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APPENDIX A 
 

The notations used here will be the same as those used in the text. Before providing proofs for 

the theorems in the main text, we provide the following well established results for the 

multivariate normal distribution, collected together in a single Lemma (without proof). 

 

Lemma 1 

1) The multivariate normal density function and cumulative distribution function of dimension R 

are respectively given by  *τzτz ΓωΓ ΓΓ ];[), ;( 1
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2) Let 1X  and 2X  be normally distributed vectors of dimension 1I  and 2I , respectively. The 
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In what follows, we present and discuss four theorems that are key to the proposal in this paper. 

 

Theorem 1 

The stochastic transformation of  as ,*
qqq Wg   where   is a constant scalar 

parameter and qW  is a univariate normally distributed scalar , has a 

cumulative distribution function and density function as below: 
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Theorem 2 – Proposition (1) 

The probability function of  is given by  as follows: 

 

where . 

 

Proof: 

The cumulative distribution function of is given by (see Tellambura, 2008): 
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The proof that the density function takes the form as given above can be shown by differentiating 

),;( ΣbzG with respect to z  and using the last result from Lemma 1. 

 

Theorem 2 – Proposition (2) 

The moment generating function of   is given by: 
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The moment generating function of  is given by: 
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Theorem 2 – Proposition (3) 

This proposition can be proved through straightforward, but tedious, differentiation, and using 

the results of Lemma 1. 
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APPENDIX B: CONSISTENCY WITH TWO-STAGE BUDGETING 

 

The proposed approach that combines a total count model with a model that allocates the count 

to different event types is analogous to the two stage budgeting procedure in utility-based 

consumer theory. The basic idea of two stage budgeting is to determine a budget for a specific 

group of commodities at a first stage (through the development of a scalar price index for the 

commodity group) in such a way that the first stage utility maximization can progress without 

the need to worry about allocations to particular commodities within the group. Once the budget 

is determined at the first stage, the allocation of the budget to individual commodities is pursued 

in a second stage. The approach makes use of the notion of weak separability of the direct utility 

function. Our presentation follows that of Hausman et al. (1995), except that there is a difficulty 

with the Hausman et al. formulation  that makes it incompatible with two-stage budgeting, while 

our formulation is.  

Consider a direct utility function in which a group of commodities is separable from the 

rest. The group of commodities corresponds to the one whose count is being modeled. So, it may 

correspond to recreational or grocery shopping trips (with the event type being alternative 

destinations), or to vehicle ownership level (with the event type being alternative body types), or, 

as in our empirical application, the number of out-of-home non-work episodes (with the event 

type being different time periods of the day). The notion of separability implies that the 

commodity group can be represented by a group utility function in the first stage of the two-stage 

budgeting process in which the overall budget allocation to the commodity group is being 

determined in the presence of other commodity groups. It also implies that the optimal allocation 

of the budget within the commodity group can be determined solely by the group utility function 

in a second stage, once the budget to the commodity group is determined in the first stage and 

the prices of individual commodities in the group are known (the reader is referred to Deaton and 

Muelbaurer, 1980, for a detailed description of the concepts of separability and two-stage 

budgeting; a comprehensive discussion is well beyond the scope of this paper).  

An important issue in the two-stage budgeting is the question of how to determine the 

budget allocation to the commodity group in the first stage. While one can consider many 

different formulations, it would be particularly convenient if there were no need to explicitly 

consider the detailed vector information of the prices of all the individual commodities in the 
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group in this first stage. The question then is whether one can use a group (scalar) price index for 

the commodity group at this first stage. Gorman (1959) studied this problem in his seminal 

research, and concluded that one can use a scalar price index if, in addition to the separability 

property of the overall utility function, this overall utility function in the first stage is additive in 

the group utility functions and the group indirect utility functions (corresponding to the group 

direct utility functions) follow what is now referred to as the Gorman Polar Form (GPF). We 

start with this group indirect utility function of the GPF form for the commodity group of 

interest. In the following presentation, we suppress the index q for the individual, and, as in 

