Geosynthetic Reinforcements For Paved Roads

J.G. Zornberg
Professor, The University of Texas at Austin, Austin, Texas, USA
President, International Geosynthetics Society

ABSTRACT: Geosynthetics have been used as reinforcement inclusions to improve pavement performance. While there are clear field evidences of the benefit of using geosynthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geosynthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geosynthetics.

1 INTRODUCTION

A typical flexible pavement system includes four distinct layers: asphalt concrete, base course, sub-base, and subgrade (Figure 1). The surface layer is typically asphalt concrete, which is a bituminous hot-mix aggregate obtained from distillation of crude petroleum. The asphalt concrete is underlain by a layer of base course, typically consisting of 0.2 m to 0.3 m of unbound coarse aggregate. An optional subbase layer, which generally involves lower quality crushed aggregate, can be placed under the base course in order to reduce costs or to minimize capillary action under the pavement.

Pavement distress may occur due to either traffic or environmental loads. Traffic loads result from the repetition of wheel loads, which can cause either structural or functional failure. Environmental loads are induced by climatic conditions, such as variations in temperature or moisture in the subgrade, which can cause surface irregularities and structural distress. Cycles of wetting and drying (or freezing and thawing) may cause the breakdown of base course material. Construction practices also affect pavement performance. For example, the use of aggregates with excessive fines may lead to rapid pavement deterioration. Finally, pavement distress is also a function of its maintenance or, more correctly, lack of maintenance (Yoder and Witzczak 1975). For example, sealing cracks and joints at proper intervals and maintaining the shoulders improve pavement performance. The various distress mechanisms induced by traffic and environmental loads can be enhanced through the use of geosynthetics. This paper presents an update to the overview presented by Zornberg and Gupta (2010) on the use of geosynthetics for reinforcement of pavements.

2 GEOSYNTHETICS IN PAVEMENT DESIGN

Geosynthetics have been used in pavement design to address the functions of separation, filtration, lateral drainage, sealing, and reinforcement. Specifically, geosynthetics have been used for separation in pavement projects to minimize intrusion of subgrade soil into the aggregate base or sub-base. Also, geosynthetics have been used to perform a filtration function by restricting the movement of soil particles from the subgrade while allowing water to move to the coarser adjacent base material. In-plane drainage function of a geosynthetic can provide lateral drain-
age within its plane. In addition, geosynthetics have been used to mitigate the propagation of cracks by sealing the asphalt layer when used in pavement overlays. Finally, geosynthetics have been used in flexible pavements for reinforcement, which is the main focus of this paper. While the reinforcement function has often been accomplished using geogrids, geotextiles have also been used as reinforcement inclusions in transportation applications (Bueno et al. 2005, Benjamin et al. 2007). The geosynthetic reinforcement is often placed at the interface between the base and sub-base layers or the interface between the sub-base and subgrade layers or within the base course layer of the flexible pavement. This leads to lower stresses over the subgrade than in unreinforced flexible pavements (Figure 2).

The improved performance of the pavement due to geosynthetic reinforcement has been attributed to three mechanisms: (1) lateral restraint, (2) increased bearing capacity, and (3) tensioned membrane effect (Giroud and Noiray 1981, Giroud et al. 1984, Perkins and Ismeik 1997, Holtz et al. 1998). These three mechanisms are illustrated in Figure 3.

The primary mechanism associated with the reinforcement function for flexible pavements (Figure 3a) is lateral restraint or confinement (Bender and Barenberg 1978). The name of this mechanism may be misleading as lateral restraint develops through interfacial friction between the geosynthetic and the aggregate, thus the mechanism is one of a shear-resisting interface (Perkins 1999). When an aggregate layer is subjected to traffic loading, the aggregate tends to move laterally unless it is restrained by the subgrade or by geosynthetic reinforcement. Interaction between the base aggregate and the geosynthetic allows transfer of the shearing load from the base layer to a tensile load in the geosynthetic. The tensile stiffness of the geosynthetic limits the lateral strains in the base layer. Furthermore, a geosynthetic layer confines the base course layer thereby increasing its mean stress and leading to an increase in shear strength. Both frictional and interlocking characteristics at the interface between the soil and the geosynthetic contribute to this mechanism. Consequently the geogrid apertures and base soil particles must be properly sized. A geotextile with good frictional capabilities can also provide tensile resistance to lateral aggregate movement.

As illustrated in Figure 3b, the increased bearing capacity mechanism leads to soil reinforcement when the presence of a geosynthetic imposes the development of an alternate failure surface. This new alternate plane provides a higher bearing capacity. The geosynthetic reinforcement can decrease the shear stresses transferred to the subgrade and provide vertical confinement outside the loaded area. The bearing failure mode of the subgrade is expected to change from punching failure without reinforcement to general failure with reinforcement.

