicle type (characterized as sedan, station wagon, utility 

and panel van) and vehicle age. The roadway design attributes considered in the analysis are road 

surface type, presence of traffic control device, and presence of a speed zone (speed zone is a 

length or an area of road along which a signposted regulatory speed limit applies). The 

environmental factors included are season, time of day, weather condition, and lighting 

condition. Finally, the situational factors included in the model are the number of passengers and 

whether or not the driver was ejected. The final specification of the model development was 

based on combining the variables when their effects were not statistically different and by 

removing the statistically insignificant variables in a systematic process based on statistical 

significance (90% significance level). For continuous variables, linear, polynomial and spline 

forms were tested.  

 

5.2 Variable Considered for Segmentation of Crashes 

 

The proposed modeling approach theoretically can accommodate classification of segments 

based on the universal set of variables. However, in our analysis, we consider segmentation 

based only on traffic crash characteristics for two reasons. First, while it is plausible to consider 

all attribute sets in the latent segmentation consideration, the estimation of latent segmentation 

models with the entire attribute set is likely to result in convergence challenges as well as 

difficulty in interpreting the results (see Sobhani et al., 2013 and Eluru et al., 2012 for 

discussions on challenges associated with latent segmentation models). Second, in the safety 

literature, there has been substantial interest in exploring the impact of crash characteristics on 

injury severity. In fact, many previous injury severity studies have focused only on a specific 

type of crash, which is tantamount to specifying separate injury severity models for each crash 

type
2
. While these research attempts are very useful, the approach results in models where injury 

severity records are exclusively allocated to about various segments (defined by crash type) and 

analysed through separate severity models for each segment. However, doing so implies that the 

model estimation is undertaken on a relatively small sample of the accident records for at least 

some crash types. In our paper, we offer an alternate approach by examining segmentation on the 

basis of crash characteristics (collision object, the trajectory of vehicle’s motion, and manner of 

collision), and analyze driver-level injury severity within each segment using other crash 

attributes. The approach allows us to retain a smaller number of segments while assigning 

individuals probabilistically. In this manner, we ensure that the entire sample is utilized in model 

estimation for each segment. Thus, the latent segmentation based model provides an elegant and 

effective approach to study the influence of crash characteristics through segmentation, while 

acknowledging the need for separate injury severity models for each segment. 

 

5.3 Model Specification and Overall Measures of Fit 

 

                                                 
2
 For instance, Head-on collision: Gårder, 2006; Conroy et al., 2008; Zuxuan et al., 2006; Zhang and Ivan, 2005; 

Rear-end collision: Khattak, 2001; Yan et al., 2005; Das and Abdel-Aty, 2011; Abdel-Aty and Abdelwahab, 2003; 

Ran-off road/Hit-fixed object collision: Ray, 1998; McGinnis et al., 2001; Holdridge et al., 2005; Angular collision: 

Jin et al., 2010; Chipman, 2004. 
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The empirical analysis involves the estimation of four models: (1) the ordered logit (OL) model, 

(2) the generalized ordered logit (GOL) model, (3) the latent segmentation based ordered logit 

(LSOL) model, and (4) the latent segmentation based generalized ordered logit (LSGOL) model. 

Prior to discussing the estimation results, we compare the performance of these models in this 

section. The model comparisons are undertaken in two stages. First, we determine the 

appropriate latent segmentation scheme for the OL and GOL models. Second, we compare the 

traditional (unsegmented) OL and GOL models with the more general latent models (LSOL and 

LSGOL) obtained from the first step.  

 

5.3.1 Determining the Appropriate Latent Segmentation Model 

 

The estimation of the latent segmentation based model involves the probabilistic assignment of 

the drivers involved in collisions into a given number of segments     based on the available 

exogenous variables. In the application of these models, determining the appropriate number of 

segments is a critical issue with respect to interpretation and inferences. Therefore, we estimate 

these models with increasing numbers of segments             until an addition of a 

segment does not add value to the model in terms of data fit. Many of the earlier studies suggest 

that the Bayesian Information Criterion (BIC) is the most consistent information criterion (IC) 

among all other traditionally used ICs (AIC, AICc, adjusted BIC) for segment analysis (Nylund 

et al., 2007; Bhat, 1997; Collins et al., 1993). The advantage of using the BIC is that it imposes 

substantially higher penalty than other ICs on over-fitting. Thus, in the current study context, the 

most appropriate number of segments in the LSOL and LSGOL models is determined based on 

the BIC measure.  

