Solution to Exercise 5

WATR 404/604 First Semester 2018

Prepared by David R. Maidment

Question 1

To be turned in: Make a map of the observation wells over the Selwyn aquifer. How many wells are there? How many observations have been made at these wells (Hint: Use the Reading_Count attribute). What is the average number of observations per well in the region?

Solution

Here is a map of the observation wells in the Selwyn Aquifer

The statistics of the Reading_Count attribute of the Wells feature class are shown below. There are **189** wells and a total of **132,414** observations, or an average of **700** observations per well.

Statistics of Wells_AverageLevel		
Field		
READING_COUNT	✓ Frequency Distribution	
Statistics: Count: 189 Minimum: 8 Maximum: 6986 Sum: 132414 Mean: 700.603175 Standard Deviation: 756.603694 Nulls: 0	80 40 20 0 8 114522823419455656936830	

Question 2

To be turned in: Choose another observation well from the dataset and prepare a similar description of it like the one you've seen above for L36/2175. How does your well compare with L36/2175? [Hint make sure this well is upstream of Te Waihora/Lake Ellesmere because this is important for Question 4].

Solution

Well M36/5372 was drilled on 3/2/1998 and has 92 measurements from 11/13/2008 to 10/17/2017. It is located at NZTMX = 1543870, NZTMY = 5159491. It is 59 meters deep and has a reference level (top of well) of 30.82m. Its diameter is 150 mm.

5		
I	dentify	
	Identify from: 🕈 🕅 We	lls
-	Wells M36/5372	
	Location: 1,543,852	.544 5,159,504.349 Meters
	Field	Value
ŀ	OBJECTID	172
	WellIndex	172
	WELL_NO	M36/5372
	WELL_TYPE	Bore or Well
	WELL_STATUS	Active (exist, present)
	LOCALITY	LEESTON
	ROAD_OR_STREET	CNR CALDWELLS AND HANMER ROAD
	DEPTH	59
Ŀ	DIAMETER	150
Ľ	DATE_DRILLED	3/2/1998
	USE_CODE_1	Domestic and Stockwater
Ľ	USE_CODE_2	<null></null>
Ľ	TOP_SCREEN_1	56
ľ	TOP_SCREEN_2	<null></null>
	BOTTOM_SCREEN_1	59
Ľ	BOTTOM_SCREEN_2	<null></null>
H	READING_COUNT	92
	REFERENCE_RL	30.82
1	GROUND_KL	-0.3
Ľ	IGHEST_WATER_LEVEL	11.09
Ľ	START READINGS	11/13/2008 11:53:00 AM
E	END READINGS	10/17/2017 1:10:00 PM
h	N7TMX	1543870
ľ	NZTMY	5159491
	Shape	Point
	OBJECTID	172
•	WellIndex	172
ŀ	WELL_NO	M36/5372
h	REFERENCE RL	30.82

The well is screened from 56 to 59m below the reference level. The ground elevation is 0.3 m below the top of the well, and the highest and lowest water levels are 0.81m and 11.08 meters below the top of the well, respectively. This means that the water table is very near the ground surface in this location.

		USE_CODE_2	<null></null>	
		TOP_SCREEN_1	56	
		TOP_SCREEN_2	<null></null>	
		BOTTOM_SCREEN_1	59	
		BOTTOM_SCREEN_2	<null></null>	
		READING_COUNT	92	
		REFERENCE_RL	30.82	
	00	GROUND_RL	-0.3	
		HIGHEST_WATER_LEVEL	-0.81	
1	1	LOWEST_WATER_LEVEL	-11.08	

The water level is consistently in the gravels at the top of the well zone, shown by the arrows below.

Borelog for well M36/5372

Grid Reference (NZTM): 1543871 mE, 5159492 mN Location Accuracy: 1 - 2m Ground Level Altitude: 30.5 m +MSD Accuracy: < 0.1 m Driller: Smiths Welldrilling Drill Method: Rotary Rig Borelog Depth: 59.0 m Drill Date: 02-Mar-1998

The average water level is 3.81 below the reference level.

	WELL_NO	M36/53/2	
-	REFERENCE_RL	30.82	
	AVERAGE_WATER_LEVEL	-3.813462	
	StandardDeviation	2.842713	
	Maximum	-0.81	
	Minimum	-11.08	
	Count_	93	

Compared to the well in the exercise text, L36/5372, the new well, M26/5372 is much deeper (59m vs 18.3 meters. It is located nearer to the coast at a lower elevation (30.82m vs 67.25m). Its water level measurements are consistently closer to the land surface (average depth -3.81m vs -6.11m). Both wells are of diameter 150 mm. The well screen in the new well is 3m long (56m to 59m) compared to 1.5m in the well in the project text (16.8m to 18.3m). The new well has a lot fewer measurements (93)

	Well L36/2175	Well M36/5372
Reference Level	67.25 m	30.82 m
Date Drilled	4/23/2007	3/2/1998
Depth of Well	18.3	59 m
Diameter of Well	150 mm	150 mm
Top of Screen	-16.8 m	-56 m
Bottom of Screen	-18.3 m	-59 m
Number of Measurements	407	93
First Measurement	5/17/2007	11/13/2008
Last Measurement	1/31/2018	10/17/2017
Highest Level	-1.39	-0.81
Lowest Level	-13.356	-11.08
Average Level	-6.11	-3.81

compared to the 407 in the well in the exercise text, and both are less than the 700 measurements that are the average for the region.