The geosynthetic can also be assumed to act as a tensioned membrane, which supports the wheel loads (Figure 3c). In this case, the reinforcement provides a vertical reaction component to the applied wheel load. This tensioned membrane effect is induced by vertical deformations, leading to a concave shape in the geosynthetic. The tension developed in the geosynthetic contributes to support the wheel load and reduces the vertical stress on the subgrade. High deformations (i.e. high rutting depth) are required to mobilize this mechanism. This reinforcement mechanism has been reported to develop only

Figure 2: Relative load magnitudes at subgrade layer level for (a) unreinforced flexible pavement and (b) geosynthetic-reinforced flexible pavement.

Figure 3: Reinforcement mechanisms induced by geosynthetics (Holtz et al. 1998): (a) Lateral restraint; (b) Increased bearing capacity; and (c) Membrane support.
in cases with subgrade CBR values below 3 (Barksdale et al. 1989).

The aforementioned mechanisms require different magnitudes of deformation in the pavement system to be mobilized. In the case of unpaved roads, significant rutting depths (in excess of 25 mm) may be tolerable. The increased bearing capacity and tensioned membrane support mechanisms have been considered for paved roads. However, the deformation needed to mobilize these mechanisms generally exceeds the serviceability requirements of flexible pavements. Thus, for the case of flexible pavements, lateral restraint is considered to contribute the most for their improved performance.

3 DESIGN METHODOLOGIES FOR GEOSYNTHETIC-REINFORCED FLEXIBLE PAVEMENTS

The design philosophy of flexible pavement systems was initiated by the Romans, evolving into the current design approaches. The design approach involves providing a protective layer over the subgrade that improves the serviceability under traffic and environmental loads.

The Cover Based Design Method was developed after the great depression in the 1930s. It required a single input in terms of the California Bearing Ratio (CBR), but it also required use of significant engineering judgment. Subsequently, and after completion of the American Association of State Highway Officials (AASHTO) Road Test in the 1960s, a series of design methods were proposed. They were more sophisticated than the Cover Based Method, requiring a greater number of design parameters as input. In the 1970s, the linear mechanistic-empirical (M-E) design method was proposed by researchers from South Africa. Since the early 1990s, the focus in the US has shifted to M-E design methods that incorporate features from purely empirical methods to sophisticated non-linear finite element methods. Attempts have been made to incorporate the use of geosynthetic reinforcements into AASHO and M-E design methods.

3.1 AASHTO Method

The American Association of State Highway and Transportation Officials (AASHTO) guide for design of pavement structures is one of the most widely used methods for flexible pavement design in North America (AASHTO 1993). The AASHTO method uses empirical equations developed from the AASHO road tests, which were conducted in the late 1950s. The method considers the pavement as a multi-layer elastic system with an overall structural number (SN) that reflects the total pavement thickness and its resiliency to repeated traffic loading. The required SN for a project is selected such that the pavement will support anticipated traffic loads and experience a loss in serviceability no greater than that established by project requirements. The SN is determined using a nomograph that solves the following equation:

\[
\log W_{18} = Z_{x} \times 5_{x} + 9.36 \times \log(SN + 1) - 0.2 + \frac{\log \Delta_{PSI}}{27} - 2.32 \log M_{R} - 8.07
\]

where \(W_{18} \) is the anticipated cumulative 18-kip Equivalent Single-Axle Loads (ESALs) over the design life of the pavements, \(Z_{x} \) is the standard normal deviate for reliability level, \(S_{O} \) is the overall standard deviation, \(\Delta_{PSI} \) is the allowable loss in serviceability, and \(M_{R} \) is the resilient modulus (stiffness) of the underlying subgrade. Once the required overall \(SN \) has been determined, the individual layers can be designed accordingly through a series of iterations using the following equation:

\[
SN = (a \times d)_{\text{hwa}} + (a \times d \times m)_{\text{base}} + (a \times d \times m)_{\text{subbase}}
\]

where \(a \) is the coefficient of relative strength, \(d \) is the thickness (in inches) of each layer, and \(m \) is the modifier accounting for moisture characteristics of the pavement.

The purposes of using geosynthetics as reinforcement in flexible pavements have been: (1) to extend a pavement’s life-span, or (2) to enable the construction of a pavement with a reduced quantity of base course material without sacrificing pavement performance. Early design approaches for reinforced flexible pavements focused at modifying Equations 1 and 2 to reflect the benefit achieved by the addition of geosynthetics. These improvements to the pavement system provided by geosynthetic reinforcement have been measured in terms of the Traffic Benefit Ratio (TBR) and the Base Course Reduction (BCR).

The TBR is defined as the ratio between (i) the number of load cycles on a reinforced section (\(N_{R} \)) to reach a defined failure state (a given rutting depth), and (ii) the number of load cycles on an unreinforced section (\(N_{U} \)) with the same geometry and material constituents that reaches the same defined failure state (Berg et al. 2000). Specifically, the TBR can be defined as:

\[
TBR = \frac{N_{R}}{N_{U}}
\]

Use of the TBR in pavement design leads to an extended pavement life defined by:

\[
W_{18}^{\text{(reinforced)}} = TBR \times W_{18}^{\text{(unreinforced)}}
\]
The TBR is sometimes referred to as the traffic improvement factor (TIF). As shown in Figure 4, the TBR can be used to calculate the number of traffic passes that a reinforced pavement can withstand as compared to an unreinforced pavement for a given rutting depth. For most geotextiles, the TBR value ranges from 1.5 to 10, and for geogrids from 1.5 to 70 (Shukla 2002).