We estimated the LSOL and LSGOL models with   = 2 (LSOL II and LSGOL II models) 

and 3 (LSOL III and LSGOL III models) segments and computed the BIC values for each of 

these models. The BIC for a given empirical model is equal to: 

                     (7)  

where    is the log-likelihood value at convergence,   is the number of parameters, and   is the 

number of observations. The model with the lower BIC is the preferred model. For the LSOL 

model, the computed BIC values with 2 and 3 segments are 10049.72 (37 parameters) and 

10257.93 (34 parameters), respectively. The BIC values for the LSGOL model with 2 and 3 

segments are 10024.01 (41 parameters) and 10385.26 (31 parameters), respectively. Thus, we 

selected two segments as the appropriate number of segments for both the LSOL and LSGOL 

models. 

5.3.2 Comparison across All Models - Non-nested Test 

 

To evaluate the performance of the estimated OL, GOL, LSOL and LSGOL models, the BIC 

values are computed as shown in equation 7. Also, the AICc values are computed for each of the 

four models as: 
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  (8)  

Model with lower BIC and AICc values are preferred to models with higher values for 

these ICs. The BIC (AICc) values for the final specifications of the OL, GOL, LSOL and 

LSGOL models are 10086.40 (9929.59), 10048.06 (9769.44), 10049.72 (9808.17) and 10024.01 

(9756.42), respectively. The comparison exercise clearly highlights the superiority of the 

LSGOL model in terms of data fit compared to all the other models.  

 

5.4 Estimation Results 

 

In presenting the effects of exogenous variables in the model specification, we will restrict 

ourselves to the discussion of the LSGOL model. Table 3 presents the estimation results. 

Following Bhat (1997), we first present some descriptive characteristics of the two segments in 

the LSGOL model, before proceeding to a discussion of the variables that impact segmentation 

and the injury severity levels of drivers within each segment. 

 

5.4.1 Descriptive Characteristics of the Segments in the LSGOL Model 

 

To delve into the characteristics that delineate the segments and to understand the characteristics 

of each segment, the model estimates are used to generate information on: (1) the population 

share of each of the two segments and (2) the overall injury severity level shares within each 

segment. These estimates are presented in Table 2. The population share or the size of each 

segment is computed as: 

   
∑     

 
 (9)  

where   is the total number of drivers in the estimation sample. From the first row of Table 2 

labeled “Driver population share”, it is evident that a driver is more likely to be assigned to 

segment 2 than to segment 1. Further, the driver injury severity outcome probabilities, 

conditional on assignment to a segment, are obtained using equation 3. The segment-specific 

injury outcome shares are then computed by taking the average (across all drivers) of the driver-

specific probabilities associated with each injury outcome level. The results are presented in the 

second row panel of Table 2. It is clear that a driver, if allocated to segment 1, is likely to be 

involved in a more severe crash than if allocated to segment 2.  Thus, we may label segment 1 as 

the “high risk segment” and segment 2 as the “low risk segment”.  

 

5.4.2 Latent Segmentation Component 

 

The latent segmentation component determines the relative prevalence of each class, as well as 

the probability of a driver being assigned to one of the two latent segments based on the crash 

characteristics. In our empirical analysis, the crash characteristics that affect the allocation of 

drivers to segments include collision object, trajectory of vehicle’s motion, and manner of 
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collision. The results in Table 3 provide the effects of these crash characteristics, using the high 

risk segment (segment one) as the base segment. Thus, a positive (negative) sign for a variable 

indicates that crashes with the variable characteristic are more (less) likely to be assigned to the 

low risk segment relative to the high risk segment, compared to crashes that correspond to the 

characteristic represented by the base category for the variable. The positive sign on the constant 

term does not have any substantive interpretation, and simply reflects the larger size of the low 

risk segment compared to the high risk segment.  

The results for the “collision object variables” indicate an increased likelihood of drivers 

being assigned to the high risk segment in case of a collision with stationary objects (small or 

large object) compared to a collision with another moving vehicle. In terms of the trajectory of 

the vehicle’s motion, the driver of a vehicle traveling straight through just prior to a crash is at a 

higher risk of severe injury relative to drivers making other turning movements. This result is to 

be expected because straight-through drivers are likely to be travelling at higher speeds.  

Consistent with several previous studies (Chiou et al., 2013; Khattak, 2001), our analysis 

also shows that being the driver of the rear-ended vehicle in a rear-end collision increases the 

probability of a high risk crash. The driver of the vehicle is likely to be pushed backward into the 

seat when struck by the following vehicle, which results in higher probability of whiplash or 

neck injury due to the continuous movement of the neck at a different speed than the head and 

the rest of the body (Khattak, 2001; Krafft et al., 2000; Nordhoff, 2005). Thus, the biomechanics 

of this type of collision explains the increased probability of a high risk crash. 