Hausman et al. (1995), consider the group utility function to be homothetic. Then, we can write 

the group indirect utility function for the commodity group D as a function of the budget for the 

commodity group )( Dy  and the vector of prices )D(p of the goods within the commodity group 

D: 

)(
),(

D
D p
p

r

y
yV D
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In the above GPF equation, )( Dpr  represents the group scalar price index. The functional form 

of )( Dpr must be homogenous of degree one. If this condition is satisfied, then information about 

the value of )( Dpr is adequate to determine the budget allocation to the commodity group in the 

first stage. That is, the entire commodity group can be viewed as a single commodity with price 

 in the first stage budgeting, which takes the form of maximizing a direct utility function 

that takes consumption in other goods and consumption in a single composite “good” 

representing the commodity group of interest as arguments (subject to the usual budget 

constraint). The number of units (the total count) of consumption in the commodity group 

becomes 
)( Dpr

y
g D

D  .  

 The second stage budgeting of the group budget Dy  to individual commodities in the 

group can be obtained by applying Roy’s identity to the indirect utility function of Equation 

(B.1). Specifically, the conditional number of units of consumption of commodity i can be 

written as: 
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where ip  is now the price of commodity i within group D.  To view the above equation as the 

second stage of a two-stage budgeting procedure, there are two conditions that must 

satisfy: (1) it must be homogeneous of degree one (that is the requirement of the GPF), and (2) 







I

i ip

r

1

1
)( Dp  (this allows the interpretation of Dg  as the total units (or count) of consumption 

across all commodities in group D). Hausman et al. (1995) choose the expected consumer 

surplus (or accessibility) measure resulting from a multinomial logit model for  . That is, 

they write .)exp(ln
1
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However, the form used by Hausman et al. for )( Dpr  does not satisfy the first condition because 

of the presence of the log transformation. Specifically, ).()exp(ln
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Thus, as pointed out by Rouwendal and Boter (2009), Hausman et al.’s model specification is 

not consistent with a single utility maximization setting. Further, the use of any generalized 

extreme value (GEV) model for the second stage commodity choice is also not consistent with 

utility theory because the resulting expression for  is not homogeneous. Rouwendal and 

Boter (2009) comment that they have not been able to find an expression for  that satisfies 

both the conditions stated above. That is exactly where our proposed model comes in. To our 

knowledge, we are the first to propose a specification for  that satisfies both the required 

conditions discussed above for compatibility of the joint count-event type model with two-stage 

budgeting, while also allowing the probability of choice of commodity i to be a function of 

individual commodity prices (as they should be). In particular, as in Hausman et al., we propose 

,)(Max()()( UpD


EEr    except that we specify U


 to be multivariate normal (see previous 

section; ),(~ ΣdU IMVN


 after suppressing the index q for individuals, where d  plays the role 

of a generalized price vector for the set of individual commodities and is interchangeable with  

Dp  in the theoretical model). This specification has not been considered in econometrics and 

utility theory in the past because the exact density function and moment generating functions for 

)( Dpr

)( Dpr

)( Dpr

)( Dpr

)( Dpr

)( Dpr
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the maximum of multivariate normally distributed variables were not established until very 

recently. Specifically, it was not until the research of Arellano-Valle and Genton (2008) and 

Jamalizadeh and Balakrishnan (2009, 2010) that an exact density function and moment 

generating function was obtained for the maximum of arbitrarily dependent normally distributed 

random variables. These works show that the distribution of )(Max U


 , when U


 has a 

general multivariate normal distribution, is a mixture of unified univariate skew-normal 

distribution functions, and then use this mixture representation to derive the density and moment 

generating functions of   (in doing so, they invoke the density and moment generating functions 

of the unified univariate skew-normal distribution functions). In this paper, we derive, apparently 

for the first time, expressions for the density and the moment generating functions for  directly 

from first principles (rather than going through the circuitous route of using a mixture 

representation) and explicitly write out these expressions for  (these are buried within the 

expressions for the general distribution of order statistics in Jamalizadeh and Balakrishnan, 

2010). Also, we have not seen an expression for the first moment (or expected value) of  in the 

literature, which is important because that is the expression for  in our econometric model. 