The BCR is defined as the percent reduction in the base-course thickness due to an addition of geosynthetic reinforcement (T_R) in relation to the thickness of the flexible pavement with the same materials but without reinforcement (T_U), to reach the defined failure state. The BCR is defined as follows:

$$BCR = \frac{T_R}{T_U}$$

(5)

The BCR is sometimes referred to as the layer coefficient ratio (LCR). A modifier has been applied to the SN of the pavement, as follows:

$$SN = (a \times d)_{hma} + BCR (a \times d \times m)_{base} + (a \times d \times m)_{subbase}$$

(6)

When designing a pavement using the BCR, the reduced depth of the base course can be estimated as follows:

$$d_{base,(R)} = \frac{SN_U - (a \times d)_{hma} - (a \times d \times m)_{subbase}}{BCR (a \times m)_{base}}$$

(7)

where $d_{base,(R)}$ is the reduced base course thickness due to reinforcement and SN_U is the structural number corresponding to the equivalent W_{JS} for the unreinforced pavement.

![Figure 4: Typical TBR values for an unreinforced and reinforced pavement to reach a given rutting depth (Shukla 2002)](image)

The BCR has been determined from laboratory and field tests. Anderson and Killeavy (1989) constructed test sections with different base course thicknesses. The study showed that geotextile-reinforced section with a 350 mm thick base layer performed similarly to an unreinforced section with a 450 mm thick base layer. Miura et al. (1990) reported the construction of field reinforced sections that contained a base course that was 50 mm thinner than that of unreinforced sections. The reinforced sections were observed to perform better than the control sections for all rutting depths. Also, at a site with a subgrade of CBR 8, Webster (1993) showed that a section containing a geogrid with a 150 mm-thick base showed a performance equivalent to that of an unreinforced section with a 250 mm-thick base. Thus, BCRs ranging from 20% to 40% have been reported in the literature, with greater percentage reduction for stronger subgrade materials.

The AASHTO design method is empirical in nature and does not directly consider the mechanics of the pavement structure, climatic effects, or changes in traffic loads and material properties over the design-life of the pavement. Extension of this design methodology to geosynthetic-reinforced pavements has been limited to the case of specific products, materials, geometries, failure criteria and loads used in test sections to quantify their values. Thus, this approach lacks desirable generality as experience cannot be easily transferred from one site to another.

The National Cooperative Highway Research Program (NCHRP) has recently developed a guide for M-E design of new and rehabilitated pavement structures (NCHRP 2004). The method uses mechanistic principles and detailed input data to minimize design reliance on empirical observations and correlations that may be applicable for a specific project. The M-E method attempts to improve design reliability, reduce life-cycle costs, characterize better the effects of drainage and seasonal moisture variations, and prevent premature failures (Olidis and Hein 2004).

While the M-E design method involves two key components (mechanistic and empirical), they are both considered interdependent on each other. The calculation models require input parameters regarding pavement layers, traffic conditions, climatic conditions and materials. The generated output is then compared against parameters used as hypothesis for the original design. If the comparison fails, the design is then modified using an iterative process and re-evaluated.

The main parameters used in M-E method are the mechanistic properties of each pavement layer, including their Poisson’s ratio (v) and resilient modulus (M_R). The Poisson’s ratio (ratio of lateral to axial strains exhibited in response to axial loading) typically ranges from 0.15 to 0.5 for pavement materials. The M_R is a measure of the material stiffness after cyclic loading, represented by:

$$M_R = \frac{\sigma_R}{\varepsilon_r}$$

(8)
where σ_d is the cyclic deviator stress (or cyclic principal stress difference) and ε_e is the recoverable (elastic) strain. Thus, both M_R and the Young’s Modulus (E) represent the strain response of the material to applied stresses. However, they are not considered the same due to differences in the rate of load application, as shown in Figure 5. The value of E refers to the initial deformation (with some permanent component) of the material, whereas M_R refers to the elastic deformation of the material after cyclic loading.

The M-E method uses a hierarchical approach to design, based on the project importance and available information. Level 1 is the highest confidence level, typically reserved for research or very high-volume roads. Level 2 corresponds to moderate confidence level, intended for routine pavement design. Level 3 is the lowest confidence level, typically reserved for low-volume roads. Based on the selected design level, material properties are determined using the specific materials to be used in actual construction (Level 1), or estimated from the correlations using routine tests (Level 2), or are defined using default values from the database (Level 3).

In summary, prediction of the behavior of flexible pavements is complex, as the overall performance is controlled by numerous factors, including load magnitude, subgrade strength, layer thickness, interlayer mixing, material degradation, cracking and rutting, and seasonal and climatic fluctuations (WDOT 2007, Dougan 2007, Al-Qadi 2006). While beneficial, the use of geosynthetic reinforcement adds complexity to the system understanding by introducing a new set of variables. These include the reinforcement mechanism, geosynthetic types and stiffness, tensile strength, aperture size and placement location. Therefore, due to uncertainty in quantifying the mechanisms of geosynthetic-reinforcement, neither the AASHTO (1993) nor the NCHRP (2004) approaches incorporate specific geosynthetic properties fully in design of pavements.