The result associated with a head-on collision also reflects an increased likelihood of 

assigning the drivers involved in the crash to the high risk segment. Head-on collisions are often 

caused by drivers violating traffic rules, crossing the centerline by mistake and losing control of 

their vehicles (Zhang and Ivan, 2005). The pre-impact speed vectors of motor vehicles are 

directed in opposing directions during a head-on collision, resulting in greater dissipation of 

kinetic energy and heavier deformation of motor vehicle bodies (Prentkovskis et al., 2010), 

resulting in higher risk of injury (Tay and Rifaat, 2007; Gårder, 2006). The drivers who are 

involved in a near-angular collision also are likely to be assigned to the high risk segment. These 

crashes impose more risk on the driver due to the angle of impact (Jin et al., 2010) and the 

greater force of impact (Tay and Rifaat, 2007). Moreover, there is less collapsible structure 

between the striking force and the drivers, which might result in significant passenger 

compartment intrusion and the direct loading of impact resulting in serious chest and abdominal 

injury (Mackay et al., 1993; McLellan et al., 1996).  

For the far-side manner of collision, the result indicates that this kind of collision reduces 

the propensity of drivers being in the high risk segment. The significant gap between the 

collision impact point and driver position might lessen the direct impact of force as a large 

amount of kinetic energy is absorbed by the vehicle (Sobhani et al., 2011), thereby reducing the 

risk of high injury severity. 

 

5.4.3 Injury Severity Component: High Risk Segment (Segment 1) 

 

The injury severity component within the high risk segment (segment 1) is discussed in this 

section. The two columns of the corresponding segment in Table 3 represent the latent injury risk 

propensity and the threshold demarcating the minor injury level from the serious/fatal injury 

level, respectively. 
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Driver Characteristics: The age of drivers involved in the collision has a significant influence on 

crash severity. The estimation results indicate a reduction in the risk propensity for young drivers 

(age less than 25). But the impact of driver age on the threshold demarcating the minor injury 

and serious/fatal injury levels indicates that the distance between these thresholds get contracted 

for young drivers relative to other adult drivers (age 25 to 64). The net implication is that young 

drivers in this first segment have a higher probability of sustaining no injury, and a lower overall 

probability of some kind of an injury (minor injury or serious/fatal injury). But the contraction of 

the distance between the thresholds implies that the effect of age on the minor injury and 

serious/fatal injury categories is crash and driver-specific; for some contexts, the minor injury 

probability can increase with a concomitant decrease in the serious/fatal injury probability, while 

for other contexts the reverse can hold. This highlights the advantage of a GOL framework that 

allows for flexible exogenous variable impacts. The lower probability of injury among young 

adults may reflect the higher physiological strength of young drivers in withstanding crash 

impacts (Xie, 2012; O'Donnell and Connor, 1996; Castro et al., 2013), while the higher 

probability of serious/fatal injuries in some crashes may represent the lack of driving experience 

of young drivers because of which they do not take evasive maneuvers to reduce the impact of a 

crash in the making. Of course, other explanations are also possible. The parameter 

characterizing the effect of old age (age≥65) on driver injury severity suggests a higher injury 

risk propensity for this group of drivers relative to other adult individuals. As indicated in earlier 

studies (Bédard et al., 2002; Kim et al, 2013; Zhang et al, 2000; Williams et al., 2003), older 

drivers tend to be slow in reacting to hazardous situations, may not be able to withstand crash 

impact forces well, and may suffer cognitive impairment and other medical conditions; all or 

some of these factors might contribute to their higher injury severity risk. It is interesting to note 

here that driver gender has no significant influence on crash severity outcome for segment 1. A 

plausible reason for this effect may be the additional physiological strength of male drivers 

(compared to female drivers) is less likely to lessen the effect of a more severe crash. Finally, in 

the category of driver characteristics, seat belt use significantly influences driver injury severity. 

The negative effect of this variable on the threshold separating the minor injury and serious/fatal 

injury levels indicates an increased likelihood of serious/fatal injuries for the drivers not wearing 

seat belts. The result can be explained by the reduction in restraint as well as possible high-risk 

driving behavior of those not using seatbelts (Obeng, 2008; Yau, 2004; Yasmin et al., 2012; 

Eluru and Bhat, 2007). 

 

Vehicle Characteristics: The only vehicle characteristic influencing driver injury severity for the 

high risk segment is vehicle type. Table 3 shows that drivers in panel vans are associated with a 

lower injury risk propensity than drivers in other vehicle types, presumably because panel vans 

are larger and may offer more protection (Kockelman and Kweon, 2002; Xie et al., 2009; Eluru 

et al., 2010; Wang and Kockelman, 2005; Fredette et al., 2008).  

