Momentum Equation

Reynolds’s Transport Theorem

\[
\frac{d\vec{B}}{dt} = \frac{d}{dt} \int_V \vec{\beta} \rho d\mathcal{V} + \int_{CS} \vec{\beta} \rho \vec{V} \cdot d\vec{A}
\]

\[\vec{B} = M\vec{V}\] momentum of the system; \[\vec{\beta} = \frac{d\vec{B}}{dm} = \vec{V}\]

Newton’s Second Law

\[
\frac{d\vec{B}}{dt} = \frac{dM\vec{V}}{dt} = \sum \vec{F}
\]

\[
\sum \vec{F} = \frac{d}{dt} \int_V \vec{V} \rho d\mathcal{V} + \int_{CS} \vec{V} \rho \vec{V} \cdot d\vec{A}
\] Unsteady, nonuniform flow

Nonuniform flow – velocity varies in space
Uniform flow - velocity constant in space
Unsteady flow – velocity varies in time
Steady flow – velocity constant in time
Momentum Equation

\[\sum \mathbf{F} = \frac{d}{dt} \iiint \mathbf{V} \rho d\mathbf{A} + \iiint \mathbf{V} \rho \mathbf{V} \cdot d\mathbf{A} \]

\[\sum \mathbf{F} = \iiint \mathbf{V} \rho \mathbf{V} \cdot d\mathbf{A} \quad \text{Steady, nonuniform flow} \]

\[\sum \mathbf{F} = 0 \quad \text{Steady, uniform flow} \]
Energy Equation

Reynolds Transport Equation
\[\frac{dB}{dt} = \frac{d}{dt} \left(\int \int \beta \rho d\mathcal{A} + \int \int \rho \tilde{V} \cdot d\mathcal{A} \right) \]

Energy of the System
\[B = E = E_u + \frac{1}{2} MV^2 + Mgz \]

First Law
\[\frac{dE}{dt} = \frac{dH}{dt} - \frac{dW}{dt} \]

Combining
\[\frac{dH}{dt} - \frac{dW}{dt} = \frac{d}{dt} \left(\int \int \left(\frac{V^2}{2} + e_u + gz \right) \rho d\mathcal{A} + \int \int \left(\frac{p}{\rho} + \frac{V^2}{2} + e_u + gz \right) \rho \tilde{V} \cdot d\mathcal{A} \right) \]

\[\frac{V_1^2}{2g} + \frac{p_1}{\gamma} + z_1 - h_f = \frac{V_2^2}{2g} + \frac{p_2}{\gamma} + z_2 \]
Internal Energy

• Sensible Heat – related to temperature

\[\Delta e_u = C_p \Delta T \]

Specific heat \(C_p \)

• Latent Heat – related to phase changes
 – Fusion/Melting
 • ice – water, 0.33x10^6 J/kg
 – Vaporization/Condensation
 • water – water vapor, 4.2x10^3 J/kg
 – Sublimation
 • ice – water vapor, 2.5x10^6 J/kg

– Main internal energy change in hydrology
Steady Uniform Flow in an Open Channel

- **Continuity**
 \[\oint_{CS} \vec{V} \cdot d\vec{A} = 0 \]

Steady flow \(Q_1 = Q_2; \quad V_1 = V_2 \)
Uniform flow \(A_1 = A_2; \quad y_1 = y_2 \)

Uniform channel
Steady Uniform Flow in an Open Channel

- **Energy**

\[
\frac{V_1^2}{2g} + \frac{p_1}{\gamma} + z_1 - h_f = \frac{V_2^2}{2g} + \frac{p_2}{\gamma} + z_2
\]

\[
v_1 = v_2 \\
y_1 = y_2
\]

\[
z_1 - z_2 = h_f \\
\frac{h_f}{L} = \frac{z_1 - z_2}{L} = S_f = S_0
\]
Flow in an Open Channel

Steady, uniform flow

- **Momentum** \(\sum \vec{F} = 0 \)

