CE 311K - McKinney
 HW-9 Nonlinear Equations

Problem 1. Use fixed-point iteration to locate the root of: $f(x)=e^{-x}-x$. Use an initial guess of $x_{0}=1.0$ and iterate until the approximate error is less than 0.01%.

Problem 2. A mass balance for a pollutant in a well-mixed lake can be written as:

$$
V \frac{d c}{d t}=W-Q c-k V \sqrt{c}
$$

where c is the concentration of the pollutant in $\mathrm{g} / \mathrm{m}^{3}$ the parameter values are $V=1 \times 10^{6}$ $\mathrm{m}^{3}, Q=1 \times 10^{5} \mathrm{~m}^{3} / \mathrm{yr}, W=1 \times 10^{6} \mathrm{~g} / \mathrm{yr}$, and $k=0.2 \mathrm{~m}^{0.5} / \mathrm{g}^{0.5} / \mathrm{yr}$. The steady-state concentration can be found from the equation:

$$
W-Q c-k V \sqrt{c}=0
$$

The root can be found using Fixed-Point Iteration using

$$
\text { Method 1: } c_{i+1}=\left(\frac{W-Q c_{i}}{k V}\right)^{2} \quad \text { Method 2: } c_{i+1}=\frac{W-k V \sqrt{c_{i}}}{Q}
$$

Only one of these equations will work all the time for initial guesses for $c>1$.
(a) Use Method 2 and demonstrate that it will work for an initial guess of $c_{0}=2.0$ $\mathrm{g} / \mathrm{m}^{3}$.
(b) Demonstrate what happens if you try to use Method 1.

Problem 3. Determine the smallest real root of

$$
f(x)=-11-22 x+17 x^{2}-2.5 x^{3}
$$

graphically and (b) using the bisection method using a stopping criterion of 0.05%.
(Root is between -1.0 and 0.0).
Problem 4. Starting from an initial guess $x_{0}=2.5$, take 2 iterations of Newton's method to find the maximum value of the function:

$$
f(x)=2 \sin x-\frac{x^{2}}{8}
$$