 

Roadway Design Attributes: The roadway design attributes indicate a lower injury risk 

propensity for crashes occurring (a) on unpaved roads (perhaps because of very low speeds on 

such roads), (b) at intersections with some form of control for pedestrian movement and at 

roundabouts (relative to other types of intersections). The last result regarding roundabouts may 

be the consequence of moderated vehicle speeds and the angular movements at these locations, 

which can result in safer impact angles at the time of collision (Retting et al., 2001; Persaud et 

al., 2001; Chipman, 2004). On the other hand, crashes at stop-sign controlled intersections seem 
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to increase injury severity risk relative to crashes at other intersections, attributable perhaps to 

non-compliance to stop signs and judgment problems (Chipman, 2004; Retting et al., 2003). 

Also, crashes occurring on very high speed roads, not surprisingly, lead to a high probability of 

serious/fatal injuries.  

 

Environmental Factors: Time-of-day and lighting conditions are two of the environmental factors 

that significantly influence driver injury severity for the high risk segment. Injury risk reduces 

during the evening, but increases during the late night. The former effect may be a result of 

traffic congestion and slow driving speeds, because of which, when a crash does happen, the 

injury sustained tends to be rather mild. The latter result associated with late night crashes is well 

established in the literature; attributable to reduced visibility, fatigue, higher incidence of alcohol 

use, longer emergency response times, higher driver reaction time, and increased traffic speed 

(Plainis et al., 2006; Arnedt et al., 2001; Helai et al., 2008; Hu and Donnell, 2010; Kockelman & 

Kweon, 2002; de Lapparent, 2008). The lighting condition effect show a higher probabilty of no 

injury crashes during dark-lighted conditions, perhaps due to more cautious driving relative to 

broad daylight. As with the young driver effect, the impact of this variable on the other two 

injury severity categories is context-dependent.  

 

Situational Factors: The presence of one or more passengers increases the probability of no 

injury, relative to the case of driving alone. This may be associated with public self-

consciousness, where individuals behave and drive more responsibly with others around (Eluru 

et al., 2010). As expected, drivers who are ejected out of their vehicle during a crash have a high 

probability of sustaining serious/fatal injuries for the high risk segment. 

 

5.4.4 Injury Severity Component: Low Risk Segment (Segment 2) 

 

The injury severity component within the low risk segment (segment 2) is discussed in this 

section. The impact of exogenous variables within the low risk segment is different (for some 

variables) in magnitude as well as in sign from the impact of exogenous variables within the high 

risk segment. Also, the number of variables moderating the effect is different across the two 

segments. 

 

Driver Characteristics: For the low risk segment, the influence of driver age on crash severity is 

along expected lines. We find that older drivers are associated with higher likelihood of severe 

crashes compared to other adult drivers as also seen in the other segment. Unlike the high risk 

segment, driver gender has a significant influence on driver injury severity outcome for low risk 

segment. The coefficient corresponding to driver gender of passenger vehicle reflects higher 

injury risk propensity for female drivers compared to male drivers perhaps because females are 

less capable of bearing physical and mental trauma compared to males (Evans, 2004; Sivak et al., 

2010; Xie et al., 2009;  Chen and Chen, 2011). As expected, our analysis showed an unequivocal 

benefit from employing seat belts.  It is interesting to note that the seat belt variable affects the 

driver injury severity in different ways for the two segments. 

 

Vehicle Characteristics: In the low risk segment, the results for the vehicle type reveal that the 

drivers of both station wagon and utility vehicles have a lower injury risk propensity, perhaps 

due to the larger weight of these vehicles. The vehicle age estimate demonstrates that drivers in 
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older vehicles (Vehicle age 11 and above) have a higher risk propensity compared to the drivers 

in newer vehicles (vehicle age ≤ 10 years). The higher injury risk of drivers from older vehicles 

might be attributed to the absence of safety features, presence of mechanical defects, and/or the 

involvement of suspended and unlicensed drivers in these vehicles (Lécuyer and Chouinard, 

2006, Kim et al, 2013; Islam and Mannering, 2006).  

 

Roadway Design Attributes: The presence of traffic control devices significantly affect the 

severity of crashes. For both stop and yield sign variables, the corresponding latent propensity 

coefficients are negative indicating a lower injury risk; reduced travelling speed of drivers might 

be a plausible reason for such result. However, the effect of stop sign is strikingly different in the 

low risk segment compared to the impact of stop sign in the high risk segment. The different 

impacts in the two segments for stop sign highlight how the same variable can have distinct 

influence on injury severity based on the segment to which the driver is allocated.  

The results for speed zone indicate that the injury propensity is higher for crashes 

occurring in zones with medium and higher speed limits relative to crashes occurring in lower 

speed limit zones. As is expected, within the two speed categories considered the higher speed 

category has a larger impact relative to the medium speed category. Such rapid increase in 

severity with progressive increase in speed limit has also been documented empirically by many 

earlier studies (Eluru et al., 2010; Chen et al., 2012; Tay and Rifaat, 2007). 

