VI Fuzzy Optimization

1. Fuzziness, an introduction

2. Fuzzy membership functions
 2.1 Membership function operations

3. Optimization in fuzzy environments
 3.1 Water allocation
 3.2 Reservoir storage and release targets
 3.3 Water quality management

4. Summary

5. References

The precise quantification of many system performance criteria and parameter and decision values is not always possible. Nor is it always necessary. When the values of variables cannot be precisely specified, they are said to be uncertain or fuzzy. If the values are uncertain, probability distributions may be used to quantify them. Alternatively, if they are best described by qualitative adjectives, such as dry or wet, hot or cold, clean or dirty, high or low, fuzzy membership functions can be used to quantify them. Both probability distributions and fuzzy membership functions of these uncertain or qualitative variables can be included in quantitative optimization models. This chapter focuses on fuzzy optimization modeling, again for the preliminary screening of alternative water resources plans and management policies. The next chapter addresses probabilistic optimization methods.

1. Fuzziness, an introduction

Large, small, pure, polluted, satisfactory, unsatisfactory, sufficient, insufficient, excellent, good, fair, poor, etc. are adjectives often used to describe various attributes or performance measures of water resource systems. These descriptors do not have ‘crisp’ well-defined
boundaries that separate them from other descriptors. A particular mix of economic and environmental impacts may be more acceptable to some and less acceptable to others. Plan A is better than Plan B. The water quality and temperature is good for swimming. These qualitative or ‘fuzzy’ statements convey information despite the imprecision of the italicized adjectives.

This chapter illustrates how fuzzy descriptors can be incorporated into optimization models of water resource systems. Before this can be done some definitions are needed.

2. Fuzzy membership functions

Consider a set A of real or integer numbers ranging from say 18 to 25. Thus $A = [18, 25]$. In classical (crisp) set theory any number x is either in or not in the set A. The statement ‘x belongs to A’ is either true or false depending on the value of x. The set A is referred to as a crisp set. If the set A is fuzzy, one may not be able to say for certain whether any number x is or is not in the set. The degree of truth attached to that statement is defined by a membership function. This function ranges from 0 (completely false) to 1 (completely true).

Consider the statement “The water temperature should be suitable for swimming.” Just what temperatures are suitable will depend on the person asked. It would be difficult for anyone to define precisely those temperatures that are suitable if it is understood that temperatures outside that range are absolutely not suitable.

A membership function defining the interval or range of water temperatures suitable for
swimming is shown in Figure 6.1. Such functions may be defined based on the responses of many potential swimmers. There is a zone of imprecision or disagreement at both ends of the range.

Figure 6.1. A fuzzy membership function for suitability of water temperature for swimming.

The form or shape of a membership function depends on the individual subjective feelings of the “members” or individuals who are asked their opinions. To define this particular membership function each individual i could be asked to define his or her comfortable water temperature interval (T_{1i}, T_{2i}). The membership value associated with any temperature value T equals the number of individuals who place that T within their range (T_{1i}, T_{2i}), divided by the number of individual opinions obtained. The assignment of membership values is based on subjective judgments, but such judgments seem to be sufficient for much of human communication.

2.1 Membership function operations

Denote the membership function associated with a fuzzy set A as $m_A(x)$. It defines the degree
or extent to which any value of \(x \) belongs to the set \(A \). Now consider two fuzzy sets, \(A \) and \(B \). Set \(A \) could be the range of temperatures that are considered too cold, and set \(B \) could be the range of temperatures that are considered too hot. Assume these two sets are as shown in Figure 6.2.

![Figure 6.2](image)

Figure 6.2. Two membership functions relating to swimming water temperature. Set \(A \) is the set defining the fraction of all individuals who think the water temperature is too cold, and Set \(B \) defines the fraction of all individuals who think the water temperature is too hot.

The degree or extent that a value of \(x \) belongs to either of two sets \(A \) or \(B \) is the maximum of the two individual membership function values. This union membership function is defined as

\[
m_{A\cup B}(x) = \max(m_A(x), m_B(x))
\]

(6.1)

This union set would represent the ranges of temperatures that are either too cold or too hot, as illustrated in Figure 6.3.
The degree or extent that a value of a variable x is simultaneously in both sets A and B is the minimum of the two individual membership function values. This intersection membership function is defined as:

$$m_{A \cap B}(x) = \text{minimum} (m_A(x), m_B(x))$$ \hspace{1cm} (6.2)

This intersection set would define the range of temperatures that are considered both too cold and too hot. Of course it could be an empty set, as indeed it is in this case based on the two membership functions shown in Figure 6.2. The minimum of either function for any value of x is 0.

