Forces on flat gate CE319F © S.A. Kinnas (2008)
Perspective view

Free surface of liquid of spec. weight \(\gamma \)

As shown in class:
\[
\Delta = y_{cp} - \bar{y} = \frac{I}{\gamma A}
\]

- \(dF \): Elementary pressure force acting normal to the shown (shaded) gate strip of height \(dy \) and length \(l(y) \); \(dF = p(y) \, dA \)
- \(dA \): Elementary area of gate strip; \(dA = l(y) \, dy \)
- \(F_{gate} \): Total pressure force acting normal to the gate
- \(A \): Total area of gate
Forces on flat gate
Looking from a direction normal to the gate

\[y = 0 \]

\[+y \]

\[l(y) \]

\[dy \]

\[C \]

\[C' \]

\[Y \]

\[Y_{cp} \]

\[Y_{bot} \]

\[A \]

\[A' \]

\[\text{center of pressure of gate} \]

\[\text{or point through which the force } F_{\text{gate}} \text{ passes} \]

\[\text{Horizontal axis through gate centroid} \]

\[I_{oo'} : \text{Moment of inertia of gate w.r.t. } 00' \]

\[I_{cc'} : \text{ " " " " " " } \]

\[I_{oo'} = I_{cc'} + \bar{y}^2 A \]

\[\text{also denoted as } \bar{I} \]

"parallel-axis theorem"