Question 3

To be turned in: Prepare an aquifer layer table like the one above for the Model_Grid cell that contains the observation well that you chose for Question 2. Does your cell have a greater or lesser transmissivity than the one I selected?

Solution

The model cell containing well M36/5372 is cell I = 11, J = 11. It has 25 layers in the Modflow model.

					/			
	Table							
	🛛 • 1 🗞 • 1 🐜 🗞 🖾 🐠	x B B @ x						
	Model Grid							×
	FID Shape	* ID I J K CE			VKPARAMET HE	AD TOP	BOTTOM	
	1059 Polygon	283 11 11 1	1 24	.709 18.422	28,428 25	5.97 30.828	18.59	
/	28405 Polygon	730 11 11 2	1 1	7.59 25.577	5.063 25	5.97 18.59	16.59	
	45505 Polygon	117 11 11 3	1 1	5.59 25.577	5.063 25	5.97 16.59	14.59	
	62566 Polygon	162 11 11 4	1 1	3.59 25.577	5.063 25.	969 14.59	12.59	
	79333 Polygon	207 11 11 5	1 1	1.59 25.577	5.063 25.	969 12.59	10.59	
	95475 Polygon	251 11 11 6	1	9.59 25.577	5.063 25.	969 10.59	8.59	
4	11117 Polygon	296 11 11 7	1	7.59 79.69	0.023 25.	949 8.59	6.59	
	12679 Polygon	341 11 11 8	1	5.59 79.69	0.023 25.	907 6.59	4.59	
	14232 Polygon	386 11 11 9	1	3.1 79.69	0.023 25.	851 4.59	1.61	
	15783 Polygon	430 11 11 10	1 (.005 79.69	0.023 25.	843 1.61	-1.599	
	17334 Polygon	475 11 11 11	1	-3.2 79.69	0.023 25.	854 -1.599	-4.801	
	18884 Polygon	520 11 11 12	1 -6	.401 79.69	0.023 25.	895 -4.801	-8	
	20396 Polygon	564 11 11 13	1 -11	.437 67.719	7.513 25	5.93 -8	-14.874	
	21892 Polygon	609 11 11 14	1 -1	8.31 67.719	7.513 25	5.93 -14.874	-21.747	
	23369 Polygon	654 11 11 15	1 -25	.184 67.719	7.513 25	5.93 -21.747	-28.622	
	24828 Polygon	698 11 11 16	1 -32	.058 67.719	7.513 25.	929 -28.622	-35.495	
	26250 Polygon	743 11 11 17	1 -36	.867 69.534	0.016 25.	867 -35.495	-38.239	
	27653 Polygon	788 11 11 18	1 -39	.607 69.534	0.016 25.	764 -38.239	-40.974	M36/5372
	29048 Polygon	833 11 11 19	1 -42	.347 69.534	0.016 25.	683 -40.974	-43.719	
1	30407 Polygon	877 11 11 20	1 -45	.089 69.534	0.016 25.	622 -43.719	-46.46	
/	31691 Polygon	922 11 11 21	1 -53	.468 89.623	5 25.	602 -46.46	-60.476	
	32972 Polygon	967 11 11 22	1 -67	.474 89.623	5 25.	601 -60.476	-74.471	
	34122 Polygon	101 11 11 23	1 -8	1.48 89.623	5 25.	601 -74.471	-88.489	
	35218 Polygon	105 11 11 24	1 -140	.904 29.848	0.01 24.	337 -88.489	-193.318	
	36313 Polygon	110 11 11 25	1 -245	.733 29.848	0.01 22.	882 -193.318	-298.147	
		(25 out of 368586 S	elected)					
	Model_Grid							
	X							

Importing this table into Excel and coloring it in reveals that there are 7 hydrogeological layers with distinct properties.