The complement of the membership function for a fuzzy set A is the membership function, $m_{A^c}(x)$, of A^c.

$$m_{A^c}(x) = 1 - m_A(x)$$ \hspace{1cm} (6.3)

The complement of set A (set A is defined in Figure 6.2) would represent the range of temperatures considered not too cold for swimming. The complement of set B (set B is defined
in Figure 6.2) would represent the range of temperatures considered not too hot for swimming. The complement of the union set as shown in Figure 6.3 would be the range of temperatures considered just right. This complement set is the same as shown in Figure 6.1.

3. Optimization in fuzzy environments

Consider the problem of finding the maximum value of x given that x cannot exceed 11. This is written as:

Maximize $U = x$ \hspace{5cm} (6.4)

Subject to:

$$x \leq 11$$ \hspace{5cm} (6.5)

The obvious optimal solution, $x = 11$, is shown in Figure 6.4.

![Figure 6.4](image)

Figure 6.4. A plot of the crisp optimization problem defined by Equations 6.4 and 6.5.

Now suppose the objective is to obtain a value of x substantially larger than 10 while making
sure that the maximum value of x should be in the vicinity of 11. This is no longer a crisp optimization problem; rather it is a fuzzy one.

What is perceived to be substantially larger than 10 could be defined by a membership function, again representing the results of an opinion poll of what individuals think is substantially larger than 10. Suppose the membership function for this goal, $m_G(x)$, reflecting the results of such a poll, can be defined as:

$$m_G(x) = \frac{1}{1 + \left[\frac{1}{(x - 10)^2}\right]} \text{ if } x > 10$$

$$m_G(x) = 0 \text{ otherwise}$$

This function is shown in Figure 6.5.

![Figure 6.5. Membership function defining the fraction of individuals who think a particular value of x is ‘substantially’ greater than 10.](image)

The constraint on x is that it ‘should be in the vicinity of 11.’ Suppose the results of a poll asking individuals to state what they consider to be in the vicinity of 11 results in the following constraint membership function, $m_C(x)$:
\[m_C(x) = \frac{1}{1/(1 + (x - 11)^4)} \]

(6.7)

This membership function is shown in Figure 6.6.

![Figure 6.6. Membership function representing the vicinity of 11.](image)

Recall the objective is to obtain a value of \(x \) substantially larger than 10 while making sure that the maximum value of \(x \) should be in the vicinity of 11. In this fuzzy environment the objective is to maximize the extent to which \(x \) exceeds 10 while keeping \(x \) in the vicinity of 11. The solution can be viewed as finding the value of \(x \) that maximizes the minimum values of both membership functions. Thus we can define the intersection of both membership functions and find the value of \(x \) that maximizes that intersection membership function.

The intersection membership function is:

\[m_D(x) = \text{minimum}\{m_C(x), m_C(x)\} = \begin{cases} 1/(1 + (x - 10)^2), & \text{if } x > 10 \\ 1/(1 + (x - 11)^4), & \text{otherwise} \end{cases} \]

(6.8)

This intersection set, and the value of \(x \) that maximizes its value, is shown in Figure 6.7.
Figure 6.7. The intersection membership function and the value of x that represents a fuzzy optimal decision.

This fuzzy decision is the value of x that maximizes the intersection membership function $m_D(x)$, or equivalently:

$$\text{Maximize } m_D(x) = \max \min \{ m_G(x), m_C(x) \}$$

(6.9)

Using LINGO®, the optimal solution is $x = 11.75$ and $m_D(x) = 0.755$.

3.1 Water allocation

Next consider the application of fuzzy modeling to the water allocation problem as illustrated in Figure 6.8.
Figure 6.8. Three water-consuming firms \(i \) obtain benefits \(B_i \) from their allocations \(x_i \) of water from a river whose flow is \(Q \).