4 ASSESSMENT OF THE PERFORMANCE OF GEOSYNTHETIC-REINFORCED FLEXIBLE PAVEMENTS

Assessment of the performance of pavements has been conducted using field scale tests, laboratory tests, and numerical simulations.
Full-scale field tests have been performed on both public roadways and in-service roads. As previously discussed, M-E design processes have been recently developed that require data for calibration and validation purposes (Watts and Blackman 2009). The monitoring of in-service roads is a time consuming process. Consequently, useful data has also been generated using accelerated pavement testing (APT). APT facilities consist of test tracks located either indoor or outdoor. They involve the use of automated, one or two axle, single wheel loads that repeatedly runs over the test track surface. APT may provide a good simulation of the performance of in-service pavements and can be particularly useful to provide rapid indication of pavement performance under severe conditions.

Several approaches have been implemented to evaluate and compare pavement performance in field-scale test sections. In flexible pavements, the two most commonly quantified variables are surface deflection and cracking (including longitudinal, transverse and fatigue). Surface deflection is the most common performance criterion for both reinforced and unreinforced pavements. Distress has been evaluated using: (1) measurement of existing surface deflections in terms of rutting depth, and (2) measurement of surface deflections in response to an applied load to determine its structural capacity.

Rutting occurs because of the development of permanent deformations in any of the pavement layers or in the subgrade. Rutting is generally measured in square meters of surface area for a given severity level, as defined from data collected with a dipstick profiler every 15 m intervals. Measurements of rutting depth are comparatively easy to obtain, as they are taken at the pavement surface, and provide a simple method of comparing pavement performance among multiple test sections.

Deflection measurements have also been made using non-destructive testing (NDT) devices in order to evaluate the pavement structural capacity and to calculate the moduli of various pavement components. The device most widely used to measure pavement deflections is the Falling Weight Deflectometer (FWD). This approach involves applying a series of impulses on the pavement using a trailer-mounted device that is driven to the desired test locations. A loading plate is hydraulically lowered to the pavement surface, after which an impulse is applied to the pavement by dropping a weight from a known height onto the loading plate. The magnitude of the load is measured using a load cell while deflections are measured using seven velocity transducers. An equipment known as a Rolling Dynamic Deflectometer (RDD), has been recently developed for assessing the conditions of pavements and determining pavement deflection profiles continuously (Bay and Stokoe 1998). Unlike the FWD, the RDD performs continuous rather than discrete deflection measurements. The ability to perform continuous measurements makes RDD testing an effective approach for expeditious characterization of large pavement sections. The equipment applies sinusoidal forces to the pavement through specially designed rollers. The resulting deflections are measured by rolling sensors designed to minimize the noise caused by rough pavement surfaces.

Field tests on full-scale road sections have been conducted to evaluate the effect of geosynthetic reinforcement in flexible pavement systems. Perkins and Ismeik (1997) compared the results from nine sections, among which four were constructed on indoor test tracks, three on outdoor test tracks, one on a public roadway and one in a field truck-staging area. The indoor test tracks used a single moving wheel to load the test sections (Brown et al. 1982, Barksdale et al. 1989, Collin et al. 1996, Moghaddas-Nejad and Small 1996). The outdoor test tracks involved a single moving wheel (Barker 1987, Webster 1993), and a two-axle, dual wheel truck to load the pavement (Halliday and Potter 1984).

Additional studies have been recently reported on geosynthetic-reinforced test sections using APT equipment (Cancelli and Montanelli 1999, Perkins 2002, Perkins and Cortez 2005, Al-Qadi et al. 2008, Reck et al. 2009). Assessment of these test sections indicated that rutting depth continued to be the most common method to evaluate pavement distress. A total of nine field test sections and four APT sections were reported involving measurements from profilometer readings at the end of design loading cycles. However, FWD tests were conducted only at four field sections and at one APT section.

Zornberg and Gupta (2009) reported three case studies conducted in Texas, USA, for geosynthetic-reinforced pavements on which FWD testing was conducted on in-service roads. One of the cases involved a forensic investigation conducted in a newly constructed pavement. Longitudinal cracks were observed in a geogrid-reinforced pavement before it was open to traffic. However, the investigation revealed that the contractor had laid rolls of geogrid leaving a portion of the pavement unreinforced. Cracks only appeared in unreinforced locations within the pavement. Accordingly, the difference in response within and beyond reinforced portions of the pavement illustrated that use of geogrid can prevent pavement cracking.