- **3 forces on CV:**
 - Pressure: cancels
 - Friction: \(\vec{F}_f = -\tau_0(PL) \)
 - Gravity: \(\vec{F}_g = \gamma AL \sin \theta = \gamma ALS_f \)

- **Sum:** \(\sum \vec{F} = 0 = -\tau_0(PL) + \gamma ALS_f \)

\[\tau_0 = \gamma RS_f \]
Open Channel Flow

- **Darcy – Weisbach Equation**: head loss due to wall friction
 \[h_f = f \frac{L V^2}{D 2g} \]
 \[S_f = \frac{h_f}{L} \]
 \[D = 4R = 4 \frac{A}{P} \]

- **Chezy’s Equation for open channel flow**
 \[V = C \sqrt{RS_f} \]
 \[C = \sqrt{\frac{8g}{f}} \]

- **Manning’s Equation for open channel flow**
 \[V = \frac{1}{n} \frac{2^{2/3}}{S_f^{1/2}} \]
 \[C = \frac{1}{n} \frac{1}{R^{1/6}} \]
Manning’s Equation

- Manning’s Equation for open channel flow

\[V = \frac{1}{n} R^{2/3} S_f^{1/2} \quad V = \frac{1.49}{n} R^{2/3} S_f^{1/2} \quad R = \frac{A}{P} \]

- Valid for fully turbulent flow

\[n^6 \sqrt{RS_f} \geq 1.1 \times 10^{-13} \quad \text{As } n \uparrow, V \downarrow \]

- Laminar flow: use Chezy with \(f \) from Moody diagram

Manning, Robert, "On the Flow of Water in Open Channels and Pipes,“
Transactions of the Institution of Civil Engineers of Ireland, 1891
Manning’s n

<table>
<thead>
<tr>
<th>Material</th>
<th>Manning n</th>
<th>Material</th>
<th>Manning n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Streams</td>
<td></td>
<td>Excavated Earth Channels</td>
<td></td>
</tr>
<tr>
<td>Clean and Straight</td>
<td>0.030</td>
<td>Clean</td>
<td>0.022</td>
</tr>
<tr>
<td>Major Rivers</td>
<td>0.035</td>
<td>Gravelly</td>
<td>0.025</td>
</tr>
<tr>
<td>Sluggish with Deep Pools</td>
<td>0.040</td>
<td>Weedy</td>
<td>0.030</td>
</tr>
<tr>
<td>Floodplains</td>
<td>0.035</td>
<td>Non-Metals</td>
<td></td>
</tr>
<tr>
<td>Pasture, Farmland</td>
<td>0.050</td>
<td>Finished Concrete</td>
<td>0.012</td>
</tr>
<tr>
<td>Light Brush</td>
<td>0.075</td>
<td>Unfinished Concrete</td>
<td>0.014</td>
</tr>
<tr>
<td>Heavy Brush</td>
<td>0.15</td>
<td>Gravel</td>
<td>0.029</td>
</tr>
<tr>
<td>Trees</td>
<td></td>
<td>Earth</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Ethics Question

- (http://www.lmnoeng.com/manningn.htm)

- *Is it ethical to use an engineering software program to solve a problem if you cannot complete the calculations manually?*
Manning’s n

- Hydraulic computations related to discharge require an evaluation of the roughness of the channel.
- This is an art developed through experience.
- The appearance of some typical channels whose roughness coefficients are known can be studied on the web page:

 wwwrcamn1.wr.usgs.gov/sws/fieldmethods/Indirects/nvalues/
Example

- Manning’s equation: Steady, uniform flow in an open channel. Find velocity and flow rate

Given:
- $H = 5 \text{ ft}$
- $S = 0.03 \%$
- $B = 200 \text{ ft}$; and
- $n = 0.015$

$P = B + 2xH = 200 + 2(5) = 210 \text{ ft}$

$R = \frac{A}{P} = \frac{200 \times 5}{210} = 4.76 \text{ ft}$

$Q = VA = 4.87 \times 200 \times 5 = 4870 \text{ ft}^3 / s$

You can check that flow is, indeed, turbulent