Assume, as in the previous uses of this example problem, the problem is to find the allocations of water to each firm that maximize the total benefits \(TB(x) \).

\[
\text{Maximize } TB(x) = (6 x_1 - x_1^2) + (7 x_2 - 1.5 x_2^3) + (8 x_3 - 0.5 x_3^2) \quad (6.10)
\]

These allocations cannot exceed the amount of water available, \(Q \), less any that must remain in the river, \(R \). Assuming the available flow for allocations, \(Q-R \), is 6, the crisp optimization problem is to maximize Equation 6.10 subject to the resource constraint:

\[
x_1 + x_2 + x_3 \leq 6 \quad (6.11)
\]

The optimal solution is \(x_1 = 1, x_2 = 1, \) and \(x_3 = 4 \) as previously obtained using several different optimization methods. The maximum total benefits, \(TB(x) \), from Equation 6.10, equal 34.5.
To create a fuzzy equivalent of this crisp model, the objective can be expressed as a membership function of the set of all possible objective values. The higher the objective value the greater the membership function value. Since membership functions range from 0 to 1, the objective needs to be scaled so that it also ranges from 0 to 1.

The highest value the objective occurs when there is sufficient water to maximize each firm’s benefits. This unconstrained solution would result in a total benefit of 49.17 and this happens when $x_1 = 3, x_2 = 2.33,$ and $x_3 = 8$. Thus the objective membership function can be expressed by

$$m(x) = \frac{(6x_1 - x_1^2) + (7x_2 - 1.5x_2^3) + (8x_3 - 0.5x_3^2)}{49.17} \quad (6.12)$$

It is obvious that the two functions (Equations 6.10 and 6.12) are equivalent. However, the goal of maximizing objective function 6.10 is changed to that of maximizing the degree of reaching the objective target. The optimization problem becomes:

$$\text{maximize} \quad m(x) = \frac{[(6x_1 - x_1^2) + (7x_2 - 1.5x_2^3) + (8x_3 - 0.5x_3^2)]}{49.17}$$

subject to:

$$x_1 + x_2 + x_3 \leq 6 \quad (6.13)$$

The optimal solution of (6.13) is the same as (6.10 and 6.11). The optimal degree of satisfaction is $m(x) = 0.70$.

Next, assume the amount of resources available to be allocated is limited to “about 6 units more
or less”, i.e. a fuzzy constraint. Assume the membership function describing this constraint is defined by Equation 6.14 and is shown in Figure 6.9.

\[m_c(x) = \begin{cases} 1 & \text{if } x_1 + x_2 + x_3 \leq 5 \\ \frac{7 - (x_1 + x_2 + x_3)}{2} & \text{if } 5 \leq x_1 + x_2 + x_3 \leq 7 \\ 0 & \text{if } x_1 + x_2 + x_3 \geq 5 \end{cases} \] (6.14)

![Figure 6.9. Membership function for ‘about 6 units more or less.’](image)

The fuzzy optimization problem becomes:

Maximize minimum \((m_G(x), m_C(x))\)

Subject to:

\[m_G(x) = \frac{[(6x_1 - x_1^2) + (7x_2 - 1.5x_2^3) + (8x_3 - 0.5x_3^2)]}{49.17} \]

\[m_C(x) = \frac{7 - (x_1 + x_2 + x_3)}{2} \] (6.15)
Solving (6.15) using LINGO® to find the maximum of a lower bound on each of the two objectives, the optimal fuzzy decisions are $x_1 = 0.91, x_2 = 0.94, x_3 = 3.81, m(x) = 0.67$, and the total net benefit, Equation 6.10, is $TB(x) = 33.1$. Compare this with the crisp solution of $x_1 = 1, x_2 = 1, x_3 = 4$, and the total net benefit of 34.5.

3.2 Reservoir storage and release targets

Consider the problem of trying to identify a reservoir storage volume target, T^S, for the planning of recreation facilities given a known minimum release target, T^R, and reservoir capacity K. Assume, in this simple example, these known release and unknown storage targets must apply in each of the three seasons in a year. The objective will be to find the highest value of the storage target, T^S, that minimizes the sum of squared deviations from actual storage volumes and releases less than the minimum release target.

Given a sequence of inflows, Q_t, the optimization model is:

\[
\text{Minimize } D = \sum_{t=1}^{3} \left[(T^S - S_t)^2 + DR_t^2 \right] - 0.001 T^S
\]

Subject to:

\[
S_t + Q_t - R_t = S_{t+1} \quad t = 1, 2, 3; \quad \text{if } t = 3, t+1 = 1
\]

\[
S_t \leq K \quad t = 1, 2, 3;
\]

\[
R_t \geq T^R - DR_t \quad t = 1, 2, 3;
\]

Assume $K = 20$, $T^R = 25$ and the inflows Q_t are 5, 50 and 20 for periods $t = 1, 2$ and 3. The
optimal solution, yielding an objective value of 184.4, obtained by LINGO® is listed in Table 6.1.

Table 6.1. The LINGO® solution to the reservoir optimization problem.