We explicitly derive this expression from the moment generating function of  . These results 

are collected below as Theorem 2.  

 

Theorem 2 

Let -id  be the sub-vector of d  without the ith element, let id  be the ith element of d , let -i,-iΣ  be 

the sub-matrix of Σ  without the ith row and the ith column, let 2
iωΣ  be the diagonal entry at the ith 

row and ith column of Σ , and let -iΣ  be the ith column of the matrix Σ  minus the ith row element.  
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 (2) The moment generating function of   is given by: 












I

i
iiiI

ttd

z

tz tFedzzgetM
ii

1
1

2

1

),;s(),;()(
22

ΨΣ Σ

Σ

γd


 ,        (B.4) 

where iii ωΣΣ λs  , 
i

i
Iii

Σ
Σ

Σ
1


 

  1λ , 1  Iiii d 1dγ , and iiiiξ λλ
~  ΣΨ .  

 

(3) Let ,-liγ  be the vector iγ  minus the lth row element, il  the lth element of the vector iγ , ilsΣ  

the lth element of the vector iΣs , ll,i ,Ψ  the sub-matrix of iΨ  without the lth row and the lth 

column, 2

ilΨ
  be the diagonal entry at the lth row and lth column of iΨ , li ,Ψ  be the lth column of 

the matrix iξΨ  minus the lth row element, and the matrix li
-

illill,iil   ,
12

,, )( ΨΨΨΔ Ψ . 

   .,)(;0),0(

),;(
)(

)(

12
,22

2
1

1

1
11



























ilililli,-liIIilil

I

l
il

I

i
iiIIi

ot

γF;fs

Fd
dt

tdM
E

ΔΨ

Ψ

ΨΨΣ 

 

γ

γ0

    (B.5) 

With the expected value of   as above, we now present the following theorem that is crucial to 

the utility-consistent nature of our proposed model.  

 

Theorem 3 

)(E as defined in Equation (B.5) is both homogeneous of degree one and satisfies the 
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The fact that is homogeneous of degree one is proved by noting that 
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Then, by the first fundamental theorem of calculus, ),Pr(
)(

i
p
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

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 and therefore . 

 

Based on the results from Theorem 3, we have proved that setting ,)(Max()()( UpD


EEr    

with U


 arising from a multinomial probit formulation for event type provides a theoretic 

underpinning to integrate the discrete choice model and a count data model into a single 

integrated utility maximizing framework. In particular, we can now write Equation (B.2) as: 

           (B.7) 

That is, the demand for commodity i is a product of the total count of the units of the commodity 

group consumed times the probability that commodity i is chosen. But everything above is 

predicated on using )()( Er Dp  from the MNP model in the count model. Without introducing 

this linkage, there is no way that prices of individual commodities enter into the total count 

model, and the resulting model is not utility-consistent. This linkage is precisely what we 

accomplish in Equation (10) in Section 2 of the paper, but with an important difference. In 

particular, we recognize that   has a distribution because of the presence of choice model errors. 

