CE 329 – Structural Analysis
Unique Number: 14300
Fall Semester 2002

Instructor: Loukas F. Kallivokas
office: ECJ 4.734
phone: 232-5769
e-mail: loukas@mail.utexas.edu

Office hours:
T 2:00-3:00pm, F 2:00-4:00pm
and anytime I am in my office with the door wide open

Lecture meeting times: MF 11:00am-12:00noon
Lecture meeting place: BUR 112

Discussion-session meeting times: W 11:00am-1:00pm
Discussion-session location: RLM 7.120

TA: None

COURSE OBJECTIVES

The course presents the classical methods of structural analysis needed to analyze statically determinate and indeterminate structures. It aims at providing the necessary analysis foundation for the design courses (reinforced concrete, steel, etc) that typically follow this course in the traditional civil or architectural engineering curriculum. It also aims at preparing you for more advanced analysis courses.

COURSE CONTENT OVERVIEW

CE 329 is an introductory course in the classical methods of structural analysis. In professional practice most structural analysis needs for complex structures are typically satisfied through the use of appropriate software. The methods implemented in the software are typically either matrix methods of structural analysis, or advanced numerical methods such as finite elements, neither of which are covered in this course. It is imperative however that the practicing engineer has a solid comprehension of the fundamental concepts of structural analysis in order to, at a minimum, be able to intelligently evaluate the numerical results obtained via the software. Furthermore, for simple designs, the practicing engineer ought to be able to analyze the structure via simple hand calculations that are based on the classical methods of analysis.

COURSE SCHEDULE

The following is a tentative outline of the topics to be covered. Depending on the pace of the class, additional topics will be covered.

- Idealization of structures and loads (including support types in 2D and 3D)
• Modeling using free-body diagrams
• Determinacy, indeterminacy, and kinematic stability of structures
• Analysis methods
 - Determinate structures
 Internal actions
 ▪ Trusses (Computation of internal actions (Equilibrium, method of joints, method of sections)
 ▪ Beams and Frames (moment, shear and axial force diagrams)
 Displacements
 ▪ Analytical (e.g. integration)
 ▪ Geometric methods (moment-area theorem)
 ▪ Energy methods (Principle of virtual work, Castigliano’s theorem)
 - Indeterminate structures
 ▪ Force/flexibility method
 ▪ Displacement methods (moment-slope eqs)
 - Direct-stiffness method

COURSE REFERENCE

Textbook:

COURSE LOGISTICS

Prerequisites: The prerequisites for CE 329 are:
EM 319
CE 311K (credit or registration)

Homework and class format: On average, there will be three one-hour lectures per week; the Wednesday discussion/lab time will include a one-hour lecture followed by a problem-solving session. Assignments will be given, on average, every week. Assignments are due at the beginning of the lecture on the date marked on the assignment sheet, unless modified by the instructor. Late assignments will not be accepted. Students are strongly encouraged to discuss course and homework topics among themselves, since such discussions are an important part of the learning process. However, each student must carry out assignments independently. Working on assignments constitutes possibly the best way for digesting the material and learning the concepts (roughly speaking, most of us learn by doing, rather than by listening or reading). It is thus, in my opinion, imperative that appropriate care is taken to consistently complete the assignments throughout the semester.

Your assignments should be clearly and cleanly written. I expect all to adhere to a reasonable person’s presentation standards without anyone having to describe or define these standards for you.

Exams: There will be at least three exams, two two-hour examinations (to be held during the Wednesday discussion session, with dates to be announced) and one final. Alternative dates for the two two-hour examinations will be arranged only for students with documented medical emergencies. The final exam, as per the University’s schedule has been set for Saturday, December 14, 2002 (7:00pm-10:00pm). All exams will be conducted with closed books and closed notes, unless otherwise stated prior to the exam. I reserve the right to schedule quizzes
additional to the aforementioned ones; an advance notice of at least one week will be given on such occasions.

Grading system: Homework assignments (H) carry a 20% weight; the two mid-course exams (Q1 and Q2) carry a 25% weight each, and the final exam (F) a 30% weight. Thus, the final grade will be \(G = 0.20H + 0.25Q1 + 0.25Q2 + 0.30F \). My intent is to assign letter grades based on the following scale:

- A for \(G > 90 \),
- B for \(80 < G \leq 90 \),
- C for \(70 < G \leq 80 \),
- D for \(60 < G \leq 70 \),
- F for \(G \leq 60 \).

The above represent minimum bounds; I reserve the right to adjust the grading scale to your benefit, based on the class performance.

Course/Instructor evaluation: At the end of the course a standard MEC (Measurement and Evaluation Center) evaluation form will be distributed to all students, who are strongly encouraged to complete it.

Course add/drop policy: As per the College of Engineering policy:

- From the 1st through the 12th class day, an undergraduate student can drop a course on ROSE or TEX, and receive a refund. From the 13th through the 20th class day, an automatic Q is assigned; approval from the Dean and the department advisor is required. From the 21st day through the mid-semester deadline approval is required from the Dean, instructor of the course, and department advisor. After the mid-semester deadline, drops are not permitted except upon the approval of the student’s Dean: “Urgent and substantiated, non-academic reasons acceptable to the Dean” are required in order to request to drop a class.

Scholastic dishonesty: The University’s policy and procedures will be followed in cases of suspected scholastic dishonesty. Students who violate the University’s rules on scholastic dishonesty are subject to disciplinary penalties, which include the possibility of failure at the course and/or dismissal from the University. For further information, see the Student Judicial Services web page at www.utexas.edu/depts/dos/sjs.

Other matters: The University of Texas at Austin provides, upon request, appropriate academic adjustments for qualified students with disabilities. Any student with a documented disability (physical or cognitive) who requires academic accommodations should contact the Services for Students with Disabilities area of the Office of the Dean of Students at 471-6259 as soon as possible to request an official letter outlining authorized accommodations. For more information, contact that Office, or TDD at 471-4641, or the College of Engineering Director of Students with Disabilities at 471-4321.