FID	ID	I	J	к	CELLACTIVE	ELEVATION	HKPARAMET	VKPARAMET	HEAD	ТОР	BOTTOM
10599	28306	117	118	1	1	24.709	18.422	28.428	25.97	30.828	18.59
28405	73018	117	118	2	1	17.59	25.577	5.063	25.97	18.59	16.59
45505	117730	117	118	3	1	15.59	25.577	5.063	25.97	16.59	14.59
62566	162442	117	118	4	1	13.59	25.577	5.063	25.969	14.59	12.59
79333	207154	117	118	5	1	11.59	25.577	5.063	25.969	12.59	10.59
95475	251866	117	118	6	1	9.59	25.577	5.063	25.969	10.59	8.59
111174	296578	117	118	7	1	7.59	79.69	0.023	25.949	8.59	6.59
126794	341290	117	118	8	1	5.59	79.69	0.023	25.907	6.59	4.59
142325	386002	117	118	9	1	3.1	79.69	0.023	25.851	4.59	1.61
157838	430714	117	118	10	1	0.005	79.69	0.023	25.843	1.61	-1.599
173343	475426	117	118	11	1	-3.2	79.69	0.023	25.854	-1.599	-4.801
188848	520138	117	118	12	1	-6.401	79.69	0.023	25.895	-4.801	-8
203969	564850	117	118	13	1	-11.437	67.719	7.513	25.93	-8	-14.874
218923	609562	117	118	14	1	-18.31	67.719	7.513	25.93	-14.874	-21.747
233690	654274	117	118	15	1	-25.184	67.719	7.513	25.93	-21.747	-28.622
248280	698986	117	118	16	1	-32.058	67.719	7.513	25.929	-28.622	-35.495
262500	743698	117	118	17	1	-36.867	69.534	0.016	25.867	-35.495	-38.239
276535	788410	117	118	18	1	-39.607	69.534	0.016	25.764	-38.239	-40.974
290485	833122	117	118	19	1	-42.347	69.534	0.016	25.683	-40.974	-43.719
304079	877834	117	118	20	1	-45.089	69.534	0.016	25.622	-43.719	-46.46
316915	922546	117	118	21	1	-53.468	89.623	5	25.602	-46.46	-60.476
329727	967258	117	118	22	1	-67.474	89.623	5	25.601	-60.476	-74.471
341227	1011970	117	118	23	1	-81.48	89.623	5	25.601	-74.471	-88.489
352184	1056682	117	118	24	1	-140.904	29.848	0.01	24.337	-88.489	-193.318
363139	1101394	117	118	25	1	-245.733	29.848	0.01	22.882	-193.318	-298.147

Extracting the data from this table, and summarizing them produces the Aquifer Layer table for this cell, as shown below.

Layer	Тор	Bottom	Conductivity (m/day)	Thickness (m)	Transmissivity (m²/day)	% of Transmissivity
A	30.83	18.59	28.43	12.24	348.0	2.4
В	18.59	8.59	25.577	10	255.8	1.8
С	8.59	-8	76.69	16.59	1272.3	8.8
D	-8	-28.622	67.72	20.622	1396.5	9.6
E	-28.622	-46.46	69.534	17.838	1240.3	8.5
F	-46.46	-88.489	89.623	42.029	3766.8	25.9
G	-88.489	-298.147	29.848	209.658	6257.9	43.0
Total				329	14538	100.0

Aquifer Layer Table for Model_Grid Cell (I,J) = (11,11)

This layer has a total thickness of 329 m compared to 293 m in the cell used in the exercise text. Its transmissivity is 14,538 m²/day compared to 24,020 m²/day., so although the aquifer is thicker here its transmissivity is smaller. The average hydraulic conductivity of this cell is K = 14538/329 = 44.2 m/day.

Question 4

To be turned in: Make a WaterLevelMap of the Selwyn aquifer and estimate the travel time to Te Waihora/Lake Ellesmere from the well you chose in Question 2.

Solution

The water level map is shown below along with the location of the selected well as the orange square.

The measure distance to Te Waihora is 7851 m

Measure

~ □ + | Σ ▼ | × ▼

Line measurement (Planar) Segment: 7,821.568363 Meters Length: 7,851.776285 Meters

The piezometric head at the selected well is 26.98m and at Te Waihora on this flow path is 15.91m.

We can compute the slope of the WaterLevelMap along this line as

$$\frac{dh}{dL} = \frac{26.98 - 15.91}{7851} = 0.00141 \, m/m$$

This means that the fall of the water level (dh) is about 1.4 meters per km of flow distance (dL). If we take this gradient and multiply it by an estimate of the average conductivity that we worked out earlier (44.2 meters/day), you get a measure of the Darcy Velocity

$$q = K_{avg} \frac{dh}{dL} = 44.2 * 0.00141 = 0.0623 \, m/day$$

and if we divide the Darcy Velocity by the average porosity, n, of about 0.1, we get an estimate of the actual seepage velocity V_s of water in this aquifer

$$V_s = \frac{q}{n} = \frac{0.0623}{0.1} = 0.623 \, m/day$$

This means that water seeping through the aquifer from the area of Well M36/5372, would reach Te Waihora/Lake Ellesmere:

Travel Time =
$$\frac{L}{V_s} = \frac{7851}{0.623} = 12,597 \ days = 34.5 \ years$$

This is much longer than the 18.1 years that was computed in the exercise script for a well that is much further away from the lake than this one is. This shows that what really governs the flow time to the lake is the composite of the hydrogeological properties along all the portions of the flow path and that this cannot be reliably estimated by looking at just one model cell as we have done in the simplified computation performed here. This is what proper groundwater simulation models are needed to describe the flow behavior of aquifers like this one.