 

Environmental Factors: The findings of the low risk segment indicate that if collisions occur in 

the winter season, the consequence is likely to be more injurious as compared to the accident in 

non-winter seasons (spring, summer and autumn). The prevalent adverse and damp weather 

conditions in winter might pose such risk on Victorian drivers. With respect to weather 

condition, the results presented in Table 3 indicate that the rainy/snowy weather condition results 

in more severe crashes compared to the clear weather, which may be attributed to the 

unfavourable driving conditions resulting from reduced visibility and reduced friction of the road 

surface. The results also reveal that injury propensity is higher for drivers in the presence of high 

wind compared to crashes occuring during clear weather. It is possible that under high wind 

conditions drivers suddenly lose vehicle control and sideswipe or run-off from their designated 

routes (Jung  et al., 2011; Young and Liesman, 2007; Khattak and Knapp, 2001). With respect to 

lighting condition, the likelihood of driver injury risk propensity is found to be higher during 

dawn/dusk compared to other lighting conditions. This may be associated with sunglare during 

dawn/dusk period (Jurado-Piña et al., 2010; Gray and Regan,2007).  

 

Situational factors: With respect to the situational factors, none of the variables are found to 

affect injury severity in the low risk segment.  

 

6. ELASTICITY EFFECTS 

 

The parameter estimates of Table 3 do not directly provide the impact of exogenous variables on 

injury severity categories. On the other hand, the aggregate-level elasticity effects quantify the 

effects of these variables on driver injury severity outcomes. For this purpose, we compute the 

aggregate level “elasticity effects” for all independent variables (see Eluru and Bhat, (2007) for a 

discussion on the methodology for computing elasticities) and present the computed elasticities 

in Table 4. The effects are presented by injury severity categories for both the LSOL and 



16 

 

LSGOL models for comparison purpose. The results in the table can be interpreted as the 

percentage change (increase for positive sign and decrease for negative sign) in the probability of 

the crash severity categories due to the change in that specific exogenous variable. 

The following observations can be made based on the elasticity effects of the variables 

presented in Table 4. First, the most significant variables in terms of increase in serious/fatal 

injury (from both models) for drivers are driver age above 65, driver ejection, not wearing seat 

belts, and collision in high speed zone. In terms of serious/fatal injury reduction, the important 

factors are presence of pedestrian control, presence of roundabout, driving a panel van, unpaved 

road condition and presence of passengers. Second, the segmentation variables exhibit significant 

influence on injury severity profile with struck object collisions having the most significant 

contribution to increase in serious/fatal injury. Third, there are substantial differences in the 

elasticity effects of LSOL and LSGOL models. For instance, the LSOL model predicts an 

increase in minor injury for young driver while LSGOL model predicts a decrease in the same 

category. Such differences can also be observed for other variables − collision in dark-lighted 

condition, in the presence of one passenger and for pedestrian control.  

 

7. VALIDATION ANALYSIS 

 

We also carried out a validation experiment in order to ensure that the statistical results obtained 

above are not a manifestation of over fitting to data. 100 different data samples of about 2,500 

records were generated randomly from the hold out validation sample consisting of 37,680 

records to test the predictive performance of the estimated models. We evaluate both the 

aggregate and disaggregate measure of predicted fit by using these 100 different validation 

samples and present the average measure from the comparison, and also the confidence interval 

(C.I.), of the fit measures at 90% level. 

At the disaggregate level we compute predictive log-likelihood (computed by calculating 

the log-likelihood for the predicted probabilities of the sample), predictive adjusted likelihood 

ratio index and probability of correct prediction (defined as an indicator if the observed outcome 

has the highest predicted probability). The results for disaggregate measures are presented in 

Table 5 (top row panel). At the aggregate level, root mean square error (RMSE) and mean 

absolute percentage error (MAPE) are computed by comparing the predicted and actual 

(observed) shares of injuries in each injury severity level for each set of full validation sample. 

The results for aggregate measure computation are also presented in Table 5 (bottom row panel). 

The comparison of LSOL and LSGOL model at the disaggregate level is far from conclusive 

with a slight edge to the LSGOL model. This is not surprising because the difference in BIC 

values for the two models is relatively small. The LSGOL model represents a clearly superior 

performance compared to that of the LSOL model at aggregate level. 