The second case study reported the field performance of geogrid-reinforced pavements built over highly plastic subgrade soils. The pavement sections had been reinforced using two different types of geogrids that met project specifications. Although a section reinforced with one type of geogrid was found to be performing well, the other section reinforced with second type of geogrid showed longitu-
dinal cracking. The reviews of the material properties lead to the preliminary conclusion that poor performance in the second section was due to inadequate junction efficiency. Further inspection indicated a higher tensile modulus of the geogrid used in the better performing section. This study highlighted the need for better material characterization and the possible inadequacy of commonly used specifications for geosynthetic-reinforced pavements.

The third case involved three pavement sections. The two geogrid-reinforced sections (Sections 1 and 2) had base course thicknesses of 0.20 m and 0.127 m, respectively. On the other hand, a control section (without geogrid reinforcement) had a 0.20 m-thick base course layer. FWD testing showed a comparatively higher pavement modulus for the geogrid-reinforced section with a 0.20 m-thick base while lower modulus value were obtained for the geogrid-reinforced section with a 0.127 m-thick base. Yet, field visual assessment showed cracking in the control section while the two geogrid-reinforced sections performed well. While the geogrid-reinforced sections outperform the unreinforced section, the results of FWD testing showed a different trend. This study illustrated the inadequacy of the currently available evaluation techniques involving non-destructive testing for the purpose of quantifying the benefits of geosynthetic reinforcements.

The lessons learned from these field case studies, provided the basis for a field monitoring program to evaluate the performance of geosynthetic-reinforced pavements constructed over expansive clays. This involved the rehabilitation of a low-volume road in Texas by use of geosynthetic reinforcements. A comparative evaluation with 32 test sections was conducted. This included 8 different reinforcement schemes (3 reinforcement products and an unreinforced control section, as well as lime stabilized sections). Also, and in order to account for variability due to environmental, construction and subgrade-type, a total of 4 repeats were constructed for each one of the 8 schemes. Therefore, a total of 32 test sections (4 reinforcement types x 2 stabilization approaches x 4 repeats) were constructed (Figure 6).

Due to unique characteristics of this field study, the reinforced pavement was considered experimental and an extensive post-construction performance monitoring program was implemented. This included the installation of moisture sensors to characterize the patterns of moisture migration under the pavement. A total of eight horizontal moisture and vertical moisture sensor profiles, each containing an array of four sensors was installed below the pavement. Field monitoring involving visual inspection, surveying and FWD was conducted before reconstruction and immediately after reconstruction of the road. The final construction of the reinforced pavement was completed in January 2006 and performance evaluation of the newly reconstructed road has been conducted on a regular basis since then. The results obtained from the field study are providing good understanding of the underlying mechanisms governing the performance of the geosynthetic-reinforced pavements. Also, the collected data is useful to quantify the mechanisms of longitudinal cracking and effectiveness of the geosynthetic reinforcements in mitigating such distresses.

Overall, the results from field studies reported in the literature have indicated that the geosynthetic-reinforced test sections led to less rutting depth than the unreinforced sections. The improved performance has been attributed to the ability of the geosynthetics to control lateral spreading of the base layer.

4.2 Laboratory Tests

A number of laboratory tests have been proposed to quantify the mechanisms governing the performance of geosynthetic-reinforced flexible pavements. The primary objective of laboratory tests has been to quantify the soil-geosynthetic interaction mechanisms in flexible pavement systems either by measuring the geosynthetic index properties or by replicating the field conditions. An important field condition to be replicated is the effect of interface shear provided by geotextiles and interlocking provided by geogrids when used under or within the base course layer of pavements (Figure 7). Depending on the adopted approach, the tests reported in the literature can be grouped into two main categories: unconfined and confined tests. In unconfined tests, geosynthetic properties are measured in-air, while in confined tests they are measured within confinement of soil. The advantages and limitations of the various tests developed in North America in each of these two categories are discussed next.
4.2.1 Unconfined Tests

As mentioned, unconfined tests are conducted using geosynthetic specimens in isolation. Advantages of these tests include expedience, simplicity, and cost effectiveness. They can be run in short periods of time using conventional devices, which facilitates the assessment of repeatability of test results. However, correlations are required between the index property obtained from these tests and the field performance of the geosynthetic-reinforced pavements. Tests in this category include the wide-width tensile test, biaxial loading test, junction efficiency test, and torsional rigidity test. While the wide-width tensile test can be conducted using any type of geosynthetics (geogrid, geotextile), the other three tests are specific for the characterization of geogrids.

The tensile strength of geosynthetic materials has often been deemed as the most important property for projects involving reinforcement applications. While tensile strength may not be particularly relevant for the case of pavement design, tensile strength has often been incorporated into pavement design and specifications. The current state of practice for measuring the tensile properties of a geosynthetic involves placing the material within a set of clamps, positioning this assembly in a load frame, and tensioning the geosynthetic until failure occurs. The test is generally performed at a constant strain rate. Currently, two ASTM standards are available for tensile tests. The grab tensile test (D4632) is used for manufacturing quality control, as it involves a narrow geosynthetic specimen. Instead, the wide-width tensile test (D4595) has been used in design applications. The load frame for a wide-width tensile test conducted using roller grips is shown in Figure 8. The tensile test provides the tensile stiffness at different strain values (1%, 2%, and 5%), as well as the ultimate tensile strength. Methods used for unpaved road design have included the tensile stiffness at 5% in product specifications. Based on full scale model studies for the paved roads, Berg et al. (2000) reported accumulated in-service tensile strain of 2% in geosynthetics and thus recommended the tensile stiffness at this strain level for design. However, the actual strain level representative of field conditions is certainly smaller for the case of pavement applications.

