CE 374 K – Hydrology

Momentum and Energy

Daene C. McKinney

Momentum Equation

Reynolds's Transport Theorem
$$\frac{d\vec{B}}{dt} = \frac{d}{dt} \iiint_{CV} \vec{\beta} \rho d\forall + \iint_{CS} \vec{\beta} \rho \vec{V} \cdot d\vec{A}$$

 $\vec{B} = M\vec{V}$ momentum of the system; $\vec{\beta} = \frac{d\vec{B}}{dm} = \vec{V}$
Newton's Second Law $\frac{d\vec{B}}{dt} = \frac{dM\vec{V}}{dt} = \sum_{CS} \vec{F}$

 $\sum \vec{F} = \frac{d}{dt} \iiint \vec{V} \rho d \forall + \oiint \vec{V} \rho \vec{V} \cdot d\vec{A} \quad \text{Unsteady, nonuniform flow}$

Nonuniform flow – velocity varies in space Uniform flow - velocity constant in space Unsteady flow – velocity varies in time Steady flow – velocity constant in time

Momentum Equation

$$\sum \vec{F} = \frac{d}{dt} \iiint \vec{V} \rho d \forall + \oiint \vec{V} \rho \vec{V} \cdot d\vec{A}$$

 $\sum \vec{F} = 0$ Steady, uniform flow

Internal Energy

• Sensible Heat – related to temperature

 $de_u = C_p dT$

Specific heat C_p

- Latent Heat related to phase changes
 - Fusion/Melting
 - ice water, 0.33x10⁶ J/kg
 - Vaporization/Condensation
 - water water vapor, 4.2x10³ J/kg
 - Sublimation
 - ice water vapor, 2.5x10⁶ J/kg
 - Main internal energy change in hydrology

Steady Uniform Flow in an Open Channel

Uniform channel

Steady Uniform Flow in an Open Channel

Flow in an Open Channel

Steady, uniform flow

- Momentum $\sum \vec{\mathbf{F}} = 0$
- 3 forces on CV:
 - Pressure: cancels

- Friction:
$$\vec{\mathbf{F}}_f = -\tau_0(PL)$$

- Gravity:
$$\vec{\mathbf{F}}_g = \gamma AL \sin \theta = \gamma ALS_f$$
 $S_0 = S_f$

- Sum: $\Sigma \vec{\mathbf{F}} = 0 = -\tau_0 (PL) + \gamma ALS_f \qquad R = \frac{A}{P}$

$$\tau_0 = \gamma R S_f$$

Open Channel Flow

- Darcy Weisbach Equation: head loss due to wall friction $h_f = f \frac{L}{D} \frac{V^2}{2g}$ $S_f = \frac{h_f}{L}$ $D = 4R = 4\frac{A}{P}$
- Chezy's Equation for open channel flow

$$V = C\sqrt{RS_f} \qquad C = \sqrt{\frac{8g}{f}}$$

Manning's Equation for open channel flow

$$V = \frac{1}{n} R^{\frac{2}{3}} S_{f}^{\frac{1}{2}} \qquad C = \frac{1}{n} R^{\frac{1}{6}}$$

Manning's Equation

Manning's Equation for open channel flow

$$V = \frac{1}{n} R^{\frac{2}{3}} S_{f}^{\frac{1}{2}} \qquad V = \frac{1.49}{n} R^{\frac{2}{3}} S_{f}^{\frac{1}{2}} \qquad R = \frac{A}{P}$$

Valid for fully turbulent flow

$$n^6 \sqrt{RS_f} \ge 1.1 x 10^{-13}$$

As $n \uparrow, V \downarrow$

 Laminar flow: use Chezy with f from Moody diagram

Manning, Robert, "On the Flow of Water in Open Channels and Pipes," *Transactions of the Institution of Civil Engineers of Ireland*, 1891

Manning's n

Material	Manning <i>n</i>	Material	Manning <i>n</i>
Natural Streams		Excavated Earth Channels	
Clean and Straight	0.030	Clean	0.022
Major Rivers	0.035	Gravelly	0.025
Sluggish with Deep Pools	0.040	Weedy	0.030
		Stony, Cobbles	0.035
Floodplains	0.035	Non-Metals	
Pasture, Farmland	0.050	Finished Concrete	0.012
Light Brush	0.075	Unfinished Concrete	0.014
Heavy Brush	0.15	Gravel	0.029
Trees		Earth	0.025

Ethics Question

• (http://www.lmnoeng.com/manningn.htm)

 Is it ethical to use an engineering software program to solve a problem if you cannot complete the calculations manually?

Manning's n

- Hydraulic computations related to discharge require an evaluation of the roughness of the channel.
- This is an art developed through experience.
- The appearance of some typical channels whose roughness coefficients are known can be studied on the web page:

wwwrcamnl.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/

Example

• Manning's equation: Steady, uniform flow in an open channel. Find velocity and flow rate

Circon

Given:	P = B + 2xH = 200 + 2x5 = 210	
H = 5 ft		
S = 0.03 %	$R = \frac{A}{R} = \frac{200x5}{210} = 4.76 ft$	
B = 200 ft; and	P 210	
n = 0.015		

ft

$$V = \frac{1.49}{n} R^{\frac{2}{3}} S_f^{\frac{1}{2}}$$

= $\frac{1.49}{0.015} (4.76)^{\frac{2}{3}} (0.0003)^{\frac{1}{2}}$
= 4.87 ft/s

 $Q = VA = 4.87 x 200 x 5 = 4870 \ ft^3 \ / \ s$

You can check that flow is, indeed, turbulent