<table>
<thead>
<tr>
<th>variable</th>
<th>value</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_s</td>
<td>15.6</td>
<td>target storage for each period</td>
</tr>
<tr>
<td>S_1</td>
<td>19.4</td>
<td>reservoir storage volume at beginning of period 1</td>
</tr>
<tr>
<td>S_2</td>
<td>7.5</td>
<td>reservoir storage volume at beginning of period 2</td>
</tr>
<tr>
<td>S_3</td>
<td>20.0</td>
<td>reservoir storage volume at beginning of period 3</td>
</tr>
<tr>
<td>R_1</td>
<td>14.4</td>
<td>reservoir release during period 1</td>
</tr>
<tr>
<td>R_2</td>
<td>27.5</td>
<td>reservoir release during period 2</td>
</tr>
<tr>
<td>R_3</td>
<td>18.1</td>
<td>reservoir release during period 3</td>
</tr>
</tbody>
</table>

Now consider changing the objective function into maximizing the weighted degrees of ‘satisfying’ the reservoir storage volume and release targets.

Maximize degree $= \sum_t (w_S m_{St} + w_R m_{Rt})$ \hspace{1cm} (6.20)

where w_S and w_R are weights indicating the relative importance of storage volume targets and release targets respectively. The variables m_{St} are the degrees of satisfying storage volume target in the three periods t, expressed by Equation 6.21. The variables m_{Rt} are the degrees of satisfying release target in periods t, expressed by Equation 6.22.
Eq. 6.21 and 6.22 are shown in Figures 6.10 and 6.11 respectively.

This optimization problem written for solution using LINGO® is as shown in Box 6.1.
Box 6.1. Reservoir model written for solution by LINGO®.

```
SETS:
PERIODS /1..3/: I, R, m, ms, mr; s1, s2, ms1, ms2;
NUMBERS /1..4/: S;
ENDSETS

*** OBJECTIVE ***; max = degree * 0.001 * TS;
!Initial conditions; s(I) = s(TN + 1);
!Total degree of satisfaction; degree = @SUM(PERIODS(t): m(t));
!Weighted degree in period t; @FOR (PERIODS(t):
  m(t) = ws*ms(t) + wr*mr(t);
  S(t) = s1(t) + s2(t);
  s1(t) < TS; s2(t) < K - TS;
  ms(t) = (s1(t)/TS) - (s2(t)/(K-TS)) = rewritten in case dividing by 0;
  ms1(t) = s1(t); ms2(t) = s2(t); m(t) = ms1(t) - ms2(t);
  mr(t) < R(t)/TR; mr(t) < l; S(t+1) = S(t) + l(t) - R(t;
)DATA:
TN = 3; K = 20; ws = ?; wr = ?; l = 5, 50, 20; TR = 25;
ENDDATA
```

Given weights $w_s = 0.4$ and $w_r = 0.6$, the optimal solution obtained from solving the model shown in Box 6.1 using LINGO® is listed in Table 6.2.

Table 6.2. Solution of fuzzy model for reservoir storage volumes and releases.
If the objective Equation 6.20 is changed to one of maximizing the minimum membership function value, the objective becomes:

$$\text{Maximize } m_{\text{min}} = \text{maximize minimum } \{m_{\text{St}}, m_{\text{Rt}}\} \quad (6.23)$$

A common lower bound is set on each membership function, m_{St} and m_{Rt}, and this variable is maximized. The optimal solution changes somewhat and is as shown in Table 6.3.
Table 6.3. Optimal solution of reservoir operation, showing only selected variable values that have changed compared to Table 6.2.

This solution differs from that shown in Table 6.2 primarily in the values of the membership functions. The target storage volume operating variable value, T^s, stays the same in this example.

3.3 Water quality management

Consider the stream pollution problem illustrated in Figure 6.12. The stream receives waste
from sources located at sites 1 and 2. Without some waste treatment at these sites, the pollutant concentrations at sites 2 and 3 will exceed the maximum desired concentration. The problem is to find the level, \(x_i \), of wastewater treatment (waste removed) at sites \(i = 1 \) and \(2 \) required to meet the quality standards at sites 2 and 3 at a minimum total cost. The data used for the problem shown in Figure 6.12 are listed in Table 6.4.

Figure 6.12. A stream pollution problem of finding the waste removal efficiencies \((x_1, x_2)\) that meet the stream quality standards at least cost.