 

8. CONCLUSIONS 

 

This paper formulates and estimates an econometric model for examining driver injury severity 

that accommodates systematic heterogeneity based on crash characteristics and relaxes the 

constant threshold assumption of traditional ordered logit model. The model is referred to as the 

latent segmentation based generalized ordered logit model. In traffic crash reporting, injury 

severity is typically characterized as an ordered variable resulting in application of the ordered 

response model for identifying the impact of exogenous variables. However, ordered systems 
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impose a uni-directional impact of exogenous variables on injury severity alternatives. On the 

contrary, the generalized ordered logit model relaxes the restriction by allowing for the 

estimation of individual level thresholds as a function of exogenous variables. The widely 

employed ordered outcome model also restricts the impact of exogenous variables to be same 

across the entire population – homogeneity assumption. An alternative approach, referred to as 

latent segmentation approach, accommodates systematic heterogeneity by allocating the drivers 

probabilistically to different segments and by estimating segment specific models for each 

segment. The current research effort contributes to safety literature empirically by building on 

the GOL model − by formulating and estimating a latent segmentation based generalized ordered 

logit (LSGOL) model.  

The empirical analysis was conducted using the Victoria crash database from Australia 

for the years 2006 through 2010. The model was estimated using a comprehensive set of 

exogenous variables - crash characteristics, driver characteristics, vehicle characteristics, 

roadway design attributes, environmental factors and situational factors. The empirical analysis 

involved the estimation of models using six different statistical frameworks: 1) OL, 2) GOL, 3) 

LSOL with two segments, 4) LSOL with three segments, 5) LSGOL with two segments and 6) 

LSGOL with three segments. The comparison exercise, based on information criterion metrics, 

highlighted the superiority of the LSGOL model with two segments on the estimation sample in 

terms of data fit compared to the other ordered outcome models. In the LSGOL approach, drivers 

were assigned probabilistically to two segments – high risk segment and low risk segment - 

based on a host of crash characteristics. In our empirical analysis, the crash characteristics that 

affected the allocation of drivers into segments include: collision object, trajectory of vehicle’s 

motion and manner of collision. According to our results, the impact of exogenous variables in 

the low risk segment was different (for some variables) in magnitude as well as in sign from the 

impact of exogenous variables in the high risk segment.  

In our research, to further understand the impact of various exogenous factors, elasticity 

effects were estimated for both the LSOL and LSGOL models for comparison purpose. The 

elasticity effects indicated that the most significant variables in terms of increase in serious/fatal 

injury (from both models) for drivers were driver age above 65, driver ejection, not wearing seat 

belts, and collision in high speed zone. In terms of serious/fatal injury reduction, the important 

factors were presence of pedestrian control, presence of roundabout, driving a panel van, 

unpaved road condition and presence of passengers. Further, the performance evaluation of these 

models on a validation sample revealed that the LSGOL model represents a clearly superior 

performance compared to that of the LSOL model at an aggregate level. But, the comparison of 

LSOL and LSGOL model at a disaggregate level was far from conclusive with a slight edge to 

the LSGOL model. In summary, the comparison exercise supports the hypothesis that LSGOL is 

a promising ordered response framework for accommodating population heterogeneity and for 

relaxing the fixed threshold assumption in the context of driver injury severity. 

The study is not without limitations. In our research effort, we employed data from the 

Victorian crash database of Australia for the years 2006 through 2010. However, in our analysis, 

we have not considered differences across the five years. It will be an interesting exercise to 

model the impact of temporal effects on segment specific injury severity models.  
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TABLE 1 Crash Database Sample Statistics 

Variables 
Sample Share 

Frequency Percentage 

Crash characteristics 

Collision object 

Small Object 120 2.338 

Large object 710 13.835 

Collision with animals 207 4.034 

Collision with Moving vehicle 4095 79.793 

Trajectory of vehicle’s motions 
Going Straight 2689 52.397 

Other movement 2443 47.603 

Manners of collision 

Rear-ender 469 9.139 

Rear-ended 582 11.341 

Near-sideswipe 96 1.871 

Near-angular 729 14.205 

Short-side angular 1133 22.077 

Far-side 783 15.257 

Head-on 303 5.904 

Other collisions (Struck object) 1037 20.207 

Driver characteristics 

Driver age 

Age less than 25 1350 26.306 

Age 26 to 65 3282 63.952 

Age above 65+ 500 9.743 

Driver gender 
Female 2420 47.155 

Male 2712 52.845 

Restraint system use 
Seat belt not used 179 3.488 

Seat belt used 4953 96.512 

Vehicle characteristics 

Vehicle Type 

Sedan 3666 71.434 

Station wagon 900 17.537 

Utility 447 8.710 

Panel van 119 2.319 

Vehicle age 
Vehicle age less than 11 2907 56.645 

Vehicle age 11 and above 2225 43.355 

Roadway design attributes 

Type of road surface 

Paved 4901 95.499 

Unpaved 231 4.501 
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Traffic Control Device 
No control 3088 60.171 