Bray and Merry (1999) investigated the stress and strain conditions in wide-width tensile tests. They concluded that strains vary across the specimen from a plane-strain, biaxial condition near the grips, to a uniaxial condition near the center of the specimen. Thus, there may be a misconception that the test measures geosynthetic behavior under the 1-D condition that is representative of field applications. It should be noted that most geogrids tested using uniaxial methods suffer distortions, non-uniform stresses (particularly at the junctions), premature specimen rupture and problems with clamping (McGown et al. 2005). Kupec and McGown (2004) suggested a biaxial test method, which focused primarily on geogrids and allowed characterization of the combined strength of tensile ribs and junctions in a single test.

To address perceived deficiencies of uniaxial tensile test, a complementary uniaxial test, known as the “junction strength test,” was developed. It is conducted as per the procedure recommended in GRI GG2 specifications and involves gripping the cross member of a geogrid rib on both sides of the junction with a clamping device. Load is then applied until the junction breaks. The force required to fail the junction is defined as the junction strength of the geogrid. Junction strength provides quantification of the contribution to stability that may lead to rupture of the reinforcement during the pavement construction and subsequent traffic load. However, the geogrid ability to transfer stress under low strains is a consideration probably of more relevance for the case of flexible pavements. However, junction stiffness requirements for pavement projects have not been properly defined. Also, since this test was orig-
inically developed for geogrids with integral junctions, it does not incorporate newer geogrids with entangled fibers or those with heat bonded or laser welded junctions.

A torsional rigidity test was developed by Kinney and Yuan (1995) to measure the in-plane rotational stiffness of the geogrids. The test aimed at quantifying the performance of geogrid-reinforced paved road tests constructed by the US Army Corps of Engineers at the Waterways Experiment Station. While the test focuses on the interlocking capacity of the geogrid, a relationship between geogrid torsional rigidity and the performance of geogrid reinforced road sections could not be established. The test provides a higher torsional rigidity for stiff geogrids than for flexible geogrids. However, a study conducted by the Texas Research Institute (TRI 2001) reports a lack of correlation between torsional rigidity and the confinement performance of the geogrids.

The geosynthetic behavior observed in the laboratory from unconfined tests has to be correlated with the performance in field applications, which have different loading and boundary conditions.

4.2.2 Confined tests

Geosynthetics used for base reinforcement are under the confinement of soil and subjected to dynamic loading (traffic). These conditions cannot be simulated by monotonic unconfined tests. Geosynthetic-soil confinement depends not only on the macrostructure and properties of geosynthetics but also on the properties of soil and, most importantly, on the interaction between geosynthetics and soil particles (Han et al. 2008). The interaction between soil and geosynthetics under confinement, specifically the confined stress-strain properties of the geosynthetics, has been focus of previous research. A Federal Highway Administration (FHWA) sponsored study focusing on existing confined tensile tests for geosynthetics concluded that the unconfined response of geosynthetics is overly conservative and that confinement significantly improves their mechanical response (Elias et al. 1998). Recently, a number of confined tests have been proposed, out of which six tests have focused on characterizing the behavior of geosynthetics used to reinforce flexible pavements. These tests include the cyclic plate load test, cyclic triaxial test, cyclic pullout test, bending stiffness test, modified pavement analyzer test, and the pullout stiffness test.

The cyclic plate load test has generally involved large scale laboratory experiments on reinforced and unreinforced pavement sections (Al-Qadi et al. 1994, Cancelli et al. 1996, Haas et al. 1988, Miura et al. 1990, Perkins 1999). The test setup designed by Perkins (1999) consisted of a 2 m wide and 1.5 m high reinforced concrete tank (Figure 9). The model pavement section was constructed with a geosynthetic at the interface of the base course and subgrade layers. The load was applied by a pneumatic actuator in the form of a trapezoidal wave pulse, which generated a maximum surface pressure of 550 kPa on the pavement. The force and displacement responses were measured using a load cell and eight surface LVDTs. TBRs ranging from 1 to 70 and BCRs ranging from 20% to 50% were obtained using cyclic plate load tests in sections involving geotextile and geogrid reinforcements (Hsieh and Mao 2005). These tests were reported to have successfully demonstrated the effect of soil confinement and dynamic loading. However, facilities in which cyclic plate loading can be conducted are not readily available, thus restricting the application of this test to research studies. In addition, the cyclic plate loading test was considered to have important drawbacks associated with the testing procedures, time demands, and appropriate simulation of rolling wheel loads (Han et al. 2008).