Thus, the precursor to the latent structure part of Equation (10), after reintroducing the index q 

for individuals, is as follows: 
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Equation (10) is the net result.  
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APPENDIX C: SAMPLE FORMATION PROCEDURES 

 

Several steps were involved in developing the sample used for the empirical analysis. First, only 

individuals over 18 years of age, and who participated in at least one work activity episode 

during the survey day on a weekday (Monday to Friday), were selected. Second, we eliminated 

individuals whose trip diary did not start or end at home. Third, records that contained 

incomplete information on individual, household, employment-related, and activity and travel 

characteristics of relevance to the current analysis were removed from the sample. Fourth, 

several consistency checks were performed and records with missing or inconsistent data were 

eliminated. The final estimation sample contained 2,113 person observations. Fifth the trip 

diaries of these 2,113 individuals were processed to obtain, for each individual, the total number 

of out-of-home non-work episodes undertaken during the survey day, along with the number of 

these episodes pursued during each of the five time-of-day blocks identified in Section 3.1. 

Finally, the accessibility measures by the fifteen different industry types were appended to each 

time-of-day block for each individual as follows. For the before-work (BW) block, the 

accessibility measures (by industry type) are based off the time the individual would have had to 

leave home if s/he went directly to work (computed as the individual’s work start time minus the 

estimated direct home-to-work commute time assuming auto mode of travel and an average 

speed of 30 mph). That is, the accessibility measures corresponding to the individual’s estimated 

departure time from home to work (assuming a direct home-to-work trip) and for the residential 

Census tract of the individual are designated as the home end accessibilities for the BW block. 

For the home-to-work commute (HWC) block, the accessibility measures are based off the 

individual’s work start time. For this block, we create two sets of accessibility measures, one for 

the home end (based on the Census tract of residence) and another for the work end (based on the 

Census tract of the individual’s workplace location). For the work-based (WB) block, the 

accessibility measures are based on the off-peak period for the work location Census tract. For 

the work-to-home commute (WHC) block, the accessibility measures are based off the 

individual’s work end time. For this block, we once again create both a home end set of 

accessibilities as well as a work end set of accessibilities. For the after home arrival from work 

(AH) block, the accessibilities are based off the time the individual would have arrived home if 

s/he went directly back home from work (computed as the individual’s work end time plus the 
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estimated direct work-to-home commute time assuming auto mode of travel and an average 

speed of 30 mph). That is, the accessibility measures corresponding to the estimated arrival time 

back home and for the residential Census tract of the individual (assuming a direct work-to-home 

trip) are designated as the home end accessibilities. It is important to note that the accessibility 

measures, as discussed above, vary across the different time-of-day blocks for the same 

individual. 

Table C.1 provides an unweighted summary of select individual, household, work-related 

and activity and travel characteristics of the final sample.   
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Table C.1 Sample Characteristics 

Variable Share [%] Variable Share [%]
Individual characteristics   Household characteristics   
Race and ethnicity   Household income [US$/year]   
  Non-Hispanic Caucasian 71.56   Less than 80,000 46.66 
  Hispanic   9.99   80,000 or more 53.34 
  Non-Hispanic Asian   9.37 Home location   
  Non-Hispanic African-American   4.45   Urban cluster 94.18 
  Non-Hispanic Other1   4.63   Not in urban cluster   5.82 
Gender   Work-related characteristics   
  Male 52.25 Employment Industry   
  Female 47.75  Professional, managerial or technical 48.62 
Driver status    Sales or services 23.32 
  Has driver’s license 98.58  Clerical or administrative support 14.59 
  Does not have a driver’s license   1.42  Other2 13.47 
Highest education level   Is self-employed   9.51 
  At least some college education 76.53 Has flexible work start time 44.87 
  No college education 23.47 Has more than one job   9.13 
Past week primary activity   Has the option to work at home 13.06 
  Work 94.18 Activity and travel characteristics   
  Other activity   5.82 Survey day is Friday 17.79 
Shopped via internet in past month   Used public transportation on survey day   3.98 
  No 57.31 At least one walk trip in past week 63.98 
  Yes 42.69 At least one bike trip in past week   6.58 