Signal 1107 21.571 

Pedestrian control 34 0.663 

Roundabout 181 3.527 

Stop sign 171 3.332 

Yield sign 473 9.217 

Other traffic control 78 1.520 

Speed zone 
Low speed zone 961 18.726 

Medium speed zone 3412 66.485 

High speed zone 759 14.790 

Environmental factors 

Season 

Summer 1305 25.429 

Autumn 1346 26.228 

Winter 1265 24.649 

Spring 1216 23.694 

Time of day 
Morning peak 691 13.465 

Off peak 1695 33.028 

Evening peak 1250 24.357 

Late evening 1160 22.603 

Late night 336 6.547 

Weather condition 

Clear 4332 84.412 

Rain/snow 646 12.588 

High wind 85 1.656 

Other weather condition 69 1.345 

Lighting condition 
Daylight 3558 69.330 

Dusk/dawn 361 7.034 

Dark-lighted 942 18.355 

Dark-unlighted 271 5.281 

Situation factors 

Presence of passengers 

No passenger 598 11.652 

One passenger 2395 46.668 

Two passengers 1136 22.136 

More than two passengers 1003 19.544 

Driver ejected out of the vehicle 

Ejected out 39 0.800 

Did not Ejected out 5093 99.200 
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TABLE 2 Segment Characteristics and Mean Values of Segmentation Variables for LSGOL model 

Segmentation Characteristics 

Components 
Segments 

Segment 1 Segment 2 

Driver population share 0.418 0.582 

In
ju

ry
 

se
v
er

it
y

 Property damage only 0.102 0.640 

Minor injury 0.578 0.239 

Serious Injury and Fatal Injury 0.320 0.121 
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TABLE 3 LSGOL Estimates 

Segmentation Components 

Variables 
Segment 1 Segment 2 

  
Estimate t-stat 

Constant − − 1.435 5.679 

Crash characteristics 

Collision object (Base: Other moving vehicle and animals) 

Small Object − − -3.531 -4.552 

Large object − − -4.035 -8.342 

Trajectory of vehicle’s motions (Base: Other movement) 

Going Straight − − -0.480 -3.423 

Manner of collision (Base: Rear-ender and short side-angular) 

Rear-ended − − -1.574 -7.172 

Near-angular − − -0.826 -4.427 

Head-on − − -1.055 -4.402 

Far-side − − 0.530 2.197 

Injury Severity Components 

Variables 
Latent Propensity Threshold Latent Propensity Threshold 

Estimates t-stat Estimate t-stat Estimates t-stat Estimate t-stat 

Constant 3.859 7.962 1.468 13.571 -1.746 -6.237 0.307 2.650 

Driver characteristics 
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Driver age (Base: Age 25 to 64) 

Age less than 25 -0.734 -2.478 -0.137 -1.643 − − − − 

Age above 65+ 0.885 3.779 − − 0.432 2.629 -0.498 -2.533 

Driver gender (Base: Male) 

Female − − − − 1.189 8.003 0.316 2.740 

Restraint system use  (Base: seat belt used) 

Seat belt not used − − -0.197 -2.161 0.717 2.472 − − 

Vehicle characteristics 

Vehicle Type (Base: Sedan) 

Station wagon − − − − -0.744 -4.452 − − 

Utility  − − − − -0.939 -3.313 − − 

Panel van -1.109 -2.495 − − − − − − 

Vehicle age (Base: Vehicle age less than 10) 

Vehicle age 11 and above − − − − 0.349 3.309 − − 

Roadway design attributes 

Type of road surface (Base: Paved) 

Unpaved -1.338 -1.901 − − − − − − 

Traffic Control Device (Base: None traffic control and other control device) 

Pedestrian control -2.135 -1.974 − − − − − − 

Roundabout -1.292 -3.016 − − − − − − 

Stop sign 0.900 2.579 − − -1.326 -3.273 − − 
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Yield sign − − − − -0.471 -2.527 − − 

Speed zone (Base: Low speed ≤50 km/h) 

Medium speed (60-90 

km/h)  
− − − − 0.356 2.469 − − 

High speed (≥100 km/h) − − -0.189 -4.468 1.244 5.934 − − 

Environmental factors 

Season (Base: Spring, Summer, Fall) 

Winter − − − − 0.332 2.886 − − 

Time of day (Base: Morning peak, Off peak and Late evening) 

Evening peak -0.751 -4.61 − − − − − − 

Late night 0.586 3.146 − − − − − − 

Weather condition (Base: Clear) 

Rain/snow − − − − 0.314 2.069 − − 

High wind − − − − 0.736 2.174 − − 

Lighting condition (Base: Daylight) 

Dusk/dawn − − − − 0.488 2.711 − − 

Dark-lighted -0.897 -2.932 -0.408 -4.124 − − − − 

Situational factors 

Presence of passengers (Base: No passenger) 

One passenger -0.532 -4.040 − − − − − − 

Two passengers -2.201 -5.877 -0.426 -3.947 − − − − 

Driver ejected out of the 

vehicle 
− − -0.929 -2.624 − − − − 
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TABLE 4 Elasticity Effects 