![Cyclic plate load test (Perkins 1999)](image)

The cyclic triaxial test has been used to measure the ability of soils to develop shear stresses induced by cyclic loading (ASTM D5311 2004). The resilient modulus, M_r, of the soil aggregates computed using this test has been specifically used as input in the M-E design (NCHRP 2000). This test was modified by Perkins et al. (2004) to quantify the change in resilient modulus and permanent deformation behavior due to the addition of geosynthetics to the aggregate layer of pavements. The results from cyclic triaxial tests indicate that the use of reinforcements does not affect the resilient modulus of the aggregates, although it reduces significantly the pavement permanent deformations.

Cyclic pullout tests were conducted by Cuelho and Perkins (2005) by modifying the standard pullout test (ASTM D6706) to resemble the loading protocol used in a cyclic triaxial test. Cyclic shear load cycles (ranging from 100 to 300) were applied at different confinement level beginning with a seating load of 51 kPa until pullout failure was reached. Based on the test results, a parameter known as geo-
synthetic-soil resilient interface shear stiffness \(G_i \) was defined to describe the reinforcement-aggregate interaction under cyclic loads. This parameter is defined as:

\[
G_i = \frac{\tau_i}{\Delta_i}
\]

where \(\Delta_i \) is the relative displacement between the aggregate and reinforcement and \(\tau_i \) is the shear stress applied to the interface. The units of \(G_i \) are kN/m^3. The parameter, \(G_i \), was assumed to closely resemble \(M_i \), as it depends on both the shear load and confinement. Therefore, the three parameter log-log equations for \(M_i \) reported in NCHRP (2001) was modified and used to calibrate \(G_i \) for a given soil-geosynthetic interface, as follows:

\[
G_i = k_{i1}P_{ai}\left(\frac{\sigma_i}{p_a}\right)^{k_{i2}}\left(\frac{\tau_i}{p_a} + 1\right)^{k_{i3}}
\]

where \(\sigma_i \) is the normal stress on the interface, \(p_a \) is the normalized atmospheric pressure, \(P_{ai} \) is the atmospheric pressure per unit length and \(k_{i1}, k_{i2} \), and \(k_{i3} \) are dimensionless material. The purpose of this test was to provide a property useful to characterize the interface shear moduli in finite element simulations conducted to calibrate the M-E approach. However, pullout test results conducted on six geosynthetics indicated that correlations between the predicted and measured values were erratic.

The bending stiffness test was developed by Sprague et al. (2004) as a small-scale index test procedure aimed at predicting the behavior of geosynthetics used for reinforcement of pavements. The test apparatus is a modified version of the multiaxial tension test for geomembranes (ASTM D 5617).

Han et al. (2008) proposed a test method involving the use of an asphalt pavement analyzer (APA) to evaluate the benefits of geosynthetic-reinforcement in the base course layer of the pavement. The APA is a multifunctional wheel-loaded test device used to quantify permanent deformation, fatigue cracking, and moisture susceptibility of both hot and cold asphalt mixes. A conventional box was modified in order to conduct the test on a geosynthetic-reinforced base course. The loaded wheel is moved back and forth on the surface of base course.

A Pullout Stiffness Test (PST) was recently developed by Gupta (2009) at the University of Texas, Austin in order to quantify the soil-geosynthetic interaction in reinforced pavements. The equipment involves a modified large-scale pullout test modified to capture the stiffness of the soil-geosynthetic interface under small displacements. Research conducted using the PST has shown that monotonic pullout tests aimed at characterizing the soil-geosynthetic interaction under low displacements are promising.

Although these pullout tests did not replicate the cyclic nature of traffic load conditions, it simulated the interface transfer mechanisms between soil and geosynthetic reinforcements that are expected in the field.

An analytical model was proposed to predict the confined load-strain characteristics of soil-geosynthetic systems under small displacements using the results obtained from the PST. This approach takes into account both the confined stiffness \(J_c \) and ability of geosynthetic to mobilize shear or interlock \(\tau_i \), which are two important parameters governing the performance of geosynthetic interfaces. The two parameters can be combined to define a unique coefficient of soil-geosynthetic interaction \(K_{SGi} \) that characterizes the soil-reinforcement interface. This coefficient is computed as:

\[
K_{SGi} = 4.\tau_iJ_c
\]

A comprehensive field monitoring program is under way (Figure 12) to relate the field performance to laboratory PST results for a number of geosynthetic reinforcements. While ongoing field monitoring is still in progress, good agreement has been obtained so far between the field performance and the properties defined from PST testing. Thus, a new performance-based test method in the form of a pullout stiffness test is promising as a performance-based test to evaluate the soil-geosynthetic confinement.

An overall assessment of the various tests developed so far for geosynthetic-reinforced pavements indicates that unconfined tests are simple, economical and expedient, although they do not capture the important aspects associated with confinement and the type of soil. Also, unconfined tests have provided only index measures of the actual mechanisms, requiring subsequent correlations with field performance. It should be noted that field studies sometimes led to performance trends that contradicted the trends obtained using properties from unconfined tests. Accordingly, and based on the current body of literature, unconfined tests are considered inadequate for assessment of the performance of geosynthetic-reinforced pavements.