Descriptive statistics 

Variable Mean Std. Dev. Min. Max. 
Individual characteristics         
  Age [years] 46.67 12.70 18.00 86.00 
Household characteristics         
  Number of adults   2.40   0.92   1.00   7.00 
  Number of non-adults   0.74   1.05   0.00   6.00 
  Number of drivers   2.33   0.92   0.00   7.00 
  Number of vehicles   2.59   1.30   0.00 12.00 
 Number of workers   1.84   0.82   1.00   5.00 
Work-related characteristics         
  Distance to work [miles] 13.52 12.56   0.11 97.00 

Dependent variable: Number of out-of-home non-work episodes 

Time-of-day block Mean Std. Dev. Min. Max. 
Before-work (BW) 0.12 0.44 0.00   6.00 
Home-to-work commute (HWC) 0.20 0.56 0.00 11.00 
Work-based (WB) 0.23 0.47 0.00   4.00 
Work-to-home commute (WHC) 0.43 0.83 0.00   6.00 
After-home (AH) 0.56 1.12 0.00 12.00 
Total non-work episodes 1.54 1.67 0.00 13.00 

  

                                                            
1 Non-Hispanic Other includes American Indian, Alaskan Native (1.23%), Native Hawaiian, or other Pacific 
Islander (0.52%), Multiracial (0.70%), and other (that is, specified in the survey capture itself as a catch all “other” 
category (2.18%) 
2 This other category includes Manufacturing, construction, maintenance or farming (12.62%) and other (that is, 
specified in the survey capture itself as a catch all “other category”): 0.85% 
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APPENDIX D: MODEL FIT ASSESSMENT USING PREDICTIVE MEASURES 
 

 
First, define iR  ),...,2,1( Ii   as an II  )1(  matrix that corresponds to an )1( I  identity 

matrix with an extra column of 1 ’s added as the thi  column. Following the notation in 

Equation (10) and immediately after, define iqiqi RΣRG  . We can then write the probability 

that individual (consumer) q chooses alternative i at any choice occasion as: 

 111
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Next, since this probability does not change across choice occasions, and the individual-specific 

preferences are already embedded in qU


 (through the qβ  vector), the multivariate probability of 

counts in each time-of-day block (i.e., event type), conditional on the total count level qk  

0( qk ), takes the usual multinomial distribution form: 
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In our joint model of multivariate counts, the unconditional multivariate probability then takes 

the form indicated below ( 



I

i
qiq kk

1

,  ,...,2,1,0qik ,  ,...,2,1,0qk ): 

,)(
!

!
][)]),...((),[(

1

1

2211



















 
 



I

i

k
qiI

i
qi

q
qqqIqIqqq

qiP
k

k
kgPkgkgkgP  (D.3)

with ][ qq kgP   as in Equation (13) after replacing qn (the actual observed total count for 

individual q in the estimation sample) with an arbitrary value qk . Using the properties of the 

multinomial distribution, the marginal probability of qik  counts for time-of-day block i is: 

 
































0

)1()(
)(

][][
q

qiqqi

k

kk

qi

k

qi
qiqqi

q
qqqiqi PP

!kk!k

!k
kgPkgP  (D.4)



16 

In the above expression, the upper bound of the summation is qk , though the probability 

values fade very rapidly beyond a qk  value of 10. For the purposes of this paper, we carry the 

summation up to .50qk  

With the above preliminaries, the model predictions can be used to evaluate data fit at 

both the disaggregate and aggregate levels, as well as for both the multivariate count distribution 

and the marginal count distribution. At the disaggregate level, we estimate the probability of the 

observed multivariate count outcome for each individual using Equation (B.3), and compute an 

average probability of correct prediction. Similarly, we also estimate the probability of the 

observed marginal count outcome separately for each time-of-day period using Equation (B.4), 

and compute an average probability of correct prediction. At the aggregate level, we design a 

heuristic diagnostic check of model fit by computing the predicted aggregate share of individuals 

for specific multivariate outcome cases (because it would be infeasible to provide this 

information for each possible multivariate outcome). In particular, we compute the aggregate 

share of consumers for each of six combinations. The first combination corresponds to no 

participation in any non-work episodes (which we will refer to as the “no participation” 

combination). The other five combinations correspond to participation in one or more episodes 

during a specific time-of-day block and no participation in any other time-of-day period (which 

we will refer to using such labels as the “BW participation only” combination or the “HWC 

participation only” combination). In addition to these aggregate shares of multivariate outcomes, 

we also compute the aggregate shares of the marginal outcomes of count values of 0, 1, 2, 3, and 