Variables 

LSOL LSGOL 

No injury Minor injury 
Serious/Fatal 

injury 
No injury Minor injury 

Serious/Fatal 

injury 

Crash characteristics 

Rear-ended -42.536 30.199 30.639 -38.906 28.750 26.138 

Near-sideswipe -18.587 13.139 13.488 − − − 

Near-angular -24.690 17.491 17.850 -19.507 14.382 13.162 

Head-on -31.219 22.105 22.591 -25.717 18.958 17.357 

Far-side − − − 11.630 -8.488 -7.998 

Small Object -68.129 48.024 49.677 -68.894 50.634 46.768 

Large object -82.773 56.013 64.419 -81.995 57.905 59.764 

Going Straight -12.860 9.054 9.396 -10.607 7.776 7.234 

Driver characteristics 

Age less than 25 3.170 4.548 -14.126 12.339 -7.676 -10.800 

Age above 65+ -20.643 -16.127 68.500 -17.328 -22.938 73.855 

Female -32.773 21.423 26.821 -33.961 27.437 18.742 

Seat belt not used -19.413 -4.348 45.571 -20.767 -4.876 49.151 

Vehicle characteristics 

Station wagon 18.506 -12.480 -14.478 19.257 -12.312 -16.277 

Utility  23.853 -16.822 -17.378 23.021 -15.277 -18.486 

Panel van 13.191 6.629 -37.366 11.199 8.029 -35.904 



33 

 

Vehicle age 11 and above -8.629 5.284 7.684 -9.667 5.566 9.241 

Roadway design attributes 

Unpaved 15.147 5.989 -40.081 14.465 7.321 -41.066 

Pedestrian control 22.987 2.511 -49.365 27.860 -0.111 -54.360 

Roundabout 16.863 6.004 -43.463 13.554 8.069 -40.585 

Stop sign 24.148 -35.585 14.733 24.694 -36.275 14.788 

Yield sign 12.034 -7.910 -9.772 12.339 -7.676 -10.800 

Medium speed zone -8.934 5.619 7.697 -9.555 5.667 8.846 

High speed zone -39.029 4.574 68.420 -36.141 0.485 69.923 

Environmental factors 

Winter -7.986 4.794 7.279 -9.299 5.214 9.133 

Evening peak 6.299 7.697 -25.740 6.238 8.905 -27.715 

Late night -4.434 -10.787 27.471 -3.696 -9.685 24.095 

Rain/snow -7.323 4.335 6.780 -8.852 4.861 8.873 

High wind -21.818 11.163 23.256 -21.333 10.121 24.155 

Dusk/dawn -15.040 8.381 14.835 -13.939 7.298 14.592 

Dark-lighted -2.359 -4.079 11.724 7.797 -17.138 14.563 

Situation factors 

One passenger -1.491 10.792 -15.884 4.042 7.282 -20.590 

Two passenger 10.557 9.688 -37.540 24.627 -8.417 -33.573 

Driver ejected out of the vehicle -1.010 -32.988 16.292 0.000 -47.556 82.777 
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TABLE 5 Measures of Fit in Validation Sample 

Disaggregate Level (100 Validation Samples) 

Summary statistic 
LSOL  LSGOL  

Predictions C.I. Predictions C.I. 

Number of observations 2547.540 − 2547.540 − 

Number of parameters 37.000 − 41.000 − 

Log-likelihood at zero -2798.759 -2807.853 | -2789.665 -2798.759 -2807.853 | -2789.665 

Log-likelihood at sample shares -2696.838 -2706.066 | -2687.609 -2696.838 -2706.066 | -2687.609 

Predictive Log-likelihood -2438.553 -2447.559 | -2429.546 -2433.249 -2442.324 | -2424.174 

Predictive adjusted likelihood ratio index 0.082 0.081 | 0.083 0.083 0.082 | 0.084 

Average probability of correct prediction 0.531 0.529 | 0.533 0.531 0.529 | 0.532 

Aggregate Level (100 Validation Samples) 

Injury categories/ 

Measures of fit 
Actual shares 

LSOL LSGOL 

Predictions C.I. Predictions C.I. 

No injury 42.522799 42.309 42.247 | 42.371 42.364 42.300 | 42.428 

Non-incapacitating 

injury 
36.518347 36.595 36.559 | 36.629 36.492 36.452 | 36.531 

Incapacitating/Fatal 

injury 
20.958854 21.096 21.049 | 21.142 21.144 21.099 | 21.189 

RMSE − 0.821 0.753 | 0.888 0.817 0.753 | 0.882 

MAPE − 2.352 2.351 | 2.354 2.343 2.341 | 2.345 

 

 