A summary of the confined test methods developed for the evaluation of geosynthetic-reinforced pavements is presented in Table 1. The tests provide quantification of the soil-geosynthetic interaction behavior, although they are comparatively more expensive and time consuming than unconfined tests. The tests quantify the performance of the soil-reinforcement system in the terms of reduced deflections (e.g. TBR, BS, RRR) or increased confinement modulus (e.g. \(M_i \), \(G_i \), \(K_{SGi} \)). Results from confined tests are deemed more appropriate as input in design methods such as the AASHTO and M-E design approaches. The various studies indicated that reinforced systems provided improvement over control.
sections without geosynthetics. However, drawbacks were also identified in several of the proposed confined test approaches. Specifically, these tests require specialized equipment and, at least in several of the proposed methods, the variability of test results was significant. Overall, confined testing approaches were considered more representative and appropriate to assess the improvement of geosynthetic reinforcements in pavements than unconfined testing methods. The main characteristics and relative merits of the various confined tests are summarized in Table 1.

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Cyclic triaxial test</th>
<th>Cyclic pullout test</th>
<th>Bending stiffness test</th>
<th>Modified asphalt pavement analyzer</th>
<th>Pullout Stiffness Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading type</td>
<td>Cyclic</td>
<td>Cyclic</td>
<td>Cyclic</td>
<td>BS</td>
<td>Moving wheel</td>
</tr>
<tr>
<td>Design property</td>
<td>TBR</td>
<td>M_t</td>
<td>G_t</td>
<td>BS</td>
<td>RRR</td>
</tr>
<tr>
<td>Suitable design method</td>
<td>AASHTO</td>
<td>M-E</td>
<td>AASHTO</td>
<td>AASHTO</td>
<td>M-E</td>
</tr>
<tr>
<td>Ease of running test</td>
<td>Difficult</td>
<td>Difficult</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Easy</td>
</tr>
<tr>
<td>Control section</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Repeatability of test results</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ability to distinguish among various geosynthetics</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

The results of field, laboratory and numerical studies have demonstrated the benefits of using geosynthetics to improve the performance of pavements. However, selection criteria for geosynthetics to be used in reinforced pavements are not well established yet. The purpose of this paper was to summarize information generated so far to quantify the improvement of geosynthetics when used as reinforcement inclusions in flexible pavement projects.

Previous research has led to a reasonably good understanding of the benefits achieved with the use of geosynthetics in pavement design but, for the most part, only from the empirical point of view. That is, while methods have been developed for designing geosynthetic-reinforced flexible pavements, quantification of the reinforcement mechanisms, identification of properties governing the pavement performance and, ultimately, acceptable design guidelines are yet unavailable.

Efforts are currently under way in the US to develop design models consistent with the AASHTO and M-E approaches. The TBR and BCR ratios have been used in the AASHTO approach but are limited because the approaches are specific to the products and test conditions under which these ratios have been calibrated. Thus, M-E methods are considered more generic and, consequently, more promising as framework to incorporate the use of geosynthetics in current pavement design. However, due to the complex nature of flexible pavements, research to identify and quantify the properties governing the performance of reinforced pavements and its incorporation into M-E design is still under way.

The available literature involving field and laboratory test results is conclusive in that the mechanical properties of the geosynthetics used for pavement applications are improved under the confinement provided by the soil. Field test sections showed improved performance in the reinforced sections over the unreinforced sections in terms of reduced surface deflections. Overall, available experimental evidence indicates that the improved performance of geosynthetic-reinforced pavements can be attributed to lateral restraint mechanisms. Attempts have been made to quantify the lateral restraint in terms of the interface shear stiffness property of the soil-geosynthetic system.

A number of confined laboratory tests have been recently developed with the objective of quantifying the interface shear stiffness of the soil-geosynthetic
system. Several of these tests have applied cyclic loads to the soil-geosynthetic system in an attempt to simulate the dynamic nature of traffic-induced loading. However, probably due to the fact that measurements are sensitive to small changes in displacements, currently available methods have resulted in significant scatter in test results. This has compromised the repeatability of the approaches and has made it difficult to differentiate the performance among different geosynthetics. Ongoing research focusing on confined testing under low displacements using monotonic loading pullout stiffness test appears promising to quantify relevant mechanisms in pavement reinforcement design.

Overall, it may be concluded that significant advances have been made in the area of geosynthetic reinforcement of pavements. While the state of practice is rapidly improving, further research is still needed to provide a better theoretical basis to the currently available empirical design approaches.

REFERENCES

American Association of State Highway and Transportation Officials 1993. AASHTO Guide for design of pavement structures, Washington, DC, USA.

Cuelho, E.L. and Perkins, S.W. 2005. Resilient interface shear modulus from short-strap cyclic pullout tests. GSP-140, Slopes and retaining structures under seismic and static conditions, Geofrontiers, Austin, TX.

Hsieh, C. and Mao, L. 2005. A bench-scale performance test for evaluation of the geosynthetic reinforcement effects on granular base courses. GRI-18 Geosynthetics Research and Development in Progress, Geofrontiers, Austin, TX.