4+ for each time-of-day period, as well as for the total count. As a yardstick to evaluate the 

performance of the joint model proposed here, we compare the predictions from the joint model 

with the independent model using the absolute percentage error (APE) statistic for each count 

value, and then compute a mean weighted APE value across the count values (of 0 1, 2, 3, and 

4+) using the observed number for each count value as the weight for that count value.  

The disaggregate-level data fit measures indicate an average probability of correct 

prediction of 13.9% for the multivariate counts and an average probability of correct prediction 

of 67.6% for the marginal counts. The corresponding values for the independent model are 

13.6% and 65.0%, respectively, which are smaller in magnitude than those from the joint model. 

The aggregate fit measures are provided in Table D.1. The joint model provides a better (lower) 
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APE value for all the multivariate outcomes in Table D.1 (see upper panel of the table), except 

for the WB participation only outcome. The APE values are sizeable for both the joint and 

independent values, but it should be noted that these predictions are for multivariate outcomes. 

Overall, the mean weighted APE value is about 12% higher for the independent model relative to 

the joint model. As expected, the APE values are lower for the marginal outcomes (see lower 

panel of Table D.1) than for the multivariate outcomes. The total count predictions from the joint 

model are much better than the total count predictions from the independent model. Also, the 

predictions for the other marginal counts are better from the joint model relative to the 

independent model (except for the WB block count). These results clearly show that the joint 

model proposed here outperforms the traditional independent model in the disaggregate level and 

aggregate level comparisons. 
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Table D.1 Aggregate Data Fit Measures 
Aggregation 

Level 
Combination Event Observed

Joint Model Independent Model 
Predicted APE Predicted APE 

Multivariate 

No participation 676 669.7 0.9 656.1 2.9 
BW participation only 67 90.5 35.0 95.2 42.1 
HWC participation only 67 85.2 27.1 87.0 29.9 
WB participation only 168 63.0 62.5 67.4 59.9 
WHC participation only 230 153.6 33.2 137.0 40.4 
AH participation only 279 345.4 23.8 347.7 24.6 

Overall mean weighted APE 19.9 22.2 

Marginal 

Total count 

0 676 669.7 0.9 656.1 2.9 
1 593 589.1 0.7 585.7 1.2 
2 388 379.1 2.3 377.2 2.8 
3 208 225.6 8.4 253.5 21.9 

4+ 248 249.5 0.6 240.5 3.0 
Weighted APE 1.8 4.3 

BW block 
count 

0 1926 1756.8 8.8 1745.3 9.4 
1   147 295.8 101.2 305.7 108.0 
2    24 47.8 99.1 50.8 111.5 
3    13 7.6 41.5 8.1 37.7 

4+      3 5.0 66.7 3.1 3.3 
Weighted APE 16.5 17.6 

HWC block 
count 

0 1792 1739.1 3.0 1729.8 3.5 
1   250 317.8 27.1 326.4 30.6 
2    57 45.8 19.6 48.1 15.7 
3    10 5.9 41.0 6.2 38.3 

4+      4 4.4 10.0 2.5 37.5 
Weighted APE 6.5 7.3 

WB block 
count 

0 1660 1831.5 10.3 1809.9 9.0 
1   421 244.8 41.9 261.2 38.0 
2    29 29.2 0.7 35.0 20.7 
3      2 3.6 77.5 4.7 133.2 