Table 6.4. Parameter values selected for the water quality management problem illustrated in Figure 6.12.
The crisp model for this problem, as discussed in the previous chapter, is:

Minimize \(C_1(x_1) + C_2(x_2) \) \hspace{1cm} (6.24)

Subject to:

Water quality constraint at site 2:

\[
\left[p_1 q_1 + w_1 (1-x_1) \right] a_{12} / q_2 \leq p_2 \]

\[
\left[(32)(10) + 250000(1-x_1) / 86.4 \right] 0.25 / 12 \leq 20
\]

which when simplified is: \(x_1 \geq 0.8 \)

Water quality constraint at site 3:

\[
\left\{ \left[p_1 q_1 + w_1 (1-x_1) \right] a_{13} + \left[w_2 (1-x_2) \right] a_{23} \right\} / q_3 \leq p_3 \]

\[
\left\{ \left[(32)(10) + 250000(1-x_1) / 86.4 \right] 0.15 +
\left[80000(1-x_2) / 86.4 \right] 0.60 \right\} / 13 \leq 20
\]
which when simplified is \(x_1 + 1.28 x_2 \geq 1.79 \)

Restrictions on fractions of waste removal:

\[
0 \leq x_i \leq 1.0 \quad \text{for sites } i = 1 \text{ and } 2. \quad (6.27)
\]

For a wide range of reasonable costs, the optimal solution found using linear programming was 0.80 and 0.77 or essentially 80% removal efficiencies at sites 1 and 2. Compare this solution with that of the following fuzzy model.

To develop a fuzzy version of this problem, suppose the maximum allowable pollutant concentrations in the stream at sites 2 and 3 were expressed as ‘about 20 mg/l or less.’ Obtaining opinions of individuals of what they consider to be’20 mg/l or less’, a membership function can be defined. Assume it is as shown in Figure 6.13.

![Membership function of ‘about 20 mg/l or less.’](image)

Figure 6.13. Membership function of ‘about 20 mg/l or less.’

Next, assume that the government environmental agency expects each polluter to install best available technology (BAT) or to carry out best management practices (BMP) regardless of
whether or not this is required to meet stream quality standards. Asking experts just what BAT or BMP means with respect to treatment efficiencies could result in a variety of answers. These responses can be used to define membership functions for each of the two firms in this example. Assume these membership functions for both firms are as shown in Figure 6.14.

![Figure 6.14. Membership function for best available treatment technology.](image)

Finally assume there is a third concern and that is expressed having to do with equity. It is expected that no polluter should be required to treat at a higher efficiency, more or less, than the other polluter. A membership function defining just what differences are acceptable or equitable, could quantify this concern. Assume such a membership function is as shown in Figure 6.15.
Figure 6.15. Equity membership function in terms of the absolute difference between the two treatment efficiencies.

Considering each of these membership functions as objectives a number of fuzzy optimization models can be defined. One is to find the treatment efficiencies that maximize the minimum value of each of these membership functions.

\[
\text{Maximize } m = \min\{m_P, m_T, m_E\} \quad (6.28)
\]

If we assume that the pollutant concentrations at sites \(j = 2 \) and \(3 \) will not exceed 23 mg/l, the pollutant concentration membership functions \(m_{Pj} \) are:

\[
m_{Pj} = 1 - \frac{p_{2j}}{5} \quad (6.29)
\]

The pollutant concentration at each site \(j \) is the sum of two components:

\[
P_j = p_{1j} + p_{2j} \quad (6.30)
\]

where

\[
p_{1j} \leq 18 \quad (6.31)
\]
If we assume the treatment plant efficiencies will be between 70 and 90% at both sites \(i = 1 \) and 2, the treatment technology membership functions \(m_{Ti} \) are

\[
m_{Ti} = \left(\frac{x_{2i}}{0.05}\right) - \left(\frac{x_{4i}}{0.10}\right)
\]

and the treatment efficiencies are

\[
x_i = 0.70 + x_{2i} + x_{3i} + x_{4i}
\]

where

\[
x_{2i} \leq 0.05
\]

\[
x_{3i} \leq 0.05
\]

\[
x_{4i} \leq 0.10
\]

Finally, assuming the difference between treatment efficiencies will be no greater than 14, the equity membership function, \(m_{E} \), is:

\[
m_{E} = Z - \frac{0.5}{0.05} D_1 + 0.5 \left(1 - Z\right) - \frac{0.5/\left(0.14 - 0.05\right)}{D_2}
\]

where

\[
D_1 \leq 0.05 \ Z
\]

\[
D_2 \leq \left(0.14 - 0.05\right) \left(1-Z\right)
\]

\[
x_1 - x_2 = DP - DM
\]

\[
DP + DM = D_1 + 0.05 \left(1-Z\right) + D_2
\]

\[
Z \text{ is a binary 0,1 variable.}
\]

