Homework 7 – Solutions

Problem 6.6. Modify the quadratic formula solver program from Chapter 4, Problem 10. Use subprograms to perform the input, calculations, and output.

Option Explicit

Private Sub cmdSolve_Click()
 Dim a As Double, b As Double, c As Double
 Dim equation As String
 Dim root1 As Double, root2 As Double
 Dim message As String

 Call GetData(a, b, c, equation)
 Call FindRoots(a, b, c, root1, root2, message)
 Call Display(equation, root1, root2, message)

End Sub

Private Sub GetData(a As Double, b As Double, c As Double, equation As String)
' Get the data from the text boxes
 a = Val(txtA.Text)
 b = Val(txtB.Text)
 c = Val(txtC.Text)

 equation = Trim(CStr(a)) & " x^2 + " & Trim(CStr(b)) & " x + " & _
 Trim(CStr(c)) & " = 0"

End Sub

Private Sub FindRoots(a As Double, b As Double, c As Double, root1 As Double, root2 As Double, message As String)
' Find the roots of the quadratic equation
 Dim discriminant As Double
 root1 = 0#
 root2 = 0#
 message = ""
 discriminant = (b ^ 2#) - (4# * a * c)
 If (a = 0) Then
 message = "a=0. This is not a quadratic equation."
 ElseIf (discriminant < 0) Then
 message = "No real roots."
 Else
 root1 = (-b + Sqr(discriminant)) / (2# * a)
 root2 = (-b - Sqr(discriminant)) / (2# * a)
 End If

End Sub
Private Sub Display(equation As String, root1 As Double, root2 As Double, _ message As String)
' Display the roots of the quadratic equation
 picOutput.Cls
 picOutput.Print "Quadratic equation: "; equation
 If message <> "" Then
 picOutput.Print message
 Else
 picOutput.Print "Root 1: "; root1
 picOutput.Print "Root 2: "; root2
 End If
End Sub

Problem 6.7. The gamma function is defined as follows:

\[
\Gamma(x + 1) = x\Gamma(x) \\
\Gamma(n) = (n-1)! \quad \text{for integers } n \\
\Gamma(1/2) = \sqrt{\pi}
\]

Write a program that finds the value of the gamma function for a user-entered value of \(n \), where \(n \) is an integer or an integer plus 0.5 such that \(n \geq 1 \)

Option Explicit

Private Sub cmdCompute_Click()
' Test the Gamma function
 Dim x As Double
 x = Val(txtX.Text)
picOutput.Cls
picOutput.Print "Gamma("; Trim(CStr(x)); "); Gamma(x)"

End Sub

Private Function Gamma(value As Double) As Double

Const PI = 3.14159265358979 ' Define PI
If value < 0.5 Then
 Gamma = 0#
Else
 Gamma = 1#
 Do While (value > 1#)
 value = value - 1#
 Gamma = Gamma * value
 Loop
 If (value = 0.5) Then
 Gamma = Gamma * Sqr(PI)
 End If
End If

End Function