CE 374 K – Hydrology

Global Water Cycle

Daene C. McKinney

Some Terminology

- Hydrology (ηδρολογια)
 - Hudor "water"; Logy "study of"
 - <u>Study of Water</u> and its properties, distribution, and effects on the Earth's surface, soil, and atmosphere

Water Management

- Sustainable use of water resrouces
- Manipulating the hydrologic cycle
 - Hydraulic structures, water supply, water treatment, wastewater treatment & disposal, irrigation, hydropower generation, flood control, etc.

Some History

- Water Management
 - Civilization developed on rivers:
 - Hydraulic engineers build canals, levees, dams, water conduits, and wells
 - Egyptians (Nile)
 - Romans (Tiber)
 - Mesopotamia (Tigris and Euphrates)
 - China (Huang Ho and Yangtze)
 - Pakistan (Indus)
 - India (Ganges)

Minoan culture of Thera

Roman aqueduct in France

Some Misperceptions

- Thales (Greek, 640-546 bc)
 - wind blew water into rocks along the coast, forcing water up through the rock under high pressure, where it eventually emerged in springs
- Plato (Greek, 427-347 bc)
 - water was contained in a single underground cavern, the 'Tartarus', and was pushed up into springs by underground forces to return to the oceans
- Aristotle (Greek, 384-322 bc)
 - water vapor from the soil condensed in cool mountain caverns and formed underground lakes that fed springs.
- Seneca (Roman, 4 bc 65 ad)
 - precipitation that fell to the earth and infiltrated was not sufficient to supply water that was observed as streamflow.
- Kepler (German, 1571-1630)
 - earth digested salt water and excreted fresh water as waste.

height of the flooding of the Nile in various years

Figuring It Out

- da Vinci and Palissy (16th cent.)
 - linked underground water to rainwater infiltrating into the soil and then to stream flow

• Perrault (French, 17th cent)

 measured rainfall in the Seine River watershed and showed precipitation to be six times more than the river flow proving that the source of water in rivers is precipitation falling on soil

• Halley (English, 1656-1742)

- evaporation experiments, investigated the water balance of the Mediterranean
- 19th Century
 - Dalton Evaporation
 - Darcy Groundwater flow
 - Manning Open channel flow

Units

 If ½ in. of rain falls on 1 sq. mi., what is the equivalent volume of water?

$$0.5 \text{ in } * \frac{1 \text{ ft}}{12 \text{ in}} * (1 \text{ mi } * 5280 \text{ ft/mi})^2 =$$

$$0.0416 \, ft * 27,878,400 \, \text{ft}^2 =$$

 $1,\!161,\!600\,\mathrm{ft}^3\approx$

- 26.4 gal/day
- 328,000 people for a day =
 - 899 people for a year =
- That's a lot of water!

 If 10 mm of rain falls on 259 hectares (ha = 10,000 m²), what is the equivalent volume of water?

100L/day = 26.4 gal/day

More Units

- 1 ft = 0.3048 m
- $1 \text{ m}^3 = 28.3168 \text{x} 10^{-3} \text{ ft}^3$
- 1 m³ = 35.3147 ft³
- 1 ha = 10,000 m²
- 1 acre = 43,560 ft² = 0.4047 ha = 4047 m²
- 1 gal = 3.785x10 ⁻³ m³
 = 3.785 L

- $1 \text{ m}^3 = 8.11 \text{x} 10^{-4} \text{ af}$ $10^9 \text{ m}^3 = 8.11 \text{x} 10^5 \text{ af}$ $1 \text{ km}^3 = 0.811 \text{ maf}$
- 1 m³ = 264 gal
 10⁹ m³ = 264x10⁹ gal
 1 km³ = 264 bg
 1 km³/yr = 0.7234 bgd

Global Water Resources

Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Cultural Organisation (UNESCO, Paris), 1999.

Global Water Cycle

Residence time: Average travel time for water through a subsystem of the hydrologic cycle

 $T_r = S/Q$ Storage/flowrate

Principal sources of fresh water for human activities (44,800 km3/yr)

Global Water Availability

Source: World Resources 2000-2001, People and Ecosystems: The Fraying Web of Life, World Resources Institute (WRI), Washington DC, 2000.

Population and Water Use

Global Water Withdrawal & Consumption

Global Water Use

Typical Domestic Water Use

- 10 40 L/person/day (water scarce)
- 50 100 L/person/day (low-income)
- 100 600 L/person/day (high-income)
 - Differences in domestic freshwater use:
 - Piped or carried
 - Number/type of appliances and sanitation

Water Stress Index

- Based on human consumption and linked to population growth
- Domestic requirement:

3.65 - 14.6 m³/person/year (water scarce) 36.5 - 219 m³/person/year (high-income)

• Associated agricultural, industrial & energy need:

20 x domestic requirement 73 – 292 m³/person/year 730 – 4380 m³/person/year

• Total need:

 $77 - 307 \text{ m}^3/\text{person/year}$ (water scarce) $767 - 4599 \text{ m}^3/\text{person/year}$ (high-income)

http://www.veoliawater.com

Water Stress (m3/person/year)

- Water scarcity: <1000 m³ /person/year
 - chronic and widespread freshwater problems
- Water stress: <1700 m³ /person/year
 - intermittent, localised shortages of freshwater
- **Relative sufficiency**: >1700 m³ /person/year

www.transboundarywaters.orst.edu

> 5,000,001

Watershed

- Watershed: Area of land draining to a stream at a given location
- Watershed Divide: Line dividing land draining to a stream from land draining away from the stream
- **Synonyms:** Watershed, Catchment, Basin, Drainage area

Digital Elevation Model

Cell Definition

Eight Direction Pour Point Model

Part of a Digital Elevation Model

Flow Accumulation Grid

3 cells flow to this cell ho 0 cells flow to this cell

0	0	0	0	0
0	3	2	2	0
0	0	11	0	1
0	0	1	15	0
0	2	5	24	1

Water will flow from low values to high values

Stream Network

Set a threshold,

e.g, Streamflow if Accumulation > 5

Stream Network for Different Thresholds

100 grid cell threshold

Rio Grande Basin

Rio Grande

Waller Creek

Waller Creek

Waller Creek

Thanks to: Esteban Azagra