The remainder of the water quality model remains the same:
Water quality constraint at site 2:

\[
[P_1Q_1 + W_1(1-x_1)] a_{12} / Q_2 = P_2
\]

\[
((32)(10) + 250000(1-x_1) / 86.4) 0.25 / 12 = P_2
\]

Water quality constraint at site 3:

\[
\{[P_1Q_1 + W_1(1-x_1)] a_{13} + [W_2(1-x_2)] a_{23} \} / Q_3 = P_3
\]

\[
((32)(10) + 250000(1-x_1) / 86.4) 0.15 + (80000(1-x_2) / 86.4) 0.60 \} / 13 = P_3
\]

Restrictions on fractions of waste removal:

\[0 \leq x_i \leq 1.0 \quad \text{for sites } i = 1 \text{ and } 2.\]

Solving this fuzzy model using LINGO® yields the results shown in Table 6.5.

Table 6.5. Solution to fuzzy water quality management model Equations 6.28 to 6.46.

<table>
<thead>
<tr>
<th>variable</th>
<th>value</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.93</td>
<td>minimum membership value</td>
</tr>
<tr>
<td>X_1</td>
<td>0.81</td>
<td>treatment efficiency at site 1</td>
</tr>
<tr>
<td>X_2</td>
<td>0.81</td>
<td>treatment efficiency at site 2</td>
</tr>
<tr>
<td>P_2</td>
<td>18.28</td>
<td>pollutant concentration just upstream of site 2</td>
</tr>
<tr>
<td>P_3</td>
<td>18.36</td>
<td>pollutant concentration just upstream of site 3</td>
</tr>
<tr>
<td>M_p^2</td>
<td>0.94</td>
<td>membership value for pollutant concentration site 2</td>
</tr>
<tr>
<td>M_p^3</td>
<td>0.93</td>
<td>membership value for pollutant concentration site 3</td>
</tr>
<tr>
<td>M^T_1</td>
<td>0.93</td>
<td>membership value for treatment level site 1</td>
</tr>
<tr>
<td>M^T_2</td>
<td>0.93</td>
<td>membership value for treatment level site 2</td>
</tr>
<tr>
<td>M_e</td>
<td>1.00</td>
<td>membership value for difference in treatment</td>
</tr>
</tbody>
</table>
This solution confirms the assumptions made when constructing the representations of the membership functions in the model. It is also very similar to the least cost solution found from solving the crisp LP model.

4. Summary

Optimization models incorporating fuzzy membership functions are sometimes appropriate when only qualitative statements are made when stating objectives and / or constraints of a particular water management problem or issue. This chapter has shown how fuzzy optimization can be applied to some simple example problems associated with water allocations, reservoir operation, and pollution control. This has been only an introduction. Those interested in more detailed explanations and applications may refer to any of the references listed in the next section.
5. References

Bárdossy, A. and L. Duckstein, 1992

Bogardi, I., Bárdossy, A., Mays, M. D., and Duckstein, L., 1996

Chen, S. Y., 1994
Theory and application of system fuzzy decision making, Press of Dalian University of Technology, Dalian, China (in Chinese).

Franks, S.W., Gineste, Ph., Beven, K.J. and Merot, Ph., (1998)
On constraining the predictions of distributed models: the incorporation of fuzzy estimates of saturated areas into the calibration process, Water Resources Research, 34(4), 787-797.

Franks, S.W. and Beven, K.J., 1997

Lootsma, F. A., 1997
Fuzzy logic for planning and decision making, Kluwer Academic Publishers, Boston.

Mackay, D.S. and Y.B. Robinson. 2000

Ozelkan E. C., L. Duckstein, A. Galambosi, and, A. Bardossy, 1998

Multi-objective fuzzy regression: a general framework, Computers and Operations Research, Special Issue on Artificial Intelligence and Decision Support with Multiple Criteria 27(7-8), 635-652.
Ozelkan, E. C. and L. Duckstein, 1999

Samanta, S., and D. S. Mackay, 2003

Terano, T., Asai, K. and Sugeno, M., 1992

Zhou, H.-C., 2000
Notes on Fuzzy optimization and applications. Cornell University, Ithaca, NY.

Zimmermann, H.-J., 1987