CE 374 K – Hydrology

Transport Processes

Daene C. McKinney

Transport In The Hydrologic Cycle

- Energy enters hydrologic cycle through solar radiation
- Energy, momentum and mass transport in the atmosphere and oceans
- Energy redistribution occurs by conduction and convection it the atmosphere and oceans

Transport Phenomena

	Mass	Momentum	Energy
Laminar Flux	$f_m = -D \frac{dC}{dz}$ Fick's Law	$ au = \mu \frac{du}{dz}$ Newton's Law	$f_h = -k \frac{dT}{dz}$ Fourier's Law
Turbulent Flux	$f_m = -\rho K_w \frac{dC}{dz}$	$\tau = \rho K_m \frac{du}{dz}$	$f_h = -\rho C_p K_h \frac{dT}{dz}$

Flux = Flow Rate/Area

Shear stress = Momentum Flux = lateral movement of momentum between fluid elements with different velocities

Turbulent momentum flux – dominant mechanism in hydrology

Conduction and Convection

Conduction

- Molecular exchange between different layers due to *differences* in
 - temperature (transporting heat),
 - velocity (transporting momentum),
 - concentration (transporting mass)

Convection

- Turbulent exchange of mass, energy, and momentum
- Much greater than molecular exchange (conduction)

In a wide stream:

$$\Re = \frac{VD\rho}{\mu} \ge 500 \ (turbulent)$$

- V = mean velocity
- D =depth of flowing stream

Turbulence occurs :

$$VD \ge 7x10^{-3} (air)$$

 $VD \ge 6x10^{-6} (water)$

Velocity Profile

- Determining momentum transfer requires knowing velocity profile
- Flow of air over land or water log velocity profile

$$u(z) = \frac{u^*}{k} \ln(\frac{z}{z_0})$$

- *k* Von Karman constant*z*₀ Roughness height
- $u^* = \sqrt{\tau_0 / \rho}$ Shear velocity
- au_0 Wall shear stress

$$\frac{du}{dz} = \frac{u^*}{k} \frac{1}{z}$$
 Velocity profile

Radiation

- <u>Low</u> temperatures
 - Conduction and convection dominate
- <u>High</u> temperatures
 - Radiation dominates
- Earth's temperature (185 K to 311 K)
 - Balance between them
- <u>Solar constant</u> radiation received on a plane at outer limit of atmosphere (1366 W/m²)

Radiation

- Radiation loss in the atmosphere
 - <u>Reflection</u> (clouds, snow, ice, water, surfaces)
 - Albedo, makes clouds appear white
 - **<u>Scattering</u>** (molecules, particles), and
 - <u>Absorption</u> (molecules) Atmosphere is transparent to shortwave, but H2O and CO2 absorb longwave reradiation
 - <u>Greehouse effect</u>, warms earth and provides energy for circulation of oceans and atmosphere

 $0 \le \alpha = \frac{\text{Reflected}}{1} \le 1$

Incident

Radiation

Albedo
Water
0.03 - 0.4

 Net radiation at surface (main source of energy for evaporation)

Surface	Albedo	
Water	0.03 - 0.4	
White sand	0.34 - 0.4	
Snow	0.4 - 0.85	
Green grass	0.26	
Top of Pine	0.14	

Atmospheric Heat Balance