4+      1 3.9 290.0 2.2 120.0 
Weighted APE 16.7 15.1 

WHC block 
count 

0 1516 1560.2 2.9 1593.4 5.1 
1   397 423.4 6.6 408.7 3.0 
2   131 97.1 25.8 87.2 33.5 
3    45 22.0 51.0 17.6 60.8 

4+    24 10.3 57.1 6.1 74.6 
Weighted APE 6.7 8.4 

AH block 
count 

0 1465 1216.0 17.0 1201.7 18.0 
1   394 576.9 46.4 589.8 49.7 
2    90 214.3 138.1 221.7 146.3 
3   103 71.9 30.2 71.6 30.5 

4+    61 33.9 44.4 28.2 53.8 
Weighted APE 29.1 31.0 



 

APPENDIX E: MODEL APPLICATION 
 
 
The joint model estimated in the paper can be used to examine the impact of changes in socio-

demographic characteristics over time as well as the effects of policy actions that involve a 

change in the accessibility measures and work-related characteristics. In this paper, we 

demonstrate the application of this model by studying the effects of changes in three selected 

variables: distance to workplace, retail trade accessibility at the home location, and entertainment 

accessibility at the home location. These three variables are increased by 20% across all workers.  

The impact on the frequency and organization of non-work activities is estimated by determining 

the percentage change in the expected number of non-work episodes (across all workers) for the 

entire day (i.e., total count) and for each time-of-day block. To demonstrate the potentially 

misleading inferences from the independent model, we compute the percentage change as 

predicted by both the joint model as well as the independent model. The emphasis here is not on 

substantive empirical inferences as much as it is on demonstrating the differences in the 

inferences from the two models. Table E.1 provides the results. 

Three observations may be made from Table E.1. First, in the independent model, a 

change in the retail trade and entertainment accessibility variables do not have any impact on the 

total count of non-work episodes over the entire day. This is, of course, because these variables 

appear only in the event discrete choice model and not the total count model (and the 

independent model does not have any link between the discrete choice model and the total count 

model). As indicated earlier in the paper, it is natural to expect that changes in the attributes 

impacting the attractiveness of alternatives in the choice model (retail trade and entertainment 

accessibilities in the specific case under discussion) will result not only in substitution among the 

counts of each discrete choice alternative, but also an overall change in the total count, as 

appropriately recognized by the joint model. Second, the positive effect (of an increase in the 

number of retail trade jobs) on the number of non-work tours during the BW, HWC, WHC, and 

AH periods is underestimated by the independent model, while the negative effect of the variable 

on WB non-work tours is overestimated by the independent model. Third, a similar result holds 

also for the influence of the number of entertainment jobs at the home location. Indeed, for this 

variable, the directionality of the effect on WHC non-work tours is itself different between the 

independent and joint models. These differences between the models highlight the potentially 
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misinformed policy analyses that result from ignoring the linkage between the frequency of non-

work episodes and their organization across time-of-day blocks.  

 

 

Table E.1 Aggregate Percentage Change in Expected Number of Non-Work Episodes 

Effect of 20% increase in … 
Time-of-Day 

Block 
Joint 

Model 
Independent 

Model 

Distance to work 

All day -2.51 -2.30 

BW -2.64 -2.44 

HWC -2.52 -2.32 

WB -2.30 -2.08 

WHC -2.46 -2.27 

AH -2.46 -2.27 

Number of retail trade jobs at the 
home location 

All day  0.53  0.00 

BW  0.75  0.31 

HWC  0.85  0.40 

WB -1.30 -2.34 

WHC  0.62  0.06 

AH  0.69  0.31 

Number of entertainment jobs at the 
home location 

All day  3.44  0.00 

BW  8.31  5.23 

HWC  5.93  2.32 

WB -2.41 -6.94 

WHC  1.52 -1.75 

AH  3.27  0.37 

 

 


